Over 100,000 packets of nearly 1,200 hybrids and varieties developed by CIMMYT-Zimbabwe and partners were distributed to national agricultural research systems and private seed companies throughout eastern and southern Africa. Regional trial requests are in high demand from emerging seed companies across the region as well as Egypt, Nigeria, Pakistan and other countries in Asia and Latin America. Photo: Amsal Tarekegne/CIMMYT.
The year 2015 marked 30 years of CIMMYT’s Southern Africa Regional Office (CIMMYT-SARO) developing new maize varieties adapted to smallholder farmer needs in Zimbabwe and across sub-Saharan Africa.
“Multiple stress tolerant and nutritious maize hybrids developed by CIMMYT-SARO have been released by partners throughout eastern and southern Africa,” said Amsal Tarekegne, CIMMYT-SARO Senior Maize Breeder.
CIMMYT-SARO and partners have also produced new maize varieties that yield 20-30% more than currently available widely grown commercial varieties under drought and low nitrogen stress conditions.
Farmers in eastern and southern Africa need maize varieties that are climate resilient, high-yielding and nutritious.
Ancestors of modern wheat (R) in comparison with an ear of modern cultivated wheat (L). Photo: Thomas Lumpkin/CIMMYT.
In a world where the population is expected to reach 9 billion by the year 2050, grain production must increase to meet rising demand. This is especially true for bread wheat, which provides one-fifth of the total calories consumed by the world’s population. However, climate change threatens to derail global food security, as instances of extreme weather events and high temperatures reduce agricultural productivity and are increasing faster than agriculture can naturally adapt, leaving our future ability to feed the global population uncertain. How can we ensure crop production and food security for generations to come?
In order to continue feeding the planet, it is imperative that we identify crop varieties that display adaptive and quality traits such as drought and heat stress tolerance that will allow them to survive and flourish despite environmental stresses. For this reason, a recent study by Sehgal et al., “Exploring and mobilizing the gene bank biodiversity for wheat improvement,” was conducted to characterize wheat seed samples in the CIMMYT germplasm bank to identify useful variations for use in wheat breeding.
The study analyzed the genetic diversity of 1,423 bread wheat seed samples that represent major wheat production environments around the world, particularly regions that experience significant heat and drought. The tested samples included synthetic wheat varieties, which are novel bread wheat varieties created by making crosses between the progenitors of modern bread wheat, durum wheat and wild grassy ancestors; landraces, which are local varieties developed through centuries of farmer selection; and elite lines that have been selectively bred and adapted. The samples were analyzed through genotyping-by-sequencing, a rapid and cost-effective approach that allows for an in-depth, reliable estimate of genetic diversity.
The results of the study suggested that many of the tested landraces and synthetics have untapped, useful genetic variation that could be used to improve modern wheat varieties. When combined with elite wheat germplasm, this genetic variation will increase stress adaptation and quality traits as well as heat and drought tolerance, thus leading to new wheat varieties that can better survive under climate change. The study also found new genetic variation for vernalization, in which flowering is induced by exposure to cold, and for glutenin, a major wheat protein responsible for dough strength and elasticity. Based on the information generated by the study, over 200 of the diverse seed samples tested have been selected for use in breeding, since they contain new specific forms of genes conferring drought and heat stress tolerance. This new genetic diversity will help bread wheat breeding programs around the world create new varieties to feed the world’s growing population in a changing environment.
This research is part of CIMMYT’s ongoing Seeds of Discovery (SeeD) project, which is funded by the Mexican Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, as well as the CGIAR Research Program on Wheat (WHEAT). SeeD works to unlock the genetic potential of maize and wheat genetic resources by providing breeders with a toolkit that enables their more targeted use in the development of better varieties that address future challenges, including those from climate change and a growing population.
Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T, et al. (2015) Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement. PLoS ONE 10(7): e0132112. doi:10.1371/journal.pone.0132112
While climate change is expected to decrease maize yields in most parts of Africa by a margin of 6-12%, some countries like Ethiopia and Kenya may see overall maize yields increase under climate change, according to CIMMYT climate and crop models.
“Our results suggest that the likely maize yield increase in Ethiopia and Kenya is due to anticipated temperature increases in the highland regions,” says Jill Cairns, maize physiologist at CIMMYT. Current temperatures in this area are too low to produce good yields, so an increase in temperature could positively affect maize farmers’ harvests in the future.
“New maize varieties will be needed to capitalize on these potential yield gains in the highlands,” adds Cairns. Commercial maize varieties currently grown in the East African highlands will not tolerate future higher temperatures. Varieties that are adapted to the region’s future climate coupled with recommended agronomic practices and correct timing for planting will be necessary to increase farmers’ yields.
Maize production overall has been declining in Kenya since 1982, due largely to drought conditions experienced across Africa and lack of varieties that can withstand this stress. CIMMYT estimates that 40% of Africa’s maize growing areas face occasional drought stress, resulting in yield losses of 10-25%. As a result of these climate shocks, Africa yields just two tons per hectare of maize, compared to the world’s average of nearly five tons per hectare.
