Skip to main content

Scaling Scan: A simple tool for big impact

Eleven years ago this week, Apple Inc. released the iPhone. While it was not the first smartphone on the market, industry experts often credit the iPhone’s groundbreaking design with the launch of the mobile revolution. The device, its competitors and the apps that emerged with them have changed how over two billion people interact with the world on a daily basis.

The success of this revolution, however, goes far beyond the actual technology. At the International Maize and Wheat Improvement Center (CIMMYT) outside Mexico City, scaling expert Lennart Woltering points to a smartphone lying on his desk.

“We have to remember that this phone is just hardware. It is useless if you don’t have a network connection or an outlet in your house with electricity,” he says.

Woltering joined CIMMYT last year as part of the German Development Cooperation’s effort to aid the scaling-up of agricultural innovations. New, improved seeds, small-scale machinery and conservation practices can all play a role in achieving several of the Sustainable Development Goals, but Woltering says many other non-technological factors, such as markets and policies, can prevent these innovations from having significant impact.

Roadside vendor sells roasted maize cobs in Kenya. (Photo: P.Lowe/CIMMYT)
Roadside vendor sells roasted maize cobs in Kenya. (Photo: P.Lowe/CIMMYT)

“Many research institutes and nongovernmental organizations tend to focus on technology as the solution for everything,” he says. “But we find that 9 out of 10 cases, limiting factors have more to do with financing not being available to people, or poor policies that are hampering the adoption of technology.”

For example, CIMMYT has many initiatives in South Asia to promote conservation agriculture. Adopting no-till practices can help reduce erosion and improve soil health for better yields, but farmers who make this transition often need access to a different kind of machinery, such as the Happy Seeder, to plant their seeds. If government subsidies exist for conventional rototillers but not for the Happy Seeder, it is difficult to persuade farmers to make that economic sacrifice.

“It is a completely different ballgame in the real world, and you have to be honest about whatever fake reality you created in your project,” says Woltering.

Projects are designed in a very controlled way. They have a fixed budget and a fixed end date, and they are often shielded from the social and economic complexities that can propel or hinder an innovation from scaling.

“So if a donor says, ‘We want two million people to be reached,’ well, how are you going to do that? That’s where the Scaling Scan can help,” says Woltering.

Extension agents in Mexico use the Scaling Scan. (Photo: L. Woltering/CIMMYT)
Extension agents in Mexico use the Scaling Scan. (Photo: L. Woltering/CIMMYT)

The Scaling Scan helps an individual analyze, reflect on, and sharpen one’s scaling ambition and approach through a series of questions and prompts. It focuses on ten scaling ‘ingredients’ that need to be considered (e.g. knowledge and skills, public sector governance, awareness and demand) to reach the desired outcome.

The Scaling Scan helps you figure out what exactly is required, what is possible, and what bottlenecks exist that you need to address in your strategy,” Woltering says.

Woltering collaborated with The PPPLab, a consortium of four Dutch institutes, to release the first version of the Scaling Scan last year. They tested it with project teams in the Netherlands, Mexico, India, Nepal and Kenya, and based on the feedback, they are now releasing a second version, which is available here.

In the trials with the first Scaling Scan, some teams realized the results they wanted to achieve were too ambitious given the circumstances. For other teams, it helped them clarify exactly what they wanted to achieve.

“Having a project objective is not enough to internalize the main goal,” says Woltering. “It also changes over time, especially if it’s a long-term project. The scaling scan can be good for an annual checkup.”

Woltering emphasizes that successful scaling requires multidisciplinary collaboration.

“If you only have a team of agronomists, you will not reach a scale of millions you want to achieve. If you only have a team of policy experts, you will not succeed,” he says. “There are professionals that can really help and add value to what we are doing.”

“It’s hard to get an agronomist and an economist in the same room together, but we’re not going to change the world if we don’t work together with others who have their specific specialty or expertise,” he says.

The Scaling Scan also includes a responsibility check through some very simple but strategic questions.

“Every system has its pros and cons – some people benefit, some do not. Some have power, some do not,” says Woltering. “So what does it mean if your innovation goes to scale? Maybe there’s a whole new power dimension.”

Successfully scaling something may have unintended consequences. There are always tradeoffs and resistance to change. Woltering says the responsibility check can help actors in the development sector to think through these questions and consider what the possible outcomes could be.

