Skip to main content

DG Martin Kropff’s 100 day perspective

OneCIMMYTMartin Kropff, CIMMYT Director General, emphasized CIMMYT’s achievements and new ways forward during a talk commemorating his first 100 days as DG, at CIMMYT headquarters in El Batбn, Mexico, on 20 October 2015.

After meeting 250 staff, partners and Board of Trustee members from around the world at Science Week 2015 and observing the organization in Mexico and several offices abroad, Kropff began initiating processes to frame a new strategy.

Globally, US$ 2.1 billion to US$ 5.7 billion are attributed annually to CGIAR wheat improvement. Thanks to CIMMYT support, 52,000 tons of drought tolerant maize seed were released in Africa in 2014. Kropff witnessed the work behind these impacts directly through his first 100 days of travel in China, India and Pakistan. In addition, he witnessed CIMMYT’s partnership with Australia at the International Wheat Conference and MasAgro’s success in collaborating with seed companies and farmers throughout Mexico.

“Institutional changes and strengthening internal processes will be key to realizing the success of our mission and fundraising goals to foster a healthy organizational culture,” Kropff stated during the talk.

Kropff emphasized that cuts in funding to CGIAR Research Programs are affecting all centers. “We must be more innovative, efficient, and donor-savvy than ever before,” he said. “The attention to food production that came after the 2008 food price crisis has shifted now to climate change, nutrition, and the refugee crisis. In response, a fundraising strategy for large initiatives will be implemented, targeting new donors and ways to reach them.

Kropff has been working with a team and management committee on a new strategy that will soon be finalized. “One CIMMYT’s” unifying vision and mission will emphasize scientific excellence, capacity building, and impact through partnerships. “In addition to getting better varieties to farmers faster,” Kropff said, “we are proposing the creation of a ‘CIMMYT Academy’ to consolidate training and capacity-building and bring in added research contributions from Ph.D. students of universities worldwide.”

He assured staff that CIMMYT would continue to adapt and foster innovative thinking to realize its vision of research-for-development on maize and wheat agrifood systems, thereby contributing to a world with less poverty, healthier and more prosperous people, more resilient ecosystems, and fewer global food crises.

Drought-tolerant maize to the rescue as hunger threatens 1.5 million in Zimbabwe

Children in a drought-stricken maize field in Gwanda District, southeast of Bulawayo, Zimbabwe’s second largest city. Drought is the most frequently occurring natural hazard in Zimbabwe, made worse by the clear trend, since 1980,of decline in rainfall that the country has received each year. Photo: Desmond Kwande/Practical Action.
Children in a drought-stricken maize field in Gwanda District, southeast of Bulawayo, Zimbabwe’s second largest city. Drought is the most frequently occurring natural hazard in Zimbabwe, made worse by the clear trend, since 1980,of decline in rainfall that the country has received each year. Photo: Desmond Kwande/Practical Action.

According to the World Food Programme (WFP) of the United Nations, nearly 1.5 million (16 percent) of Zimbabwe’s 14 million people are feared to go hungry at the height of the 2015–16 lean season – a 164 percent increase on the previous year (Hunger hits 1.5 million in Zimbabwe as maize production halves-WFP). This is due to a dramatic decrease in maize production. The lean season is the period after harvest when food stocks run low.

Maize is Zimbabwe’s staple. At 742,000 tonnes, production has dropped by 53 percent compared to the 2014–15 season, according to the Southern African Development Community, of which Zimbabwe is a member.

“The situation in Zimbabwe is more extreme than most countries in the region but it is not unique,” WFP spokesperson David Orr told the Thomson Reuters Foundation. An estimated 27 million people in the region are food-insecure as a result of drought and inappropriate farming practices.

Mary Gunge, 45, and her family of six, live in drought-prone Chivi District, Masvingo Province. For the past five years, life has been difficult for Gunge and other smallholder farmers in this harsh, semi-arid environment. “There are no good rains to talk about anymore,” Gunge told visiting journalists recently. The rains in her area were too little, too late. Smallholders need urgent food aid to carry them to the next harvest in May and June next year.

Parts of Zimbabwe are experiencing unpredictable weather. Zimbabwe’s Meteorological Services says the country is experiencing more hot days and fewer cold days.

“We’re no longer sure when to start preparing the land for planting or when to start planting. It’s pretty much gambling with nature,” says Gunge.

Climate change will have a significant impact on southern Africa’s fragile food security, environmental experts have warned. It already costs southern Africa five to 10 percent of its gross domestic product. This implies a loss of between USD 10 and 21 billion annually in a region where nearly half the population is living on less than one dollar a day.

showcasing various maize varieties. CIMMYT-SARO maize breeder Thokozile Ndhlela at this year’s CIMMYT field day. Partners, including the Government of Zimbabwe, witnessed CIMMYT’s work in its efforts to reduce hunger and malnutrition in southern Africa. Photo: Johnson Siamachira/CIMMYT.
Showcasing various maize varieties. CIMMYT-SARO maize breeder Thokozile Ndhlela at this year’s CIMMYT field day. Partners, including the Government of Zimbabwe, witnessed CIMMYT’s work in its efforts to reduce hunger and malnutrition in southern Africa. Photo: Johnson Siamachira/CIMMYT.

To address this all-too-familiar situation, the International Maize and Wheat Improvement Center (CIMMYT)’s southern Africa Regional Office (CIMMYT–SARO) and its partners are working to increase the productivity of maize-based farming systems to ensure food and nutritional security, increase household incomes and reduce poverty.

“Using conventional breeding, CIMMYT and partners have produced new varieties which yield 20 to 30 percent more than currently available local varieties under drought and low soil nitrogen,” says Mulugetta Mekuria, CIMMYT–SARO Representative. New maize varieties now account for 26 percent of maize hybrids grown in Zimbabwe.

By the end of this year, CIMMYT will establish a modern quarantine facility (Zimbabwe and CIMMYT to establish Maize Lethal Necrosis Quarantine Facility) to safely import maize breeding materials to southern Africa, and to enable local institutions to proactively breed for resistance against Maize Lethal Necrosis (MLN) disease.

More efficient use of the limited resources that smallholder farmers have is crucial for increasing food security. CIMMYT’s project on Sustainable Intensification of Maize–Legume Based Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) focuses on increasing food production from existing farmland while minimizing pressure on the environment.

SIMLESA has successfully used the principles of conservation agriculture in Malawi and Mozambique.

“Making use of the combined benefits of minimum soil disturbance, crop residue retention and crop rotation, conservation agriculture yields better when compared to conventional agricultural practices after two to five cropping seasons,” said Mekuria, who is also the SIMLESA Project Leader.

Trials in farmers’ fields in Malawi increased yields by 20 to 60 percent. In Zambia and Zimbabwe, yields increased by almost 60 percent using animal traction conservation agriculture. CIMMYT is also providing support to seed companies, including capacity building for technical and entrepreneurial skills, varietal release and registration, seed multiplication and commercialization.

Peter Setimela, CIMMYT–SARO Senior Seed System Specialist, says, “Developing drought-tolerant maize will increasingly become more critical especially now when most countries in the region continue to be affected by drought.”

In the past two years, 28 varieties have been released in southern Africa with greater tolerance to the main stresses in the region. These new varieties are expected to benefit almost 12 million people, helping to enhance food security, increase livelihoods and reduce poverty.

CIMMYT wheat breeder Ravi Singh wins China’s Friendship Award

Ravi_Award1EL BATAN, Mexico (CIMMYT) – Gains in China’s agricultural productivity over the past 30 years are due in large measure to smallholder farmers who have readily adopted innovative farming practices introduced by scientists, said a top wheat breeder during a speech at the country’s annual Friendship Awards.