CIMMYT is currently developing climate and crop models to predict the impact of future climate on maize production, and has also established the world’s largest tropical maize stress screening network under public domain. This network is being used by partners, including national agricultural organizations in SSA, to develop improved varieties that will tolerate current and future climate challenges. Currently being addressed are drought, heat, low soil fertility, insect pests and diseases such as maize lethal necrosis (MLN).
Improved maize hybrids with drought tolerance and nitrogen use efficiency are already on the market across eastern Africa and in the larger SSA region. Significant efforts have been made in recent years to develop heat tolerant and MLN resistant maize varieties in Ethiopia, Kenya, Tanzania and Uganda. These improved varieties yield much more than current commercial varieties and most have stress tolerant traits that help farmers tackle multiple abiotic and biotic stresses.
CIMMYT, with the support of its partners, has developed 57 improved drought tolerant (DT) maize varieties for eastern Africa’s market, each with farmer-favored traits. Over 12 million people have benefited from DT maize varieties across Ethiopia, Kenya, Tanzania and Uganda. Through public and private seed companies, nearly 17,300 tons of certified DT maize seeds have been produced.
“With this work on climate resilient maize, we are playing an important part in making Africa a food-secure continent,” says Stephen Mugo, CIMMYT’s Regional Representative for Africa.
This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.
EL BATAN, Mexico (CIMMYT) — In 1935, Japanese scientist Gonjoro Inazuka crossed a semi-dwarf Japanese wheat landrace with two American varieties resulting in an improved variety, known as Norin 10. Norin 10 derived varieties eventually ended up in the hands of Norman Borlaug, beginning one of the most extraordinary agricultural revolutions in history. This international exchange of germplasm ultimately saved hundreds of millions of people from starvation and revolutionized the world of wheat.
Pictured above is a cross between Chapingo 53 – a tall variety of wheat that was resistant to a fungal pathogen called stem rust – and a variety developed from previous crosses of Norin 10 with four other wheat strains. Photo: CIMMYT
Norin 10 began to attract international attention after a visit by S.D. Salmon, a renowned wheat breeder in the U.S. Department of Agriculture (USDA), to Marioka Agriculture Research Station in Honshu. Salmon took some samples of the Norin 10 variety back to the United States, where in the late 1940s Orville Vogel at Washington State University used them to help produce high-yielding, semi-dwarf winter wheat varieties, of which Gaines was the first one.
In neighboring Mexico, Norman Borlaug and his team were focusing their efforts on tackling the problem of lodging and rust resistance. After unsuccessfully screening the entire USDA World Wheat Germplasm collection for shorter and strong varieties, Borlaug wrote to Vogel and requested seed containing the Norin 10 dwarfing genes. Norin 10 was a lucky break, providing both short stature and rust resistance.
In 1953, Borlaug began crossing Vogel’s semi-dwarf winter wheat varieties with Mexican varieties. The first attempt at incorporating the Vogel genes into Mexican varieties failed. But after a series of crosses and re-crosses, the result was a new type of spring wheat: short and stiff-strawed varieties that tillered profusely, produced more grain per head, and were less likely to lodge. The semi-dwarf Mexican wheat progeny began to be distributed nationally, and within seven years, average wheat yields in Mexico had doubled. By 1962, 10 years after Vogel first supplied seed of the Norin 10 semi-dwarf progeny to Borlaug, two high-yielding semi-dwarf Norin 10 derivatives, Pitic 62 and Penjamo 62, were released for commercial production.
As the figure below indicates, these wheat varieties then led to a flow of other high-yielding wheat varieties, including Sonora 64 and Lerma Rojo 64, two varieties that led to the Green Revolution in India, Pakistan and other countries, and Siete Cerros 66, which at its peak was grown on over 7 million hectares in the developing world. The most widely grown variety during this period was the very early maturing variety Sonalika, which is still grown in India today.
[Reproduced from Foods and Food Production Encyclopedia, Douglas M. Considine]
From left to right: Norman Borlaug, Mohan Kohli and Sanjaya Rajaram at Centro de Investigaciones Agricolas del Noreste (CIANO), Sonora, Mexico, in 1973. (Photo: CIMMYT)
Borlaug had sent a fewdozen seeds of his high-yielding, disease-resistant semi-dwarf wheat varieties to India to test their resistance to local rust strains. M.S. Swaminathan, a wheat cytogeneticist and advisor to the Indian Minister of Agriculture, immediately grasped their potential for Indian agriculture and wrote to Borlaug, inviting him to India. Soon after the unexpected invitation reached him, Borlaug boarded a Pan Am Boeing 707 to India.
Fifty years on, we face new challenges, even though we have continued to make incremental increases to average yield. There is an ever-increasing demand for wheat from a growing worldwide population with changing dietary preferences. The world’s climate is changing; temperatures are rising and extreme weather events are becoming more common. Natural resources, especially ground water, are also being depleted; new crop diseases are emerging and yield increases are not keeping pace with demand.