For more explanation on how and when to use the tool, we invite you to download the Scaling Scan (also available in Spanish) which contains detailed practical information. We recommend the Excel sheet (also available in Spanish) to have the average scores and results generated automatically. A condensed, two-page PDF is also available.

This work is supported by the German Development Cooperation (GIZ) and led by the International Maize and Wheat Improvement Center (CIMMYT).

Breaking Ground: Tom Hagen brings IT expertise to crop breeding

Postcard_Tom HagenFrom an early age, Tom Hagen has enjoyed watching plants grow and solving complex problems. Now, as the enterprise breeding system manager at the International Maize and Wheat Improvement Center (CIMMYT), Hagen is combining his expertise in crop breeding and IT to help researchers and farmers be more successful.

“You could say I’m a hybrid scientific consultant – IT system architect,” said Hagen. “I will work with breeding teams to appropriately design software and then manage its development and deployment to facilitate breeding operations at CIMMYT and the International Rice Research Institute.”

The software will help breeders more effectively choose seed varieties, design field trials, collect data and analyze their outcomes. It is intended to assist farmers and extension agents as well.

“It will be able to give them advice about the appropriate seeds to use based on their specific environment and economic situation,” said Hagen. “It can also recommend ways to plant and manage their crop for better yields and higher income.”

Hagen’s interest in using computer programing to analyze large sets of biological data emerged shortly after obtaining a doctorate in plant genetics from the University of Georgia. It was the early 1990s, and bioinformatics was a new frontier. Hagen founded and managed the university’s Center for Scientific Computing and Visualization, and helped create the Bioinformatics Graduate Program.

In 1999, Hagen decided to leave the world of academia for the private sector.

“Universities are about inventing things, not applying them,” he said. “It is important to base your practice on theory, but at the end of the day, I personally think you need to apply it because otherwise – well, what is the point of it all?”

Hagen joined DuPont Pioneer, a large U.S. producer of hybrid seeds, where he and a team of designers created different technologies for breeders. Specifically, they worked on technologies that would help breeders develop a line of drought-resistant maize.

“By being in that group, I was both a scientist trying to invent and validate these methods while also designing and building the IT for that,” said Hagen.

During his last two years at DuPont Pioneer, Hagen was the architect of all analytics software. He also conducted research on crop growth modeling for predicting genotype-environment interactions for maize hybrids. This information has helped breeders, extension agents and farmers choose appropriate seed varieties for their specific environmental conditions.

Hagen joined the CGIAR Excellence in Breeding Platform (EiB) in January 2018. Led by CIMMYT, EiB aims to modernize breeding programs, specifically targeting the developing world for greater impact on food and nutrition security, climate change adaptation and development.

“I’m excited to be part of the work that’s starting to ramp up here at CIMMYT and the other CGIAR centers,” said Hagen. “I’m here to learn and engage, and do whatever I can to help others learn.”

Funding for the Excellent in Breeding Platform comes from the CGIAR, the Bill & Melinda Gates Foundation, national governments, development banks and other public and private agencies. Contributors include CGIAR system centers, the Biosciences eastern and central Africa- International Livestock Research Institute Hub, Cornell University, Diversity Arrays Technology, DuPont Pioneer, the Integrated Breeding Platform, Monsanto and Queensland University.

CIMMYTNEWSlayer1

Breaking Ground: Wei Xiong helps farmers and policymakers make better decisions

Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.

Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.

“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”

Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.

“We call the project drinking security,” added Xiong.

Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.

“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.

Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.

“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”

But in China, Xiong explained, agriculture still falls under government control.

“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”

The team will use their simulation models to recommend policies that benefit farmers and the environment.

Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.

After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El Batán, Mexico, working on sustainable intensification.

Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.

Preserving native maize and culture in Mexico

Felipa Martinez shows off some of her family’s maize from last year’s harvest. Photo: Matthew O’Leary

Felipa Martinez, an indigenous Mexican grandmother, grins as she shows off a bag bulging with maize cobs saved from last harvest season. With her family, she managed to farm enough maize for the year despite the increasing pressure brought by climate change.

Felipa’s grin shows satisfaction. Her main concern is her family, the healthy harvest lets her feed them without worry and sell the little left over to cover utilities.

“When our crops produce a good harvest I am happy because we don’t have to spend our money on food. We can make our own tortillas and tostadas,” she said.

Her family belongs to the Chatino indigenous community and lives in the small town of Santiago Yaitepec in humid southern Oaxaca. They are from one of eleven marginalized indigenous communities throughout the state involved in a participatory breeding project with the International Maize and Wheat Improvement Center (CIMMYT) to naturally improve the quality and preserve the biodiversity of native maize.