Ravi Singh, a chief wheat breeder and distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT), was among 50 foreigners from 21 countries working in China, who received the prestigious award in Beijing last month in recognition of their contributions to China’s development.

“China is now the largest wheat producer in the world and continues to increase production and productivity while reducing the amount of land sown with wheat by about 20 percent – it’s a remarkable success story,” Singh said.

“I commend and salute the Chinese government for rigorously supporting agricultural research and development, and more importantly farmers, with transformative policies that were crucial to achieve goals.”

Singh’s key contributions to China’s agricultural development over the past 30 years involve sharing improved germplasm, knowledge about rust-disease resistance genetics and leading various types of training, including mentoring post-doctoral Ph.D. graduates as part of an agreement between CIMMYT and the Chinese government.

The Friendship Award, first established to recognize experts from the Soviet Bloc in the 1950s, abolished in the 1960s during the Cold War and reintroduced in the 1990s, is China’s highest award for foreign experts who have made outstanding contributions to the country’s economic and social progress. Since its reinstatement, 1,449 Friendship Awards have been conferred, according to the Xinhua news agency.

CIMMYT scientist Ravi Singh receives Friendship Award from China's Vice-Premier Ma Kai. CIMMYT/Handout
CIMMYT scientist Ravi Singh receives Friendship Award from China’s Vice-Premier Ma Kai. CIMMYT/Handout

“The new generation of well-trained Chinese scientists with access to modern laboratories and field facilities are well equipped to find innovative solutions to the challenge of feeding an ever-increasing global population,” Singh said, referring to U.N. projections that the current population of 7.3 billion will increase 33 percent to 9.7 billion by 2050.

“I feel deeply grateful and satisfied with the remarkable progress China has made in enhancing food productivity and incomes of millions of women and men small-scale farmers who embraced innovations and responded to the crucial responsibility of enhancing food production,” he added.

Currently, the country consumes almost 117 million tons of wheat a year and produces about 130 million tons of wheat a year, according to the Wheat Atlas. China, home to 1.4 billion people, is the most populated country in the world and represents 19 percent of the world’s population, the U.N. Department of Economic and Social Affairs reports.

Several CIMMYT scientists have received the China Friendship Award, including the 2014 World Food Prize laureate Sanjaya Rajaram, with whom Singh initiated his career at CIMMYT.

Additionally, Hans Braun, head of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, noted agronomist Thomas Lumpkin, CIMMYT’s director general from 2008 to 2015, and scientists Surindar Vasal, Jose Luis Araus and Ken Sayre have been honored with the Friendship Award in previous years. Vasal was jointly awarded the World Food Prize with Eva Villegas in 2000.

“The Chinese government and people will never forget the positive contribution that foreign experts have made to China’s development and progress,” said the country’s Vice Premier Ma Kai at the 2015 Friendship Award ceremony.

Singh has also received three provincial friendship awards from China.

Transforming maize farming failures to successes in Kenya’s drylands

“I got over three bags of 50 kilograms each this season [despite drought] from my one-and-quarter-acre farm. This is amazing! I have never harvested anything beyond one-and-a-half bags in the past.”

Sarah’s smile is due to KDV4 drought-tolerant maize. Her first-time ‘drought insurance’ venture has paid off, and she’s harvested more despite the drought than she normally does even in good years. Photo credit: B. Wawa/CIMMYT
Sarah’s smile is due to KDV4 drought-tolerant maize. Her first-time ‘drought insurance’ venture has paid off, and she’s harvested more despite the drought than she normally does even in good years. Photo credit: B. Wawa/CIMMYT

Drought is one of the biggest challenges that rain-dependent farmers in Africa face. As a result, millions of smallholders and their families become increasingly vulnerable to crop failure that leads to hunger and deeper poverty. What options do smallholders have in the face of drought?

For Mrs. Sarah Nyamai, a farmer from Kalimoni Village in Machakos County, Kenya, maize farming was not a priority until three years ago. She did not take maize farming very seriously – despite the fact that maize has been a staple food in her home for a long time – largely because of very poor yields often blamed on the unforgiving climate that characterizes eastern Kenya.

However, harsh climate is not the only problem that Sarah and hundreds of other farmers in her locality are grappling with. Poor-quality seed makes a bad situation much worse. This means that the likelihood of harvesting enough for the family table is very low. And this, despite the considerable time and resources farmers invest in working the land.

The pain when there is no gain… and the “insurance” DT maize offers in bad years

“There is nothing as bad as buying food when you can grow it in your farm. Money needs to be used to buy other necessities but not food. Not when you can grow and harvest to feed your family,” Sarah observes.

The planting season in Kalimoni Village falls during the March–May long rains. This year, the rainfall was not only very low but also poorly distributed, spelling doom for any good harvest.

Despite this bleak outlook, there is hope for farmers who took preventive measures. Sarah’s face lights up as she harvests a healthy maize cob on her one-and-a-quarter-acre farm. She planted – for the first time – a drought-tolerant (DT) maize variety called KDV4. Her ‘drought insurance’ venture paid off, and she has much to smile about. “I got over three bags of 50 kilograms each this season from my one-and-quarter-acre farm. This is amazing! I have never harvested anything beyond one-and-a-half bags in the past. This is very good seed! And it tastes better too!” Sarah enthuses.

A picture of robust health and vitality: like most other improved DT maize varieties, KDV4 truly comes into its own in drought, and does even better when there is no drought. Photo credit: B. Wawa/CIMMYT
A picture of robust health and vitality: like most other improved DT maize varieties, KDV4 truly comes into its own in drought, and does even better when there is no drought. Photo credit: B. Wawa/CIMMYT

KDV4 is one of the DT varieties sold in Kenya’s eastern drylands alongside other improved varieties, developed by the Drought Tolerant Maize for Africa (DTMA) Project in close partnership with public and private partners including local seed companies in Kenya.

Sarah purchased a three-kilogram packet of the KDV4 variety from Dryland Seeds Limited (DSL), the main supplier of DT maize seed in the eastern region. Besides KDV4 maize – an open pollinated variety – DSL also stocks a number of hybrid varieties tailored especially for this region. One such hybrid is DSLH103, locally known as Sawa, a Kiswahili name that loosely translates into ‘the good one’.

Mr. Joseph Mulei is one of the farmers who has planted Sawa. “Sawa has very good yield. I like it particularly because it matures early. If we get good rains in the first two weeks, I am assured of very good harvest from Sawa,” explains Mulei.

Sawa statistics, the story is spreading, but much more remains to be done

Statistics too stand by and reaffirm the Sawa label. On average, hybrids like Sawa give farmers up to 49 percent more grain than open pollinated varieties, and 15 percent more than hybrids currently on the market.

Both Joseph and Sarah have taken the initiative to educate their fellow farmers on the benefits of certified DT seed. Mulei has been particularly influential in his capacity as a leader of 25 farmers in the area. They both concur that it is important for more farmers to plant the improved varieties since they are a guarantee to improving food security.

Yet despite this assurance, improved varieties in the eastern region are still not widespread according to Mr. Ngila Kimotho, the Managing Director of DSL. “More collaborative effort is needed to create awareness on the improved DT varieties, and more importantly, to ensure that the seeds are available for the farmers,” adds Ngila. The company has conducted several awareness campaigns including field demonstrations and radio programs in a bid to reach as many farmers as possible.

What is CIMMYT doing to spread DT maize?