Borlaug and his contemporaries kicked off the Green Revolution by combining semi-dwarf, rust resistant and photoperiod insensitive traits. Today, a new plan and commitment to achieving another quantum leap in wheat productivity are in place. The International Wheat Yield Partnership, an international public-private partnership, is exploiting the best wheat research worldwide to increase wheat yield potential by up to 50%. This one-of-a-kind initiative will transfer germplasm to leading breeding programs around the world.
Cover photo: Norman Borlaug works with researchers in the field. (Photo: CIMMYT archives)
Maize is the most widely cultivated crop in sub-Saharan Africa (SSA), and one of the few crops that have profound effects on the livelihoods of millions of people there.
To illustrate the point, sample these critical thresholds beyond and around the halfway mark:
more than half the cereal acreage is devoted to maize production in more than half of the SSA countries; and,
maize accounts for nearly half of the calories and protein intake in eastern and southern Africa, and for one-fifth of calories and protein intake in West Africa.
With the SSA population likely to double by 2050, maize production is facing a formidable challenge from biophysical and socioeconomic limitations. Climate change will further compound the crisis in maize production, undermining food security and poverty reduction in the region.
Although climate change is a global phenomenon, its impacts vary depending on region and season. In order to formulate appropriate adaptation options and to assure timely responses, we first need a better understanding of the potential impacts of climate change on maize yield and production at different spatial and temporal scales.
To help fill this gap for SSA, a forthcoming article in the International Journal of Climate Change Strategies and Management entitled Maize systems under climate change in sub-Saharan Africa: potential impacts on production and food security (early edition available online) assesses the baseline impact of climate change in a business-as-usual scenario. The study indicates that maize production and food security in most parts of SSA are likely to be severely crippled by climate change, although the projected impacts will vary across countries and regions.
Facts and figures from the study:
These results highlight the need for greater investment in maize research, particularly on developing maize varieties that tolerate both drought and heat in order to minimize or offset the inevitable impacts of climate change on maize production in sub-Saharan Africa and reduce food insecurity in the continent.
A service provider in Lemo, Ethiopia. Photo: Frédéric Baudron
Agronomic practices that can close the wheat yield gap in the Ethiopian highlands are well known: row planting, precise fertilizer application, timely planting, etc. But their implementation generally increases the demand for human labor and animal draft power. And the availability of farm power in the Ethiopian highlands is stagnating, or even declining. The cost of maintaining a pair of oxen is becoming prohibitive for most farmers. Also, the rural population is aging as a result of young people migrating to the fast-growing cities of Ethiopia in search of more rewarding livelihood opportunities than farming.
From 23 – 26 August, 2015, CIMMYT’s Director General Martin Kropff visited Pakistan to attend the Agricultural Innovation Program’s (AIP) annual conference in Islamabad. Following the conference Kropff met with the CIMMYT team to talk about his observations, suggestions and way forward for continued impact in Pakistan.
Q: Is there room for improvement in the agricultural sector in Pakistan?
A: With an average wheat yield of nearly three tons per hectare, Pakistan’s agricultural sector is in a good position but there are still many opportunities to grow. As highlighted by the Federal Minister for National Food Security and Research, Sikandar Hayat Khan Bosan, technologies such as precision agriculture and hand-held technologies for soil testing, to increase yields present new opportunities. Many farmers’ I met at this year’s AIP conference are not using these improved technologies, and AIP can help ensure they have access.
Q: What is the role of public-private partnerships in agricultural development?
Kropff talking to CIMMYT-Pakistan team. Photo: Awais Yaqub/ CIMMYT
A: The private sector is essential for scaling up new technologies. CIMMYT, United States Agency for International Development (USAID), and heads of international and national companies in Pakistan and other AIP partners are discussing opportunities for future collaborations. This won’t be just a project on maize or wheat – but a full systems approach incorporating the entire value chain.
Q: How can we improve the seed industry’s capacity?
A: When I was Director at Wageningen University, we established an African Agribusiness Academy. Ambassadors from the university would organize groups of young entrepreneurs from across Africa to innovate and learn from our scientists, and vice versa. This type of partnership and co-learning could help AIP improve the industry and farmers’ lives as well as build relationships with the private sector.
Q: What has been your experience with Pakistani scientists and how can they continue to grow?
CIMMYT-Pakistan team photo with CIMMYT Director General Martin Kropff and former CIMMYT Director General Thomas Lumpkin (front row, fourth and fifth from the left, respectively). Photo: Awais Yaqub/ CIMMYT
A: Pakistani CIMMYT scientists are at a really good level. At CIMMYT we are not just conducting research but also applying it in the field, and we need to keep innovating with Pakistan’s national centers and scientists. We also need to continue training and mentoring Pakistan’s future scientists – students from national universities that are an incredible asset to future development.
NAIROBI, Kenya (CIMMYT) – As the global community marks World Soil Day, African smallholder farmers are contending with low yields due to low-fertility soils prevalent in most parts of sub-Saharan Africa. This situation has affected the food security of over 300 million people in the region who depend on maize as their staple food.