These indigenous farmers are custodians of maize biodiversity, growing seeds passed down over generations. Their maize varieties represent a portion of the diversity found in the 59 native Mexican races of maize, or landraces, which first developed from wild grasses at the hands of their ancestors. These different types of maize diversified through generations of selective breeding, adapting to the environment, climate and cultural needs of the different communities.

In recent years, a good harvest has become increasingly unreliable, as the impacts of climate change, such as erratic rainfall and the proliferation of pests and disease, have begun to challenge native maize varieties. Rural poor and smallholder farmers, like Martinez and her family, are among the hardest hit by the mounting impacts of climate change, according to the Food and Agriculture Organization of the United Nations.

These farmers and their ancestors have thousands of years of experience selecting and breeding maize to meet their environment. However, climate change is at times outpacing their selection methods, said CIMMYT landrace improvement coordinator Martha Willcox, who works with the community and coordinates the participatory breeding project. Through the initiative, the indigenous communities work together with professional maize breeders to continuously improve and conserve their native maize.

Despite numerous challenges, farmers in the region are unwilling to give up their maize for other varieties. “The native maize, my maize grows best here, it yields well in our environment. The maize is sweeter, it is heavier,” said Don Modesto Suarez, Felipa’s husband. “This maize has been grown by our grandfathers and this is why I will not change it.”

Una mujer de la comunidad Chatino prepara tortillas muy grandes de maíz criollo que son muy apreciadas en los mercados locales. Foto: Matthew O’Leary

This is because a community’s native maize varieties are adapted to their specific microclimate, such as elevation and weather patterns, and therefore may perform better or be more resistant to local pests and diseases than other maize varieties. They may also have specific characteristics prized for local culinary traditions — for example, in Santiago Yaitepec the native maize varieties have a specific type of starch that allows for the creation of extra-large tortillas and tostadas that are in high demand in local markets.

Other varieties may not meet farmers’ specific needs or climate, and many families do not want to give up their cultural attachment to native maize, said Flavio Aragon, a genetic resources researcher at the Mexican National Institute for Forestry, Agriculture and Livestock Research (INIFAP) who collaborates with Willcox.

CIMMYT and INIFAP launched the four-year participatory plant breeding project to understand marginalized communities’ unique makeup and needs – including maize type, local climates, farming practices, diseases and culture – and include farmers in breeding maize to suit these needs.

“Our aim is to get the most out of the unique traits in the native maize found in the farmer’s fields. To preserve and use it to build resistance and strength without losing the authenticity,” said Aragon.

“When we involve farmers in the process of selection, they are watching what we are doing and they are learning techniques,” he said. “Not only about the process of genetic selection in breeding but also sustainable farming practices and this makes it easier for farmers to adopt the maize that they have worked alongside breeders to improve through the project.”

Suarez said he appreciates the help, “We are learning how to improve our maize and identify diseases. I hope more farmers in the community join in and grow with us,” he said.

When disease strikes

Chatino men stand in a maize field in Santiago Yaitepec, Oaxaca, Mexico. Tar spot complex threatened harvests, but work in participatory breeding with CIMMYT has helped local communities to improve their native maize without loosing preferred traits. (Photo: Matthew O'Leary)
Chatino men stand in a maize field in Santiago Yaitepec, Oaxaca, Mexico. Tar spot complex threatened harvests, but work in participatory breeding with CIMMYT has helped local communities to improve their native maize without loosing preferred traits. (Photo: Matthew O’Leary)

Changes in weather patterns due to climate change are making it hard for farmers to know when to plant their crops to avoid serious disease. Now, a fungal disease known as tar spot complex, or TSC, is increasingly taking hold of maize crops, destroying harvests and threatening local food security, said Willcox. TSC resistance is one key trait farmers want to include in the participatory breeding.

Named for the black spots that cover infected plants, TSC causes leaves to die prematurely, weakening the plant and preventing the ears from developing fully, cutting yields by up to 50 percent or more in extreme cases.

Caused by a combination of three fungal infections, the disease occurs most often in cool and humid areas across southern Mexico, Central America and into South America. The disease is beginning to spread, possibly due to climate change, evolving pathogens and introduction of susceptible maize varieties.

“Our maize used to grow very well here, but then this disease came and now our maize doesn’t grow as well,” said Suarez. “For this reason we started to look for maize that we could exchange with our neighbors.”