Through its new project Drought Tolerant Maize for Africa Seed Scaling (DTMASS), CIMMYT is working with seed companies like DSL to meet the current demand and improve access to good-quality DT maize. DTMASS plans to produce close to 12,000 metric tonnes of certified seed for approximately 400,000 households – or 2.5 million people – in seven countries in eastern and southern Africa (Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia).

DTMASS will make determined efforts to reach as many farmers as possible as an integral part of project goals. Consequently, many more farmers will enjoy the benefits of good yields even in the moderate droughts so common in most of Africa’s maize belt.

Changing the pace of maize breeding in Africa through doubled-haploid technology

Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT
Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT

Two words – accelerated breeding – are synonymous to doubled-haploid (DH) based maize breeding. This was the core message shared with 56 maize breeders from 10 African countries who recently participated in a two-day training workshop organized by CIMMYT’s Global Maize Program (GMP) in Nairobi, Kenya, from September 23–24, 2015. The breeders benefited from the knowledge and experience of resource persons from public and private institutions in France, Germany and USA who have dedicated years of research on the DH technology that is changing the pace of maize breeding.

The resource persons for the training workshop included Tim Cupka (AgReliant Genetics, USA), Thomas Lubberstedt (Iowa State University, USA), Wolfgang Schipprack (University of Hohenheim, Germany), Dominic Marc and Regis Brassart (Limagrain, France), and CIMMYT’s B.M. Prasanna, Vijay Chaikam, Yoseph Beyene and Sotero Bumagat.

The DH technology shortens the breeding cycle significantly by developing 100 percent homozygous lines within 2–3 seasons compared to conventional breeding that takes at least 7–8 seasons to develop inbred lines with 98–99 percent homozygosity. While tracing the evolution of DH technology in maize, B.M Prasanna, Director of both GMP and the CGIAR Research Program MAIZE remarked, “This is a significant reduction of time, labor and important resources. There is a great opportunity for maize breeders in Africa to modernize the breeding programs using DH technology, coupled with molecular markers. It is particularly important to enhance genetic gains while effectively dealing with an array of stresses crippling maize production in sub-Saharan Africa.”

While commercial seed industries across the world have benefited significantly from this technology, the uptake among the institutions of the national agricultural research systems (NARS) and the small- and medium-scale enterprise (SME) seed companies in sub-Saharan Africa (SSA) is significantly low. This is due to various reasons, particularly lack of awareness about the power of DH technology.

To address this challenge, CIMMYT in partnership with Kenya Agricultural and Livestock Research Organization (KALRO) established the maize DH facility – the first of its kind in SSA – at the Kiboko Maize Research Station in Kenya in September 2013. The facility offers DH development service to NARS and SME seed companies – with financial support from Bill & Melinda Gates Foundation.

“Establishing and operating such a facility requires significant technical know-how and is not an easy task,” said Prasanna. “It is more practical for our NARS and SME seed company partners to utilize the facility at Kiboko to develop DH lines with diverse genetic backgrounds through the DH development service offered by CIMMYT, make effective selections, and use well-selected DH lines in hybrid breeding programs. The purpose of the training workshop is to make breeders aware of the tremendous opportunities to integrate DH lines in maize breeding programs”.

Sure-footed progress – Africa’s maize breeding on the right path

It is estimated that about 70 to 80 percent of new maize hybrids being produced currently by major seed companies in the world, especially in North America and Europe, contain one or more doubled-haploid lines, with DH-based maize hybrids covering about 40 to 50 million hectares worldwide.

Tim Cupka, a highly experienced maize breeder at AgReliant Genetics, USA, emphasized that DH technology has changed the face of maize breeding in his organization. “The developed world is intensively practicing DH-based maize breeding. There is so much value that can be created through this technology not just for public and private maize breeding programs and seed companies in Africa, but ultimately for the farmers,” noted Tim.

For farmers and breeders, the greatest value is that DH technology reduces the amount of time (by one-third) it takes to create new commercial hybrids. “Instead of taking 12 years to develop a superior hybrid, we are now developing new hybrids within 6 to 7 years, which means we can get superior genetics to the farmers much faster than ever before! This is key to strengthening the livelihood of millions of farmers across the world. That is our success as breeders,” Tim concluded.

GMP in Africa has effectively integrated DH and molecular marker technologies in its product development pipeline. More than 92,000 DH lines have been developed so far from CIMMYT bi-parental populations at the DH facilities at Kiboko and Agua Fria, Mexico. In addition, significant contributions have been made over the last few years by Monsanto and DuPont Pioneer in developing DH lines in CIMMYT’s Africa-adapted maize genetic backgrounds through the Water Efficient Maize for Africa and Improved Maize for African Soils projects. “CIMMYT has so far released 32 DH-based maize hybrids in Kenya, Uganda, Tanzania, and South Africa between 2012 and 2015.These hybrids showed excellent performance under optimum, drought and low-nitrogen stress conditions,” reported Yoseph Beyene, a CIMMYT Maize Breeder based at Nairobi, Kenya. He also added that the five DH lines have been recently identified for release as CIMMYT maize lines.

In addition, more than 5,000 DH lines have been screened by CIMMYT for maize lethal necrosis (MLN) disease under artificial inoculation at the MLN Screening Facility at Naivasha, Kenya; promising lines have been identified offering tolerance to the disease. Therefore, DH technology can be a powerful tool to accelerate development of MLN-tolerant maize hybrids for sub-Saharan Africa.

Participants at the workshop got an opportunity to visit the DH facility at Kiboko in Makueni County, Kenya, where they saw the DH breeding process. The tour was facilitated by Sotero Bumagat, Maize DH Facility Manager, CIMMYT–Kenya. “This is a new experience and a very enriching one,” remarked Lwanga Kasozi from the Agricultural Research Institute in Tanzania. “I have seen and understood DH-based breeding both in theory as well as practice. It is my desire to see our organization in Tanzania embrace this technology. I will play my part to share this experience and knowledge.”.

Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT
Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT

The Alliance for a Green Revolution in Africa (AGRA), also nominated its scientists to participate in the training workshop. In addition, AGRA sponsored the participation of nine maize breeders from different NARS institutions in SSA to participate in the workshop.

Un libro que rinde homenaje a las “científicas anónimas” con motivo del Día Internacional de las Mujeres Rurales

WWMM-Cover-for-Web-smaller-1Jennifer Johnson

EL BATÁN, México, 12 de octubre (CIMMYT) – Las mujeres rurales desempeñan un papel fundamental en aumentar el desarrollo agrícola y rural, mejorar la seguridad alimentaria y erradicar la pobreza rural.

Aportan innumerables beneficios a los sistemas agrícolas en todo el mundo, en todos los niveles de la cadena de valor y, sin embargo, sus contribuciones no suelen ser reconocidas. Este año, con motivo del Día Internacional de las Mujeres Rurales (IDRW) que se celebra el 15 de octubre, el Programa MAÍZ del CGIAR (MAIZE) quiere rendir homenaje a las significativas contribuciones que las mujeres hacen a la agricultura en todo el mundo, compartiendo, en nuestros canales de medios sociales, fotos e historias tomados de nuestro libro titulado “Portraits of Women Working with Maize in Mexico”.

El libro pretende resaltar las aportaciones, a menudo desapercibidas, que hacen las mujeres al bienestar de sus familias, comunidades, países y del mundo por medio de la agricultura.