For the majority of these smallholder farmers, access to inputs like fertilizers to boost soil productivity has been restricted due to their high cost. The reality is that in Africa fertilizers cost up to six times more than in any other continent.
As a result, nearly three quarters (about 70 percent) of eastern and southern Africa’s maize is grown without fertilizers. As the International Maize and Wheat Improvement Center (CIMMYT) and partners work to give farmers a partial solution to this enor
mous challenge, efforts must be intensified to protect and maintain soil resources for sustainable development in Africa and the globe.
The Improved Maize for African Soils (IMAS) Project addresses the problem of low nitrogen in soils. Smallholder farmers can expect to harvest up to 25 percent more from new maize varieties developed by the IMAS project.
These varieties are nitrogen use efficient (NUE), which means they utilize more efficiently the small amount of fertilizer that farmers can afford to apply (typically less than 20 kilograms per hectare) compared to varieties currently on the market. The IMAS project is a public-private partnership involving CIMMYT, the Kenya Agricultural and Livestock Research Organization, South Africa’s Agricultural Research Council and DuPont Pioneer.
In two years – between 2014 and 2015 – 21 NUE hybrids were successfully released in Tanzania, Malawi, Mozambique, South Africa, Uganda and Zimbabwe. In addition, IMAS helped to increase seed production and distribution of three existing NUE varieties. According to Michael Olsen, IMAS Project Leader, these varieties are expected to reach approximately 84,000 farmers.
“Giving smallholder farmers practical solutions within their environmental conditions is a sustainable means to not only preserve soil resources but address key challenges in maize farming, which is a major livelihood for millions in Africa,” Olsen said.
Many of the released NUE hybrids carry additional traits that are important in the region, such as tolerance to drought and maize lethal necrosis, a devastating viral disease that is new in the region. Donasiana Limo, a farmer from Olkalili village in northern Tanzania, attests to the good performance of HB513, a drought-tolerant and NUE variety he planted during the main cropping season between January and March 2015.
“I did not do much to prepare my land because the rains came very late and ended early. With no fertilizer and failed rains, I did not expect to harvest the seven bags of 50 kilograms from eight kilograms of HB513 seed,” Donasiana said.
“If I had time to prepare my land and added fertilizer, the harvest would have been so much more.”
Many more farmers from this remote village have benefited immensely from HB513, including Valeria Pantaleo.
Sustainable solutions for African farmers need to be addressed during World Soil Day deliberations. Efforts to facilitate smallholders’ access to inputs like fertilizers are critical. In addition, to help arrest further soil deterioration emphasis must be placed on adopting correct agronomic practices and appropriate crop varieties available on the market that are well suited to different soil management systems.
Policymakers must formulate strategies for adopting universal practices that maintain soil resources and are adapted to farming environments across Africa. Kenya has already set the pace for maize breeding in Africa by including performance in low-nitrogen soils as a special prerequisite for maize variety release, a step that will help enhance healthy soils in Africa if adopted by other regulatory agencies.
Valeria and her daughters and part of their bountiful maize harvest from ‘ngamia’ seed. B. Wawa/CIMMYT
About her last maize harvest in August 2015, Valeria Pantaleo, a 47-year-old wife and mother of four from Olkalili village, northern Tanzania, waxes lyrical: “I finally managed to buy a calf to replace my two oxen that died at the beginning of the year due to a strange disease.” Valeria relies on the oxen to plow her two-acre land.
Valeria beams as she looks at her newly acquired calf. From her joy, one would be forgiven for assuming that the village enjoyed a good season. More so since Valeria had a handsome harvest that gave her a surplus four 50-kilogram bags of maize which she sold to buy the calf.
But nothing could be further from the truth. Farmers from her village suffered from exceptionally low rains during the main planting season in January–February 2015. To make matters worse, the rains were very late and poorly distributed. And as Olkalili is semi-arid, scanty rains are the biggest challenge for farming. “The rains came in late February, fell for just one day and only came back towards end of March for a few days,” laments Valeria.
For this reason, many farmers did not anticipate any substantial harvest even from an improved new maize variety – HB513 – introduced to them by Anthony Mwega, a community leader. The variety is locally known as ngamia, Kiswahili for ‘camel’, a testimonial moniker coined by ngamia suppliers, Meru Agro Tours and Consultant Limited, to symbolize the variety’s proven resilience during drought, compared to other varieties.
A boon in drought
“We heard about this new seed from Mwega who also sells hybrid seeds. But since it was my first time to use it, and given that the rains were really low, I did not expect much,” explains Valeria. “This of course was a big worry for me and my family,” she adds.
However, despite the patchy rains, Valeria managed to harvest 10 bags of 50 kilograms each from the one acre on which she planted 10 kilograms of HB513 seed – half of her farm. “I got so much harvest and yet I planted this seed very late, and with no fertilizer,” exclaims Valeria. What is special about HB513 seed is that it is both drought-tolerant and nitrogen-use efficient (see Kenya equivalent). So, compared to other varieties, it not only yields more during moderate drought, but also utilizes what little nitrogen there is in the soil more efficiently. HB513 is one of the 16 hybrid varieties developed for Tanzania by the Drought Tolerant Maize for Africa Project. Besides giving farmers the benefit of nearly 49 percent more grain during moderate drought, this hybrid seed offers them an opportunity to make best use of what little fertilizer they can afford to apply.