A traditional breeding method for indigenous farmers is to see what works in fields of neighboring farmers and test it in their own, Willcox said.

Taking the search to the next level, Willcox turned to the CIMMYT Maize Germplasm Bank, which holds over 7000 native maize seed types collected from indigenous farmers. She tested nearly a thousand accessions in search of TSC resistance. A tedious task that saw her rate the different varieties on how they handled the disease in the field. However, the effort paid off with her team discovering two varieties that stood up to the disease. One variety, Oaxaca 280, originated from just a few hours north of where the Suarez family lives.

Farmer Modesto Suarez (left) and neighbors were originally cautious to plant Oaxaca 280 in their fields, but were pleased with the results. (Photo: Matthew O’Leary)
Farmer Modesto Suarez (left) and neighbors were originally cautious to plant Oaxaca 280 in their fields, but were pleased with the results. (Photo: Matthew O’Leary)

After testing Oaxaca 280 in their fields the farmers were impressed with the results and have now begun to include the variety in their breeding.

“Oaxaca 280 is a landrace – something from Mexico – and crossing this with the community’s maize gives 100 percent unimproved material that is from Oaxaca very close to their own,” said Willcox. “It is really a farmer to farmer exchange of resistance from another area of Oaxaca to this landrace here.”

“The goal is to make it as close as it can be to what the farmer currently has and to conserve the characteristics valued by farmers while improving specific problems that the farmers request help with, so that it is still similar to their native varieties and they accept it,” Aragon said.

Expanding for impact

Willcox and colleagues throughout Mexico seek to expand the participatory breeding project nationwide in a bid to preserve maize biodiversity and support rural communities.

“If you take away their native maize you take away a huge portion of the culture that holds these communities together,” said Willcox. Participatory breeding in marginalized communities preserves maize diversity and builds rural opportunities in areas that are hotbeds for migration to the United States.

“A lack of opportunities leads to migration out of Mexico to find work in other places, a strong agricultural sector means strong rural opportunities,” she said.

To further economic opportunities in the communities, these researchers have been connecting farmers with restaurant owners in Mexico City and the United States to export surplus grain and support livelihoods. A taste for high-quality Mexican food has created a small but growing market for the native maize varieties.

The next generation: The granddaughter of Felipa Martinez and Modesto Suarez stands in her grandparent's maize field. (Photo: Matthew O'Leary)
The next generation: The granddaughter of Felipa Martinez and Modesto Suarez stands in her grandparent’s maize field. (Photo: Matthew O’Leary)

Native maize hold the building blocks for climate-smart crops

Native maize varieties show remarkable diversity and climate resilience that grow in a range from arid to humid environments, said Willcox. The genetic traits found in this diversity are the building blocks that can be used to develop varieties suitable for the changing crop environments predicted for 2050.

“There is a lot of reasoning that goes into the way that these farmers farm the land, the way they decide on what they select for,” said Willcox. “This has been going on for years and has been passed down through generations. For this reason, they have maize of such high quality with resistance to local challenges, genetic traits that now can be used to create strong varieties to help farmers in Mexico and around the world.”

It is key to analyze the genetic variability of native maize, and support the family farmers who conserve it in their fields, she added. This biodiversity still sown and selected throughout diverse microclimates of Mexico holds the traits we need to protect our food supplies.

To watch a video on CIMMYT’s work in this community, please click here.

This work has been conducted as part of the CIMMYT-led MasAgro project in collaboration with INIFAP, and supported by Mexico’s Department of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and the CGIAR Research Program MAIZE

 

Breaking Ground: Lorena Gonzalez fast-forwards action on hunger using technology

LorenaIntrigued by the unique relationship our food crops have to their geographical environment, Lorena Gonzalez dedicated her passion for geomatic technology to collect site-specific farm data that is revolutionizing the way researchers and farmers tackle hunger.

Working with the International Maize and Wheat Improvement Center (CIMMYT) as a research assistant, Gonzalez is part of a seismic shift in agriculture, replacing time-consuming manual data collection with technology.

Instead of walking the fields taking measurements by hand, data is collected from a distance through remote sensing. Using cameras on board manned and unmanned aerial vehicles, as well as on ground sensors, Gonzalez gathers information such as plant height, canopy temperature and relative biomass, and evaluates plant health and soil spatial variability in minutes rather than weeks.

Collaborating with farmers and colleagues from maize and wheat breeding programs Gonzalez uses Geographical Information Systems (GIS) to organize and analyze data and patterns related to specific farm locations, making it easier to relate information to growers’ specific needs.