“Como parte de su énfasis en contribuir a la igualdad y equidad de género en la investigación para el desarrollo, MAÍZ aumentó su inversión para expandir la base de la evidencia en torno a cómo las normas y las relaciones de género se interrelacionan con las prácticas y la innovación agrícolas, y las implicaciones de esto en la investigación y el desarrollo agrícolas”, opina Lone Badstue, líder estratégica de investigación sobre género del CIMMYT, quien trabaja también con el CRP MAÍZ, administrado por el Consorcio de Investigación Agrícola del CGIAR.

“Este documental expande estos esfuerzos al describir el lado a menudo olvidado de la subsistencia basada en el maíz en México, por medio de imágenes y de los testimonios de diferentes mujeres que, en sus propias palabras, narran su vida como agricultoras, amas de casa, artesanas y vendedoras”.

Garantizar la seguridad alimentaria y el sustento de las mujeres rurales es la meta central de muchos de los proyectos y actividades de MAÍZ.

El estudio de género del CRP MAÍZ denominado GENNOVATE, puesto en marcha en 2014, tiene como objetivo integrar diferentes aspectos del género en las actividades de MAÍZ con el fin de servir mejor a las mujeres rurales a medida que vayan adoptando las tecnologías agrícolas.

En 2014, MAÍZ implementó también el proyecto “Gender Matters in Farm Power” (El género sí importa en la mecanización agrícola), que es coordinado por el Instituto Real Tropical (KIT) y que explora las oportunidades para empoderar a hombres y mujeres por medio de mecanización a la escala apropiada. Hay otras actividades que incluyen iniciativas para integrar el género en la selección participativa de variedades, la elaboración de una estrategia para crear sistemas de producción de semilla de maíz e iniciativas para integrar el género en los servicios de asesoría y en el establecimiento de pequeñas empresas(CIMMYT).

La participación de las mujeres rurales es crucial para el éxito del CRP MAÍZ.

Su fe al sembrar nuestras nuevas variedades y aplicar las prácticas agronómicas recomendadas por MAÍZ las convierten en modelos a seguir en sus comunidades, ya que trabajan como “científicas anónimas”. Son ellas las que, con su participación activa, concretan la investigación de MAÍZ en el campo, ensayando sus productos y prácticas agronómicas y determinando si son viables para sus vecinos; son ellas las que preparan el camino para que los pequeños agricultores del mundo utilicen esos productos y prácticas correctamente y se beneficien de ellos.

Su retroalimentación es esencial, ya que no podemos lograr nuestra meta de aumentar de manera sostenible la producción de alimentos para los 900 millones de consumidores de bajos recursos para quienes el maíz es un alimento básico, sin primero cerrar la brecha del género en la agricultura.

Según datos de la FAO, si las mujeres agricultoras tuvieran los mismos derechos y las mismas oportunidades que los hombres, la producción de sus parcelas aumentaría en alrededor de 20 a 30% y sería posible alimentar a 150 millones de personas más en el mundo. Esto hace que las mujeres rurales se encuentren entre nuestros más grandes colaboradores en la lucha por erradicar el hambre y la pobreza.

Les invitamos a que esta semana compartan con nosotros sus propias fotos e historias de mujeres rurales utilizando la etiqueta #IDRW y contribuyan de esta manera al diálogo mundial sobre las “científicas anónimas”. Es una manera de reconocer a nuestras colaboradoras “tras bambalinas”, cuya labor es crucial para el éxito de nuestra investigación y nuestros proyectos, y quienes trabajan todos los días para proteger y promover la seguridad alimentaria mundial: las mujeres rurales.

LIBRO: Portraits of Women Working with Maize in Mexico
http://repository.cimmyt.org/xmlui/bitstream/handle/10883/4478/57042.pdf?sequence=1

Video: https://www.youtube.com/watch?v=Nc0opvkPoh4

 

Book celebrates maize “secret scientists” on International Day of Rural Women

SScientistsEL BATAN, Mexico (CIMMYT) – Rural women play a critical role in enhancing agricultural and rural development, improving food security and eradicating rural poverty.

Women provide innumerable benefits to agricultural systems around the world at all levels of the value chain, but their contributions often go unrecognized. This year, for the U.N. International Day of Rural Women (IDRW) on October 15, the CGIAR Research Program on Maize (MAIZE) would like to honor the significant contributions that women make to agriculture around the world by sharing photos and stories via our social media channels from our new book: “Portraits of Women Working with Maize in Mexico.”

The book seeks to shine light on the often unseen contributions that rural women make to their families, communities, countries and the world through agriculture.

“As part of its emphasis on contributing to gender equality and equity in agricultural research for development, MAIZE has increased investments to expand the evidence base on how gender norms and relations intertwine with agricultural practices and innovation and the implications of this for agricultural research and development,” said Lone Badstue, CIMMYT strategic leader for gender research, who also works on the MAIZE CRP, which is administered by the CGIAR consortium of agricultural research.

“This documentary initiative expands these efforts, portraying an often overlooked side of maize-based livelihoods in Mexico, through images and testimonies of different women, who describe in their own words, their lives as farmers, food makers, artisans and vendors.”

The goal of assuring the food security and livelihoods of rural women is at the heart of many of MAIZE’s projects and activities.

The cross-CRP gender study “GENNOVATE” launchedin 2014 promises to integrate gender-sensitive approaches across MAIZE work in order to better serve rural women as theyadopt agricultural technology.

In 2014, MAIZE also implemented the “Gender Matters in Farm Power” project, led by the Royal Tropical Institute (KIT), which is investigating opportunities to empower men and women through scale-appropriate mechanization. Other activities included efforts to integrate gender into participatory varietal section, the creation of a gender strategy for maize seed system development and initiatives to integrate gender into advisory services and small-scale entrepreneurship.

The participation of rural women is crucial to the success of the MAIZE CRP.

Their faith in using our new varieties and implementing the agricultural practices recommended by MAIZE makes them beacons in their communities, operating as “secret scientists.” They complete hands-on, on-the-ground research for MAIZE, experimenting to determine the viability of products and practices to their neighbors and paving the way for smallholder farmers worldwide to successfully use and benefit from them.

Their feedback is essential, as we cannot achieve our goal of sustainably increasing production for the 900 million poor consumers for whom maize is a staple food without first closing the gender gap in agriculture.

According to the U.N Food and Agriculture Organization, if women in agriculture were afforded the same rights and opportunities as men, they could increase their farm yields by an estimated 20 to 30 percent and feed up to 150 million more people worldwide. This makes rural women some of our greatest partners in the fight to eradicate hunger and poverty.

We invite you to share your own photos and stories of rural women with us this week using the hashtag #IDRW, to contribute to a global conversation on the world’s “secret scientists”—recognizing our “behind the scenes” partners who are so crucial to the success of our research and projects and work every day to protect and promote global food security—rural women.

BOOK: Portraits of Women Working with Maize in Mexico

http://repository.cimmyt.org/xmlui/bitstream/handle/10883/4478/57042.pdf?sequence=1

Video link: https://www.youtube.com/watch?v=Nc0opvkPoh4

India visit: Dr. Martin Kropff, Director General, CIMMYT

Photos courtesy of Anu Raswant

From 28 September to 2 October, CIMMYT Director General Martin Kropff visited different research sites in several states of India. The following reports detail his visit.

CIMMYT Emeritus Director General Dr. Tom Lumpkin receives prestigious 8th MS Swaminathan Award

Dr. Tom Lumpkin receiving the M.S. Swaminathan Award from Dr. M.S. Swaminathan and Dr. Raj Paroda, Chair, Trust for Advancement of Agricultural Sciences. Dr. Martin Kropff, CIMMYT DG, attended the award ceremony.