More enriching than just meat, and reaching more
For Valeria, it means that her family has enough maize to last them until February 2016. And a ‘meaty’ more: at sowing and growing time, since Valeria did not anticipate such a good harvest given the devastation drought portends, she resolved to work extra-hard in her small grocery business to raise enough money for the calf. “Even then, it would have taken me at least nine months to raise enough money for the calf,” she recalls. “But thanks to my unexpected bonus maize harvest, I got the calf within five months! This was such a huge relief and a blessing to me. Now I will have the much-needed help to plow my land in the next planting season.”
Through partnership with the Improved Maize for Africa Project, in 2015 alone, Meru Agro produced and sold 427 tons of ngamia seed. The result? Approximately 65,000 smallholder farmers across major maize-growing areas in northern, southern highland, central and northwest regions of Tanzania including Valeria’s village have benefited from this variety. And the good news is that the plan is to reach even more farmers in the coming years with the ‘gospel’ of ngamia.
What is the bigger picture for Tanzanian maize farmers? Meru Agro has committed to increase production of ngamia seed in 2016. “We foresee a much higher demand for ngamia because farmers are now more aware of this seed. Our plan is to produce more than 1,000 tons,” says Chacha Watanga, Meru Agro Managing Director.
Meru Agro will not be working alone. CIMMYT, through its Drought Tolerant Maize for Africa Seed Scaling (DTMASS) Project, will continue to partner with Meru Agro and other small- and medium-scale seed companies to increase production of improved maize varieties such as ngamia to reach 2.5 million people in seven target countries across eastern and southern Africa (Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia). “Within its three-year lifespan, DTMASS will support production of about 12,000 metric tons of certified seed to reach smallholders who need this seed to overcome the big challenge of drought,” adds Tsedeke Abate, DTMASS Project Leader. Watch this space!
Further reading:
Scorecard as a marathon maize project winds up after eight years
Improved Maize for African Soils Drought Tolerant Maize for Africa
About Drought Tolerant Maize for Africa Seed Scaling
Belita Maleko, a farmer in Nkhotakota, central Malawi, sowed cowpea as an intercrop in one of her maize plots, grown under conservation agriculture principles. (Photo: T. Samson/CIMMYT)
The paper examines research to date on the interactions between conservation agriculture interventions – meaning minimal soil disturbance, permanent soil cover and crop rotation that can simultaneously boost yields, increase profits and protect the environment – and gender in East and Southern Africa and sets out a research agenda based on gaps observed. Given the increasing interest in conservation agriculture due to climate change impacts in the region, the authors also argue that greater attention to gender is needed in order to ensure successful interventions. The following Q&A with one of the study’s authors, Clare Stirling, CIMMYT Senior Scientist with the Sustainable Intensification Program based in Wales, UK, details the study’s findings and what is needed to ensure gender is included in future conservation agriculture interventions.
Q: How do conservation agriculture practices interact with gender?
A: There are many known and unknown ways in which conservation agriculture interacts with gender and the purpose of this paper is to review the evidence and identify gaps that exist. conservation agriculture is knowledge-intensive and can also be labor-intensive and, along with many soil improvement technologies, involves long-term investment with delayed returns. This clearly has important implications for women, as their ability to invest will depend on many factors such as entitlements, access to information, and their ability to act upon it.
If we take labor requirements as an example – many studies highlight labor shortages as a constraint to the adoption of conservation agriculture, particularly when zero tillage is not complemented by the application of herbicides. Without herbicide use, conservation agriculture techniques for land preparation increase weeding over and above plowing and ridging by as much as three times in maize production. In East and Southern Africa, this burden falls largely on women as weeding is largely a woman’s task. Studies conducted in several countries show that where (frequently subsidized) herbicides have been used, the release of women and children from weeding tasks results in multiple benefits, including more children attending school and more time for women to engage in income-generation activities.
Q: Why has gender been left out of many conservation agriculture studies to date?
A: I am not sure that this is a question that should be posed specifically in relation to conservation agriculture but could be asked of agronomic research in general. Things are improving, but I would suggest that the reason has been that gender is a challenging and complex issue that takes many of us out of our comfort zone both professionally and perhaps personally. It requires an interdisciplinary approach and a set of skills that many agricultural research centers simply have too limited a supply of and I include in this a critical mass of female research staff of sufficient seniority. Without this critical mass of gender expertise, agronomic research will continue to be designed and implemented according to the “male agronomist” norm.
Q: What impact has this had on conservation agriculture adoption in East and Southern Africa?
A: lncreased feminization of labor in smallholder agriculture has resulted in major changes in the roles and responsibilities of women in rural Africa, but still agricultural service suppliers and the wider policy environment in general remain locked into the conceptual norm of the primary farmer being male. This inevitably results in inappropriate targeting of research, extension services, and policy, and logic would tell us that it has also contributed to low adoption rates of conservation agriculture.