“It is important to make sure that data is properly geo-referenced, this way we know exactly how each crop is impacted by the matrix of factors in its environment,” said Gonzalez. “Collecting crop management and field data such as fertilization rates, irrigations schemes or soil properties provides us with information to understand and improve plant growth.”

The tailored information is used to improve farmers’ decision-making, allowing for more precise agriculture to create sustainable farming systems that produce more food with fewer resources, she said.

Gonzalez’ love for all things data saw her delve into the world of geospatial science studying her bachelor in Geomatics Engineering in the Mexican state of San Luis Potosi. Her passion for helping farmers achieve food security led her to apply for a job at CIMMYT. Since working with the Sustainable Intensification Program she has developed skills to collect and visualize agricultural data in meaningful ways to inform different stakeholders.

“Farmers, researchers and politicians can make better decisions when we streamline field data using available technology. The path of data from field to farm decision-makers can be streamlined using the available technology creatively and collaboratively, if we dare to build the appropriate systems.”

A UAV is launched to collect data from a field in CIMMYT’s experiment station in Ciudad Obregón, Mexico. Photo: CIMMYT/ Peter Lowe
A UAV is launched to collect data from a field in CIMMYT’s experiment station in Ciudad Obregón, Mexico. Photo: CIMMYT/ Peter Lowe

With climate change already affecting crop production, GIS becomes an increasingly important tool farmers can use to adapt and maintain crop yields, Gonzalez said. According to PNAS, each degree Celsius increase in global mean temperature is estimated to reduce the average global yields of wheat and maize by up to seven percent. These crops are key to the survival of humanity, providing a major portion of our caloric intake.

Remote sensing and precision agriculture plays a fundamental role in the ongoing challenge to reduce and cope with the effects of climate change and maximize land efficiency. Using quality data presented in useful ways helps farmers improve decision making, she added.

Gonzalez believes providing open access to geospatial decision support tools will allow smallholder famers to gain the information needed to make site-specific decisions on the exact quantity, location and timely application of resources needed to optimize food production.

If the world is to eliminate world hunger and malnutrition by 2030 as set out in the UN Sustainable Development Goals, smallholder farmers – who produce 80 percent of the world’s food – must benefit from access to remote sensing and precision agriculture, she said. Nine out of ten of the world’s 570 million farms are managed by families, making the family farm the predominant form of agriculture, and consequently a potentially crucial agent of change in achieving sustainable food security and in eradicating hunger in the future, according to UN reports.

Currently, Gonzalez is collecting data for an innovative private-public partnership, Mexico COMPASS, to help Mexican smallholder farmers increase wheat and sugar cane production by identifying factors that cause the yield gap between crop potential and actual performance.

The project aims to improve crop productivity and smallholder farmer incomes while facilitating rural community economic development. The data collected by Gonzalez in Mexico’s Yaqui Valley and in the state of Tabasco contributes to a system that combines earth observation satellite data with captured farm data to create a site-specific decision support tool for farmers. The project will help farmers to make better use of natural resources while monitoring crop health.

Improving smallholder farmer capacity and ability to make informed farming decisions is key to ending hunger and improving livelihoods, said Gonzalez.

Gonzalez’s work with CIMMYT’s Sustainable Intensification Program on the Mexico COMPASS project is funded by the UK Space Agency and has as partners: Rezatec, The University of Nottingham, Booker Tate and Colegio de Postgraduados (COLPOS).

https://staging.cimmyt.org/cimmytnews-subscription/

Breaking Ground: Terry Molnar uses native maize varieties to find novel traits for breeding

TM BGIncreasingly erratic weather, poor soil health, and resource shortages brought on by climate change are challenging the ability of farmers in developing countries to harvest a surplus to sell or even to grow enough to feed their households. A healthy crop can mean the difference between poverty and prosperity, between hunger and food security.

Terry Molnar, a scientist at the International Maize and Wheat Improvement Center (CIMMYT), is helping farmers face these challenges by using the natural diversity of plants to unlock desirable genetic traits inside food crops.

Working at CIMMYT as a Maize Phenotyping and Breeding Specialist, Molnar studies the traits found in different maize varieties found in the CIMMYT seed collections that can be used to strengthen crops and produce healthy food and better livelihoods.

Growing up in New Mexico, in the United States of America, he had a unique opportunity to work with a conservation group preserving seed from Native American and Hispanic communities of northern New Mexico and southern Colorado.