Dr. Tom Lumpkin, former CIMMYT Director General, received 8th MS Swaminathan Award for Leadership in Agriculture in a glittering ceremony organized by the Trust for Advancement of Agricultural Sciences (TAAS) at the Indian Agricultural Research Institute (IARI), New Delhi, on September 28. This year’s award was a special occasion as the award was presented by Dr. Swaminathan himself. The Award is conferred on individuals “who have done outstanding research work in the field of agriculture, animal sciences, and fisheries.” The first award was given in 2005 by the President of India, Dr. A.P.J. Abdul Kalam, to Dr. Norman E. Borlaug, Nobel laureate who led the development and spread of high-yielding wheat varieties in the developing countries during 1960s and 70s, which culminated in Green Revolution that saved billions of people from starvation.

On this occasion, Dr. Lumpkin said, “I’m humbled and greatly honored by this award. Swaminathan and Borlaug were visionaries who worked together and made their case courageously to the political leaders to get appropriate technologies into farmers’ hands. We must do the same, if South Asia is to provide nutritious food for more than 1 billion people who will live here in 2050, without further degrading land or depleting groundwater.”

While addressing the gathering, Dr. Swaminathan praised the work of Dr. Lumpkin in strengthening wheat and maize research in India and lauded his efforts in establishing the Borlaug Institute for South Asia.

CIMMYT-India Office Inaugurated by Dr. Martin Kropff, CIMMYT Director General, and CIMMYT Senior Management

CIMMYT DG inaugurating the renovated regional office of CIMMYT in India.

Dr. Martin Kropff, along with Drs. John Snape, Tom Lumpkin, Marianne Banziger, H.S. Gupta, Etienne Duvellier and B.S. Sidhu inaugurated the renovated CIMMYT-India office on September 30, 2015 by cutting a ribbon and unveiling a commemorative plaque. A large gathering of the staff from CG centers and ICAR along with Dr. S. Ayyappan, ICAR Director General, were present. Strategically located in the National Agricultural Science Center (NASC) complex, the renovated office can now accommodate 25 staff and has improved facilities. At the gathering, Kropff reiterated the importance of working as ‘One CIMMYT’ and ‘One CG’ to achieve food security in South Asia.

Visit to BISA Research Center at Ladhowal, Punjab

CIMMYT DG inaugurating the solar-powered micro-irrigation system at Ladhowal center of BISA.

CIMMYT DG Dr. Martin Kropf, accompanied by Drs. John Snape, Board Chair CIMMYT; Thomas A. Lumpkin, Ex-DG, CIMMYT; Marianne Banziger, DDG, CIMMYT, Etienne Duveiller, Director Research, CIMMYT-South Asia, and Dr. B.S. Sidhu, Commissioner, Agriculture, Punjab Government, visited BISA’s research center at Ladhowal on October 01, 2015. They were received by Dr. H.S. Gupta, BISA DG, and BISA staff members at the farm. They were taken around to see the research activities. The visiting team was impressed with the state-of-the-art facilities at the farm and the research work being conducted. Dr. Kropff and visiting dignitaries inaugurated a solar-powered micro-irrigation system installed with financial support from the Government of Punjab.

The visiting team evinced keen interest in the experiments on subsurface irrigation in the water-smart block where farmers can save 50-60% water without yield penalty. Kropff was pleased to learn that the latest technology in phenotyping in collaboration with Kansas State University is being used at BISA

DG CIMMYT with staff members of BISA at Ladhowal farm in Ludhiana

and that wheat lines with a 15-17% yield advantage have been selected and passed on to national partners under GWP. This will help increase the overall productivity of wheat in India in general and Punjab state in particular.

Dr. H.S. Sidhu, Senior agricultural engineer, showed various agricultural implements that have been developed at BISA center and have contributed to the adoption of conservation agriculture. Some of them are in great demand not only in India but in neighboring countries like Pakistan and many countries of Africa. At the end of the visit, a presentation summarized the development of Ladhowal farm since it was handed over to BISA. Dr. Kropff commented, “I am impressed with the facilities and high quality of research being conducted at BISA.”

Visit to Farmers’ Fields near BISA’s Ladhowal Center

CIMMYT DG Dr. Martin Kropff and Commissioner, Agriculture, Govt. of Punjab, Dr. B.S. Sidhu interacting with farmers in a climate-smart village near Ladhowal.

During visit to BISA Research Center at Ladhowal, Dr. Martin Kropff, along with CIMMYT’s senior management team, visited farmers’ fields near Ladhowal village and talked with farmers about climate-smart agricultural practices. The farmers showed use of the Green Seeker in rice crop and briefed the team on the conservation agriculture practices adopted by them. Dr. B.S. Sidhu, Commissioner, agriculture, Govt. of Punjab, shared that Punjab Govt. subsidizes the purchase of the Green Seeker so that farmers are encouraged to buy this instrument and save nitrogen.

DG Martin Kropff and Senior Management Visit Punjab Agricultural University, Ludhiana, Punjab

CIMMYT DG visiting rice fields with Dr. B.S. Dhillon, Vice Chancellor, Punjab Agricultural University, Ludhiana.

Dr. Martin Kropff, along with Drs. John Snape, Tom Lumpkin, Marianne Banziger, H.S. Gupta, Etienne Duvellier, and B.S. Sidhu, visited Punjab Agricultural University, Ludhiana, on October 1, 2015. He was received by the Vice Chancellor, Dr. B.S. Dhillon, who took the delegation around the farm and showed the research being conducted at this premiere university of India that was one of the major players in ushering the Green Revolution in India.

Directors of research and extension briefed the team on research on cereals, pulses, oilseeds, and horticultural crops. Dr. Kropff and members of the team showed keen interest in the quality research being pursued at the University.

Visit to Climate-Smart Villages in Haryana, India

CIMMYT DG visiting climate-smart villages in Karnal, Haryana, India.

Dr. Martin Kropff, CIMMYT DG, visited the CIMMYT-CCAFS participatory strategic research and learning platform in Taraori, Haryana, along with Drs. John Snape, Board Chair CIMMYT, Dr. Thomas A. Lumpkin, former CIMMYT DG, Marianne Banziger, DDG, CIMMYT, H.S. Gupta, BISA DG, and Etienne Duveiller, Director of Research, CIMMYT-South Asia, on October 02, 2015. Dr. M.L. Jat, Senior Cropping System Agronomist and Coordinator of CCAFS South Asia, explained the research portfolio of CIMMYT’s Sustainable Intensification Program in northwest India. He explained how layering of resource-efficient technologies can help in adaptation to frequent climate and biological changes under a particular set of agroecological conditions. During the visit to the climate-smart villages, the overall approach of developing, adapting, and scaling CSA through innovation and learning platforms in a participatory mode involving youth and women was highlighted. The portfolios of CSA interventions (water, energy, carbon, nutrient, weather and knowledge based) are chosen to suit local agroclimatic conditions and are being implemented through innovative partnerships with farmers and farmer cooperatives, to build resilience to climate change, and increase productivity and income. Dr. Martin Kropff sent a message to Dr. Bruce Campbell, CCAFS Director, saying:

“Dear Bruce, I just visited the climate-smart village project of M.L. Jat of CIMMYT in Haryana. Very impressive and a great enthusiasm with the farmers. Really exceptional work. I hope we can keep up the good work in the new phase of CCAFS.” In his immediate response, Bruce said, “Hi, Martin, I agree. It is great work.”

CIMMYT DG Martin Kropff and CIMMYT Senior Management Meet the Honorable Chief Minister, Government of Punjab

CIMMYT DG apprising the Hon’ble Chief Minister, Govt. of Punjab, about the research activities undertaken at BISA Center in Ladhowal.