As the paper explains, the new norm of the “female primary farmer” has not resulted in their widespread recognition as such by external agencies or indeed within their communities. The ability of women-led households, or male-headed households with women as primary farmers, to adopt conservation agriculture may be compromised if government policies, extension systems, and other actors continue to design interventions around the conceptual norm of the male-headed household. This needs to change.
The paper summarizes the gender-related questions that remain to be addressed with regard to conservation agriculture, and there are many. There are overarching questions relating to intra-household decisions making, access to services, and labor. In addition, there are many more questions relating to specific aspects of conservation agriculture, such as the impacts of minimum tillage and weeding on labor; opportunity costs and how increased requirements are met; opportunities, constraints, and trade-offs of conservation agriculture-based crop diversification; and the tailoring of conservation agriculture-based information and training to women farmers.
Q: Moving forward, how can researchers address the gender gaps in conservation agriculture in their studies?
A: Gender-sensitive research needs to be mainstreamed into projects. In order to achieve this, we need more multidisciplinary teams including both male and female researchers of similar seniority. While there is a decent body of gender research on the socioeconomic aspects of agricultural technologies such as barriers to uptake and extension services, it seems that there is still a large gap in gender-sensitive agronomic research. What are the implications for gender of increased weeding, need for planting basins, crop diversification, and residue retention? All very basic questions that still need answering. So moving forward, we need more research that involves gender specialists working closely with agronomists on the design, implementation, evaluation, and scaling out of conservation agriculture-based practices.
Cheesman in a direct-seeded maize-soybean rotation in Chavakadzi village, Shamva District, Zimbabwe. Photo: Christian Thierfelder
A new study led by ETH Zürich graduate Stephanie Cheesman, along with CIMMYT senior agronomist Christian Thierfelder, Neal S. Eash from the University of Tennessee, Girma Tesfahun Kassie, ICARDA, and Emmanuel Frossard, professor at ETH Zürich, found limited increase in carbon sequestration under conservation agriculture (CA) after up to seven years of practice. In this interview, Cheesman tells us why carbon sequestration is such a complex issue in Southern Africa and what this study reveals about how it can improve.
Q: Why is increasing soil carbon important?
A: Besides the hype about sequestering carbon to contribute to climate change mitigation, carbon is an integral part of soil organic matter (also referred to as “humus”), which is possibly the most well-known fertility component of a soil. Soil carbon has strong influence on soil structure, water infiltration, as well as the capacity of the soil to retain water and nutrients that are required for plant growth. Degraded soil has only a little soil carbon and, hence, low fertility and nutrient- (and water) holding capacity.
Q: What were you hoping this study would reveal?
A: Although the study trials had been running for only seven years, I was hoping to show a clearer trend towards an increase in soil carbon under CA as compared to conventional practices (CP) in Southern Africa. We were surprised that, in most cases, the carbon under CA was at the same level as the conventional control treatment, with a few exceptions. Nevertheless, this is one of a very few studies where soil carbon stocks in CA systems have been analyzed across a wide range of Southern African agroecologies. I am now very happy to share this data with the wider research community.
Q: What factors limit carbon sequestration in Southern Africa?
A: There are a range of factors that limit carbon sequestration. Our findings suggest low productivity to be one of the main bottlenecks. Farmers have to decide if they should feed the crop residues to the soil or to their livestock. The long dry season from May to November and high temperatures further increase the mineralization of soil carbon, which can be twice as much as in temperate regions. Another factor that may limit carbon sequestration is the limited use of other strategies such as the integration of legumes or agroforestry species as intercrops in maize-based systems.
CA practitioners and Cheesman conduct bulk density sampling in Zidyana, Malawi, August 2011. Photo: Sign Phiri
Q: Given the findings of this study, how can we increase soil carbon in Southern Africa in the future? Is conservation agriculture necessarily the answer?
A: Unfortunately, our study lacks initial carbon stock measurements, as this was tested on a very large set of on-farm trials and we never had enough financial resources to continuously test this from the onset. We could compare the difference between CA and CP but not how carbon stocks changed over time in the respective systems. Although some of the trial sites were up to seven years old, this is a comparably short time to increase the level of carbon in such environments. From other long-term studies (mainly in the Americas), we know that tillage-based agricultural systems decrease carbon stocks. Thus, I would say that a system like CA where tillage is reduced and residues are “fed” to the soil will more likely maintain soil carbon and maybe gradually increase it in the longer term. Tillage-based agricultural systems also have much higher soil erosion loads which further decreases carbon, so CA is definitely an answer to reduce soil degradation.
CIMMYT’s mission is to “sustainably” increase the productivity of maize- and wheat-based systems to reduce poverty and hunger. By combining improved varieties with sustainable intensification practices, CIMMYT does its best to give smallholder farmers options to improve their productivity and livelihoods. Feeding the soil with residues is one strategy to maintain or gradually increase soil carbon but we should not forget the immediate needs of farmers.