Dr. Martin Kropff, CIMMYT DG, accompanied by Drs. John Snape, Board Chair; Thomas A. Lumpkin, former CIMMYT DG; Marianne Banziger, CIMMYT DDG, and H.S. Gupta, BISA DG, paid a courtesy visit on the Hon’ble Chief Minister of Punjab Shri Parkash Singh Badal on October 02, 2015. Dr. Kropff apprised the Hon’ble Chief Minister about the infrastructure development and research activities going on at the Ladhowal center of BISA. The Chief Minister expressed keen interest in the activities of BISA and urged CIMMYT management to take the technology developed at BISA farm to farmers’ fields.

While thanking the team for sparing time to visit him, the Chief Minister promised full support to BISA and hoped that BISA will prove to be a milestone in heralding a second Green Revolution in India.

Visit to the Research Platform at CSSRI, Karnal, Haryana, India

CIMMYT DG visiting the research platform at ICAR’s Central Soil Salinity Research Institute, Karnal, Haryana.

The team, comprised of Drs. Martin Kropff, DG, CIMMYT, John Snape, Board Chair CIMMYT, Thomas A. Lumpkin, former CIMMYT DG, Marianne Banziger, CIMMYT DDG, H.S. Gupta, BISA DG,  and Etienne Duveiller, Director of Research, CIMMYT-South Asia, visited the CSSRI-CSISA Research Platform at Karnal, Haryana, on Oct. 2, 2015. Dr. D.K. Sharma, Director, ICAR-CSSRI, welcomed CIMMYT’s new DG and senior management and highlighted the CIMMYT/CSSRI partnership and how important it is in relation to salinity and food security under the emerging climate change scenario. He stressed sustainable intensification and climate-smart agriculture for efficient resource management to address issues such as soil quality, labor shortages, water, and energy in the current changing climate in Indian IGP. He suggested to Dr. Kropff that the research platform on sustainable intensification initiated under CSISA at CSSRI should be continued for the next few years through support from CIMMYT because this platform acts as a production observatory to monitor the long-term changes and helps to give future research direction. Dr. H.S. Jat, CIMMYT senior scientist and platform coordinator, explained the outputs of CIMMYT’s on-going research activities being carried out in collaboration with CSSRI, Karnal.

Reflections of a wheat trainee: Zaki Afshar, Afghanistan

Zaki Afshar grew up in the small city of Puli Khumri in northern Afghanistan, and visited his father’s seven-hectare farm every weekend. In this farming locality where the staple crops are wheat and rice, Afshar saw the impact agriculture could have on a community.

“A big part of why I chose agriculture was because I saw how hard the farmers worked and still suffered,” said Afshar. “I wanted to know how I could help them. Why were they not using the advanced technologies I saw available in other parts of the world?”

According to the United States Agency for International Development (USAID), 60% of Afghan citizens rely on agriculture for their livelihoods. Wheat is the chief crop in Afghanistan, covering 2.5 million ha and providing about 60% of the daily calorie intake of an average Afghan. “We have a very basic agricultural system,” explained Afshar. “You will only see machinery used for plowing and threshing, not for sowing or even harvesting.”

Afshar attended Balkh University in Mazari Sharif and received a degree in Agricultural Plant Science. He currently works at the CIMMYT-Afghanistan office as a project associate in the wheat improvement program. The CIMMYT-ARIA (Agricultural Research Institute of Afghanistan) joint wheat breeding program is relatively small and new. Afshar’s dream upon starting at CIMMYT was eventually to join the wheat breeding team. Last March, Afshar was able to make this dream a reality, by participating in CIMMYT’s 2015 Basic Wheat Improvement Course (BWIC). This three-month intensive course at the Norman E. Borlaug Experiment Station in Ciudad Obregón, Sonora, Mexico, targets young and mid-career scientists and focuses on applying breeding techniques in the field.

“On my first field visit after returning home, I realized how different things were in Kabul than in Obregón,” said Afshar. “Because our program is very new, we have fewer breeders and need more training. I am excited to share with them everything I learned in Mexico.”

In Obregón, Afshar was able to meet scientists from all over the world and learn about breeding methods used in various regions worldwide. For Afshar it was extremely important to come to Mexico to receive his training. At the end of the BWIC, Afshar was honored with the most improved wheat breeder award.

“Through this course I learned how to be a breeder, how different breeders work and new information in wheat breeding,” said Afshar. “The most exciting moment was when I joined my team back in Afghanistan. It was easy for me to score and differentiate between different types of rust, and I realized that everyone in the field was paying attention to what I had to say.”

Kingbird released in Ethiopia to combat new stem rust threat

Kingbird released in Ethiopia to combat new stem rust threat. Credit: Linda McCandless

Farmers in Ethiopia are banking on Kingbird, the latest variety of wheat to be released by the Ethiopian Institute for Agricultural Research (EIAR). Kingbird is resistant to Ug99, the devastating race of stem rust first identified and subsequently race-typed as TTKSK in 1999, and TKTTF, a new stem rust race identified in 2012 that raged through so many Ethiopian farmers’ fields in 2013 and 2014.

The scourge of wheat farmers the world over, stem rust can quickly turn a wheat field into black stalks empty of grain when environmental conditions are optimal.

The new variety was evaluated at multiple locations in Ethiopia during the 2014 season and approved for release in 2015. “Kingbird offers new hope for resource-poor farmers in stem rust prone areas of Ethiopia,” said Fentahun Mengistu, EIAR Director General. “It is expected to replace the varieties Hawi and Pavon-76 in lowland areas, and complement Kakaba, Ogolcho, Shorima and a few other mid-altitude varieties.”

As Ronnie Coffman, vice-chair of the Borlaug Global Rust Initiative (BGRI), the international network of scientists, breeders and national wheat improvement programs that cooperated on the release of Kingbird, pointed out, crop diseases do not respect international boundaries. “Wheat farmers the world over are threatened by outbreaks of new races of yellow and stem rust of wheat on an almost yearly basis. It takes persistent and continually evolving international efforts to protect staple crops like wheat on a global scale.”

“Kingbird’s multi-disease resistance attributes combined with good bread-making quality and good yield performance led to its release in South Africa and Kenya a few years back,” said Ravi Singh, senior wheat scientist at CIMMYT, whose team is instrumental in making the initial crosses for most new wheat introductions in the developing world.

The pipeline for developing varieties such as Kingbird has been directed by the Durable Rust Resistance in Wheat (DRRW) project at Cornell University, acting as BGRI secretariat, since 2008. CIMMYT, the international Center for Agricultural Research in the Dry Areas (ICARDA), national agricultural research systems, and 22 other institutions assist in the effort. Generous support is provided by the Bill & Melinda Gates Foundation and the UK Department of International Development (DFID).

To read more on Kingbird’s development and spread and the efforts to protect world wheat production, check out the BGRI blog, “How Kingbird moved across East Africa.” A poster abstract by Zerihun Tadesse, wheat breeder at the EIAR, may be found here.

Rust-resistant wheat varieties, new rust races, surveillance, monitoring, and gene stewardship will be topics at the 2015 BGRI Technical Workshop, 17-20 September, and the International Wheat Congress, 20-25 September, both in Sydney, Australia. Follow the conversations at #BGRI2015 and #IWC9.

CIMMYT wheat breeder Sridhar Bhavani talks about the recently discovered virulence of TKTTF on Robin in Kenya, and Digelu in Ethiopia, and the new Kingbird release here.

RISING Voices interviews Frédéric Baudron

Frédéric Baudron in northern Rwanda. Photo courtesy of Frédéric Baudron

Frédéric Baudron, systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) in Ethiopia, introduces himself and his work. This is one of a series of portraits of key people in Africa RISING.

Tell us about your background

I trained as a tropical agronomist, but specialized as a livestock scientist and started my career working for various development programs targeting the interface between people (mainly farmers) and wildlife. I then did a Ph.D. in plant production systems. My research interests include farming system research, sustainable intensification, the impact of agriculture on biodiversity, and participatory innovation development.

Continue reading

Green manure crop cover reduces need for mineral fertilizer in Africa

Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.
Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.

It is widely accepted that improved maize germplasm will only express its yield potential under optimum agronomic management such as timely planting, optimal plant/space arrangements, and timely weed and pest control. But perhaps the most important agronomic intervention is adequate fertilization. Although farmers in Europe and America have used mineral fertilizers for generations, these have become available in Africa only relatively recently. However, the excessive use of mineral fertilizer in Europe and America has led to water pollution and eutrophication, and has increased the energy requirements of the fertilizer production process.

In Africa, mineral fertilizer remains a scarce, expensive and risky resource for most smallholder farmers. On average, farmers use less than 10 kg/ha of NPK fertilizer, and many do not apply it at all. The price of fertilizer is 3-5 times higher in Africa than in Europe due to the lack of infrastructure and production facilities, often making it unaffordable for farmers. Fertilizer is primarily applied to higher value and horticulture crops that, unlike maize, give farmers greater return on their investment.

Many farmers in southern Africa plant maize extensively on large areas, harvest less than 1 t/ha on average and mine already depleted nutrients from the soil while trying to become food secure and escape from poverty – an impossible task! But farmers are now being offered a range of solutions that provide a way out of the poverty trap, such as improved drought and stress tolerant maize germplasm, conservation agriculture (CA), improved rotation systems with legumes and green manure cover crops.

The use of CA principles (minimum soil disturbance, crop residue retention and diversification through rotation and intercropping) hinges on the ability of farmers to retain sufficient surface crop residues to protect the soil from heavy rain, evaporation and sunlight. However, farmers in mixed crop/livestock systems face competing demands for these residues because they also feed them to their animals.

It is against this background that the Food and Agriculture Organization of the United Nations (FAO) involved CIMMYT in a small project aimed at introducing green manures to smallholder farmers in eastern Zambia and central and southern Malawi. Green manures are grown primarily to improve the soil, generate biomass for ground cover and provide fodder; some also produce grain for feed and food.

In Lilongwe District, Malawi, farmer Bikoni Yohane and wife Esnart proudly present their maize-cowpea intercropped field, which will produce grain and leaves for home consumption and im-prove soil fertility. Photo: Christian Thierfelder/CIMMYT.

A range of varieties have been tested by the Global Conservation Agriculture Program over the past five years. Crops such as velvet bean, lablab, cowpea, sunnhemp, jackbean, pigeonpea and groundnuts have been identified as viable options with great potential for smallholders. They provide 5-50 t/ha of extra biomass for groundcover and/or fodder, leave 50-350 kg/ha of residual nitrogen in the soil and do not need extra fertilizer to grow. The new project is testing these species in full rotation or intercropped with maize on farmers’ fields in the three project regions. To increase adoption, the project is using an intensive participatory process to adapt the green manures to smallholder conditions.

This initiative is not the only one where CIMMYT has been involved with green manure cover crops: in northern Mozambique, a collaboration with CARE International reports that yield increased from 4 t/ha to 13 t/ha by only using lab-lab and improved germplasm in cassava-based CA systems. The ACIAR-funded ZimCLIFFS project in Zimbabwe was also very successful in growing lablab and velvet beans to generate supplementary fodder for livestock during the dry winter period.

Through innovative approaches, CIMMYT will further explore new ways of integrating green manures into smallholder farming systems so they become the status quo, not just an option!

Tackling wheat rust diseases requires $108 million a year, study shows

PhilipPardey
Economist Philip Pardey on the sidelines of the International Wheat Yield Conference in Sydney, Australia. CIMMYT/Julie Mollins

SYDNEY, Australia (CIMMYT) – When storybook character Alice stepped through the looking glass, the Red Queen encouraged her to run as fast as she could. Alice did, but despite her efforts she remained stuck in one place:

“Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!” said the Red Queen.

Philip Pardey, a professor in the Department of Applied Economics at the University of Minnesota, referred to the Red Queen character in Lewis Carroll’s 19th century novel “Through the Looking Glass” at the International Wheat Conference in Sydney, Australia to illustrate a conundrum about wheat rust disease research.

Despite efforts to develop wheat that is resistant to damaging stem, stripe and leaf rusts, the diseases, which have existed for 10,000 years, will continue to thwart scientists, Pardey said, adding that the annual global investment in wheat rust research should be $108 million a year in perpetuity.

Currently, major projects such as the Borlaug Global Rust Initiative, which is directed at completely wiping out Ug99 stem rust, are funded for set periods of time and target specific strains of rust. It is unfeasible to expect a cure to be found, Pardey argued.

“It’s fallacious to think that we can ‘solve the stem rust problem’ through funding because the actual solution sows the seeds of its own destruction,” Pardey said, explaining that the fight against rusts is ongoing and must be funded continuously.

RED QUEEN EFFECT

Just as Alice and the Red Queen ran in one spot as hard as they could but got nowhere, rust sexual reproduction and genetic re-combinations fight to survive, allowing wheat rusts to co-evolve and adapt to changes in their environment.

In his study, Pardey determined that global losses from all three rusts average at least 15.04 million tons (552.8 million bushels) per year, equivalent to an average annual loss of about $2.9 billion a year.

He calculated that the economically justifiable investment in wheat rust research and development should be $108 million a year, equivalent to an annual investment of $0.51 per hectare per year across the current 212 million hectares (524 acres) of wheat worldwide.

“The nature of the intervention is that the very seeds of success of wheat breeders sows their own destruction,” Pardey said. “A co-evolutionary pressure is developed where rust has every incentive to survive, so when fungicides are used or the biology of the plants is altered to resist those fungi, it forces evolutionary pressure on the fungi to evolve around that resistance.”

Almost the entire global wheat crop is at risk of infection from wheat rusts, Pardey said. Globally, only 3.2 percent of the crop is grown in areas not susceptible to 
infection, while 62.7 percent of the crop is in areas that are vulnerable to all three rusts.

“I’m hopeful Pardey’s research findings illustrate the importance of ongoing funding for wheat rust research,” said Hans Braun, head of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the Wheat Research Program overseen by the CGIAR consortium of agricultural researchers.

“Pardey’s research is critical in highlighting the severity of the threat from all three types of rust, showing that continuous funding in perpetuity is the best way to keep them in check. Consistent funding will make it easier to help farmers and protect food security by controlling the disease.”

GLOBAL RISKS

Through modeling for both seasonal vulnerability and system vulnerability, Pardey determined that losses at any particular location or point in time do not represent the average annual global losses over the longer term.

“In 1935, the United States lost a fifth of the crop to rust, last year they lost less than half a percent,” Pardey said. “So, I wouldn’t want to take last year’s loss as being representative of the losses of this disease, nor would I want to take the 1935 loss. It’s not representative.”

Pardey developed a framework to characterize the probabilistic nature of losses over the century, then conducted a Monte Carlo simulation – which assesses risk impact under all possible outcomes of a given scenario – to determine a loss average estimate.