Joseph Mulei on his farm in Machakos County, Kenya, where he planted several drought tolerant hybrid maize varieties including Drought Tego and Sawa (DSL H103). Photo: Brenda Wawa/CIMMYT.
About 100 partners from diverse institutions including CIMMYT, the International Institute of Tropical Agriculture (IITA), national agricultural research systems (NARS), the private sector, and donors gathered recently at a joint meeting of the Drought Tolerant Maize for Africa (DTMA) and Improved Maize for African Soils (IMAS) projects held in Addis Ababa on 14–17 September 2015. The participants came from 15 African countries, plus India, New Zealand, and USA.
This first joint meeting, opened by Fentahun Mengistu, Director General of the Ethiopian Institute of Agricultural Research, marked the end of the two projects, which will officially complete their work in December 2015 across 14 target countries in sub-Saharan Africa (SSA). The meeting reviewed the progress made in Africa through the projects over the last 5 and 8 years, respectively.
The two projects released 200 unique improved maize hybrids and open-pollinated varieties (OPVs) with drought tolerance (DT) and nitrogen-use efficiency (NUE), which are traits favored by smallholder farmers. These varieties – some which combine both traits– not only yield much more under moderate or severe drought stress, but also utilize more efficiently the small amounts of fertilizers most farmers can afford to apply to their maize.
Speaking on the importance of maize breeding work in Africa, B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on MAIZE, said, “Solutions to the world’s food challenges need the benefit of improved maize varieties that yield well for farmers both in ‘good’ and ‘bad’ years, withstanding the crippling effects of climatic changes and other stresses.”
DTMA efforts to commercialize DT varieties have enabled 43 million people to access and benefit from these varieties. This, coupled with efforts to promote the new improved DT varieties by small- and medium-scale seed companies, has been instrumental in DTMA’s success. As John McMurdy, from the United States Agency for International Development (USAID), said, “It is very important to create awareness of these improved varieties, particularly the fact that they are excellent even during normal rains. Farmers need to know these key characteristics so they can appreciate and benefit from the seed. I am glad that the next phase of CIMMYT’s work is geared towards reaching out to farmers; this is essential in maize work.”
Influencing policies to support the adoption of improved varieties within partner institutions
Eliamani Saitati, a farmer in Olkolili village in northern Tanzania, shows her harvest from HB513, a variety that is both nitrogen-use efficient and drought tolerant. Photo: Brenda Wawa/CIMMYT
Both DTMA and IMAS targeted policy makers within partner institutions to facilitate adoption of new improved varieties. A policy issue highlighted at the meeting was replacing old and obsolete varieties with the new improved varieties, viewed as critical for adapting to climate change and improving smallholders’ livelihoods.
Meeting participants were divided into two groups and visited major maize seed companies in Ethiopia, where they observed the performance of various DT varieties and learned about ongoing variety replacement. The sites visited included Ethio VegFru Company, Ano Agro Industry, Meki-Batu Cooperative Seed Company, Shalo Farm, and Bako Agricultural Research Centre, which is Ethiopia’s national center of excellence for maize research. At the Centre, they were hosted by, among others, Tolera Keno, who is EIAR’s National Maize Research Coordinator.
An old variety, BH660, which has been on the market for the last quarter century, is now gradually being replaced by BH661, an improved DT hybrid. According to Fekadu Berhane, Production Manager at Ethio VegFru Company, farmers were most concerned about BH660’s late maturity of about 160 days. “Their numerous complaints obviously led to a drastic decline in the market,” explained Fekadu. “The switch to BH661 has taken two years. In 2015, we produced and distributed 60 tons of BH661 seed in the west, south, and southwest of the Oromia Region, and farmers are getting a minimum of 8 tons per hectare.”
Ano Agro Industry began operating Ethiopia’s first private seed-producing commercial farm 23 years ago. Significantly, some of their early maize hybrids from that time are still in production. “We are partnering with CIMMYT to replace these old hybrids and demonstrate new varieties, including BH546 and BH547, which are both drought tolerant,” explained Tesfaye Kumsa, Managing Director at Ano Agro Industry. “We have now started producing basic seed. We also educate farmers on management of improved varieties, since management alone accounts for the greatest proportion of yield– sometimes by a factor of up to three or four times in terms of yield obtained.”
Continuous dialogue with policy makers at the Kenya Plant Health Inspectorate Services (KEPHIS) bore fruit in 2014, when Kenya’s Variety Release Committee included performance in low-nitrogen soil as a special trait for maize variety release. This reaffirms the high premium KEPHIS accords to performance in poor soils, setting the pace for other regulatory bodies in SSA to recognize and address the challenge.
In addition, close collaboration with partners and donors, in particular USAID and the Bill & Melinda Gates Foundation (BMGF), enabled IMAS to make concrete headway in addressing the maize lethal necrosis (MLN) disease that has rapidly emerged as a major threat to maize farming in East Africa since 2011. The IMAS project rapidly identified diverse sources of MLN tolerance in its germplasm base and, currently, MLN-tolerant maize is being widely disseminated across East Africa, while newly identified sources of tolerance are being shared with other CIMMYT-Africa breeding projects. Gary Atlin, from BMGF, observed that “In the four years since MLN was discovered, we now have hybrids that have significantly better tolerance to MLN. IMAS is credited with a rapid response to MLN, which has affected breeding work in the region.”
To bring improved DT and NUE seeds to the farmers, collaboration with seed companies and NARS has been an important pillar of DTMA and IMAS work. Abebe Menkir, DTMA project leader at IITA, attributed this strength to “a clearly defined product development plan and harnessing the strengths of the right partners to deliver varieties and hybrids.”
In 2014 alone, production of certified DT and NUE maize seed across 14 target countries was 54,000 metric tons for the benefit of 40.2 million people. Production of these seeds was spearheaded by small- and medium-scale companies that accessed the improved seeds free of charge.
The adoption and uptake of these varieties varies from one country to another. Depending on the type of variety – hybrid or OPV – the adoption rate for DT maize ranges from 18 to 80%, with hybrids getting adopted much faster because of their yield advantage, estimated at 49% compared to improved OPVs currently on the market.
Participants in the joint DTMA and IMAS meeting held in Addis Ababa, Ethiopia. Photo: CIMMYT
Farmers in countries such as Nigeria and Malawi are leading in the adoption of DT maize varieties, largely because of favorable government policies that have made access to the improved varieties much easier and more affordable. These farmers have reported higher yields from the DT varieties compared to non-DT varieties.
The next step for CIMMYT and its partners is to increase adoption of improved DT and NUE varieties and replace the old, obsolete, climate-vulnerable varieties with multiple stress tolerant improved maize varieties to effectively face current and emerging challenges.
Plans for this are already being implemented through various initiatives, including the project Drought Tolerant Maize for Africa Seed Scaling (DTMASS). DTMASS will work closely with seed companies to produce 12,000 metric tons of certified DT seed in the next three years. The aim is to ensure seed availability to smallholders at affordable prices, and to sustain seed demand among these farmers.
Starting in 2016, IMAS conventional NUE breeding will begin a new phase by fusing with DTMA in a proposed new project dubbed “Stress Tolerant Maize for Africa.” This project aims to develop improved multiple-stress-tolerant varieties that can effectively face current and emerging challenges.
Given the increased threat of climate change and other stresses to African agriculture, collaborative efforts among major maize projects in Africa will be prioritized by CIMMYT in the coming years. This joint meeting paved the way for collaboration, as it included – for the first time – other maize projects such as Water Efficient Maize for Africa, SIMLESA and TAMASA to identify and create synergies with DTMA and IMAS in the next phase. These projects will continue to draw from one key resource – improved maize varieties, some which have been developed jointly– to maximize impact for Africa’s smallholder farmers.
Increasing wheat and maize yields in Arsi Negele (southern Ethiopia) is not enough to guarantee a nutritious diet, but maintaining a diverse landscape appears critical. Photo: F. Baudron
Arsi Negele, in southern Ethiopia, is a paradox: local farmers are blessed with good soils, good and reliable rainfall, relatively large farms, and good market connections, but the local hospital in Gambo admits, on average, one child per day suffering from acute malnutrition (kwashiorkor and marasmus). The main cause? A grain-based diet that lacks proteins, vitamins, and other micronutrients. Biofortified maize and wheat that include some of these missing elements could help. But diet diversification is probably the real answer.
In eastern India, CSISA increased adoption of early sowing of wheat and zero tillage by demonstrating the benefits in farmers’ fields. Photo: Vinaynath Reddy.
Growth rates of staple crop yields in South Asia are insufficient to meet the region’s projected demands. Forty percent of the world’s poor live in South Asia, and the area comprising eastern India, Bangladesh, and Nepal has the world’s largest concentration of impoverished and food insecure people. At the same time, resource degradation, declining labor availability, and climate change (frequent droughts and rising temperatures) pose considerable threats to farming system productivity and rural livelihoods. By 2050, 30% of South Asia’s wheat crop is likely to be lost due to higher temperatures, experts say.
Kennedy Lweya, Seed Business Development Specialist for East and Southern Africa, receives an award on behalf of CIMMYT during the Seed Trade Association of Malawi Congress and Expo. Photo: CIMMYT
CIMMYT recently received an award in recognition of its efforts and contributions towards developing and strengthening Malawi’s maize seed system. Kennedy Lweya, Seed Business Development Specialist for East and Southern Africa, received the award on behalf of CIMMYT, during the Seed Trade Association of Malawi Congress and Expo––the first of its kind––held on 22–23 October 2015 at the Bingu International Conference Centre in Lilongwe.
Many of these accomplishments have been achieved through the Drought Tolerant Maize for Africa (DTMA) project, which has helped farmers withstand the effects of a drought that continues to affect millions of smallholders who depend on maize as their staple food.
Upon receiving the award, Lweya noted, “This signifies recognition of tremendous work undertaken by CIMMYT scientists globally and in Malawi, in particular, to improve maize systems. More importantly, the award is an endorsement of the value that public-private partnerships bring in improving livelihoods and food security in the developing world.”