“If wheat breeders are successful in getting modern varieties onto all the wheat areas around the world, there is additional value because they’re at a higher yield level when the disease pulls the yields down,” Pardey said.

“High-yield varieties make the value of the rust avoidance go up as the yield goes up. You’ve got a virtuous cycle. The rust resistance becomes more valuable the more extensive the higher yielding varieties are spread. An investment of $108 million a year just allows us to keep up with it – we’re running fast to stand still.”

Zero-till wheat raises farmers’ incomes in eastern India, research shows

Farmer-with-wheat-harvest
Photo Credit: Vinaynath Reddy / CIMMYT

In a study published last month in Food Security, CIMMYT researchers reported that wheat farmers’ total annual income increased by 6% on average with the introduction of zero tillage (ZT) in Bihar.

While studies done in the past in the eastern Indo-Gangetic Plains (IGP) have shown ZT impacts in field trials or controlled environments, this research is believed to be the first that studied actual impacts in farmers’ fields in eastern India.

ZT allows direct planting of wheat without plowing, sowing seeds directly into residues of the previous crop on the soil surface, thus saving irrigation water, increasing soil organic matter and suppressing weeds.

“We found that the prevailing ZT practice, without full residue retention, used by farmers in Bihar has led to an average yield gain of 498 kilogram per hectare (19%) over conventional tillage wheat, which is in contrast to the results of a recent global meta-analysis” says Alwin Keil, Senior Agricultural Economist, CIMMYT and the lead author of this study.

The global meta-analysis published last year compared crop yields in ZT and conventionally tilled production systems across 48 crops in 63 countries. It reported that ZT is only profitable in rainfed systems and when it is combined with full residue retention and crop rotation. “However, in Bihar, marginal and resource-poor farmers cannot afford to leave the full residue in the field as they use the rice straw to feed their livestock,” says Keil.

According to Keil, the divergent findings of the meta-analysis may be caused by the fact that most of the reviewed studies were conducted in moderate climatic zones (U.S., Canada, Europe, China) and results were aggregated across various crops.

Bringing a Wheat Revolution to Eastern India

Compared to the prosperous northwestern states, the eastern IGP is characterized by pervasive poverty and high population density, and its resource-poor farmers are more prone to the risks of climate change. Bihar has the lowest wheat yields in the IGP with an average of 2.14 tons per hectare.

To feed a growing wheat-consuming population, Bihar currently imports wheat largely from Punjab, where yields have stagnated over the last five years due to an over-exploitation of resources, especially water.

While ZT is widespread on the mechanized farms of Punjab and Haryana, seat of the first Green Revolution in India, farmers in the eastern IGP are yet to benefit. “There is also evidence that the positive effect of ZT is larger in areas with low agricultural productivity (generally low yields, such as Bihar) than in areas with higher productivity (such as Punjab, for instance),” remarks Keil.

Increasing Access among Smallholders

The study concludes that ZT users reap substantial benefits, and that this technology could help close the growing yield gap between production and consumption of wheat in Bihar. A 19% yield increase would translate into a production increase of 950,000 MT, which exceeds the total wheat imports into Bihar (868,000 MT in 2011).

However, with low ownership of tractors and ZT drills, large-scale adoption of ZT in eastern India hinges on an expansion of the network of service providers, who can custom-hire these kinds of services to smallholder farmers.

With public and private sector partners, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) has supported the development of ZT service providers among tractor owners by facilitating the purchase of ZT drills and providing technical trainings and know-how since 2009. Consequently, the number of ZT service providers in Bihar increased from 17 in 2011 to 1,624 in 2014, servicing a total of approximately 44,700 acres.

“Furthermore, we found that only 32% of non-users of ZT in our sample were aware of the technology. Hence, increasing the number of service providers to enhance farmers’ access to ZT has to go hand-in-hand with large-scale information campaigns to raise their awareness of the technology,” says Keil.

Rebuilding livelihoods: CIMMYT supports agricultural recovery in Nepal

Farmer-uses-minitiller-in-Nepal
Farmer uses a mini-tiller in mid-west region of Nepal CSISA

The recent 7.6 magnitude earthquake that struck Nepal on 25 April, followed by a 7.3 magnitude aftershock on 12 May and several hundred additional aftershocks to date, has had huge negative impacts on the country’s agriculture and food security. Around two-thirds of Nepal’s population relies on agriculture for their livelihood and agriculture contributes to 33 percent of Nepal’s GDP. It is estimated that about 8 million people have been affected by the earthquakes, with smallholders in hilly regions being most hard-hit.

The earthquake damaged or destroyed agricultural assets, undermining the longer-term food production capacity of farm families and disrupting critical input supply, trade and processing networks. Farmers lost grain and seed stocks, livestock, agricultural tools and other inputs, and are facing significant shortages of agricultural labour. Widespread damage to seed and grain storage facilities have affected smallholder farmers’ ability to secure their harvested crops through the rainy season.

In response to the devastation, USAID-Nepal has provided US$1 million for earthquake relief and recovery to the CIMMYT-led Cereal Systems Initiative for South Asia in Nepal (CSISA-NP). The Earthquake Recovery Support Program, for a period of 13 months, will be implemented in close coordination with the Ministry of Agricultural Development (MoAD), Department of Agriculture (DoA), Department of Livestock Services (DoLS), Nepal Agricultural Research Council (NARC) and District Disaster Relief Committee (DDRC). The districts that will receive support include Dolkha, Kavre, Khotang, Makwanpur, Nuwakot, Ramechap, Sindhupalchowk, and Solukhumbu, which have suffered particularly high levels of damage.

“Even if seed is available, the capacity for farmers to plant and harvest crops has been severely diminished due to the loss of draft animals and the exacerbation of labor shortages,” said Andrew McDonald, CIMMYT Principal Scientist and CSISA Project Leader. “We will reach more than 33,000 farming households through seed and grain storage facilities, mini-tillers and other farm machines, agricultural hand tools, technical training and agronomy support,” added McDonald.

The program will provide 50,000 grain storage bags, 30 cocoons for community grain storage, 400 mini-tillers and other modern agriculture power tools (e.g., reapers, maize shellers, seeders), 800 sets (5 items in a set) of small agricultural hand tools, and 20,000 posters on better-bet agronomic practices for rice and maize. “We will first focus on getting small horsepower mini-tillers into affected communities, and subsequently broadening the utility of these machines to power a host of essential agricultural activities including seeding, reaping, threshing and shelling, as well as powering small pumps for irrigation,” said Scott Justice, Agricultural Mechanization Specialist, CSISA-NP.

At the program’s inception workshop held recently on 28 August, Dr. Beth Dunford, Mission Director, USAID Nepal, remarked that USAID-Nepal has arranged a special fund to help earthquake-affected people. Beyond the devastation of houses, public infrastructure like roads, the earthquake has seriously disrupted the agriculture and rural economy throughout the impacted districts. Re-establishing vital agricultural markets and services in the aftermath of the earthquake is key to how quickly these communities will recover, underlined Dunford.

For effective coordination and monitoring of activities in the program, Central Level Management Committee, District Level Management Committee and Local Level Management Committee have already been formed. They aim to identify most earthquake affected areas within a district and will ensure efficient and transparent distribution of support items.

Dr. Adhikari, Joint Secretary, MoAD, highlighted that the Ministry feels a real sense of ownership over this program and is committed to implementing the activities through its network. He said the farm machinery support program will be a perfect platform for MoAD to expand its farm mechanization program into other areas of the country. The Earthquake Recovery Support Program also aligns with the Agriculture Development Strategies of the Government of Nepal, which focuses on community-wide inclusive development.