“Seeing all the diversity there was in the maize, beans, chilies really inspired me to go into genetics and breeding as a career,” Molnar said. Following that inspiration, he earned his bachelor degree at Colorado State University and continued his Masters and doctoral studies at North Carolina State University with a focus on plant breeding.

At CIMMYT, he studies native maize varieties called landraces to identify useful traits such as resistance to heat and drought, which can be used to breed new varieties that help farmers produce more food despite mounting challenges.

The high level of native maize diversity is due to its varied geography and culture in Latin America where it originated. As farmers selected the best maize for their specific environments and uses, it diverged into distinct races. At present, there are over 300 recorded unique races of maize in Latin America alone.

Molnar evaluates the landraces varieties in the field for a large set of characteristics, called the phenotype. Additionally, the landraces have been characterized genetically, called the genotype. Using the phenotype and genotype, Molnar can start to unravel the complexity of important traits such as drought and identify sources of resistance.

“Our projects are trait-targeted, so the first step is to make educated guesses as to which of the landraces might be good for that trait. There are over 25,000 maize landraces varieties in the CIMMYT Maize Germplasm Bank and we don’t have the infrastructure or money to test them all.”

“We try to cast a wide net and evaluate as many landraces as we are able in the field under the conditions of interest. After this initial evaluation, I keep the best ones and start the breeding process,” Molnar said.

This involves crossing the landrace to elite maize lines that already have desirable traits like high yield, to develop new lines. The final step is to create hybrids from these new lines and evaluate them in yield trials. After several years of testing, anything that is better than the original lines for the trait of interest will be released to breeders and research scientists.

Climate change predictions suggest that in the coming decades, heat and drought will greatly increase in many important maize growing areas of the world. Molnar works to find tolerance traits for drought and heat within landrace maize plants. As well as becoming a growing problem in the future, drought and heat already affect farmers in any given year, he said.

As part of this work, Molnar also looks for landrace varieties with natural resistance to two prevalent maize diseases, tar spot complex (TSC) and maize lethal necrosis (MLN). TSC is an important disease in the southern half of Mexico, Central America and northern South America, and can decrease yields by 50 percent when it gets into fields early in a growing cycle. Most of the farmers in the affected areas are too poor to afford fungicides, so resistance built into varieties is very important. MLN is a large problem in eastern Africa.

“Like TSC, when MLN gets into fields early in the cycle the results can be devastating, with up to 100 percent potential yield loss,” said Molnar. “MLN is spread by insect vectors, and similar to the situation in Latin America, many farmers in east Africa are too poor or don’t have access to insecticides.”

The last trait Molnar looks for is pigmentation, specifically blue and red kernel color. This is part of an effort to develop new end-use markets in Mexico. Pigments in maize are due to increased concentrations of anthocyanin, an antioxidant, which has been connected to decreased cancer risk. Blue and red maize can be used for specialty food products or for industrial use such as the extraction of natural colors for use in other food products. In both cases, the pigmented maize commands a higher price for the farmer and gives them access to new markets.

Molnar finds great satisfaction in his work, both from the difference he makes in farmers’ lives, and from the process of finding the traits in the first place.

“I enjoy being out in the field, looking at maize, meeting and talking to farmers and working with my collaborators,” Molnar said. “I’m fascinated by the incredible variety that exists in maize and its ability to grow almost everywhere under most environmental conditions. Before the Europeans came, maize was already growing from Canada to Chile and from sea level to over 3000 meters in altitude and from the humid tropics to bone-dry desert. It’s an incredibly adaptable species.”

He is motivated by the passion to promote the rich variety of traits found in native maize varieties.

“I’m driven by the doubt of others. A lot of maize breeders working at the private seed companies don’t believe it is possible to derive anything commercially useful out of a landrace since modern hybrid maize has been bred for so long and is now so elite. I would like to prove them wrong,” he said.

CIMMYTNEWSlayer1

Scientists seek key to boost yields, ensure future food supply

We must improve the productivity of our key crops if we are to feed the world's growing population, say scientists.
Reducing the length of time it takes to naturally breed more productive crop varieties is key to feed the world’s growing population, say scientists. Photo: CIMMYT archives

EL BATAN, Mexico (CIMMYT) — Crop genetic gains remain too low, and international scientists are making a concerted effort to determine how best to increase yields to ensure there is enough food to feed everyone on the planet by 2050.

The complex task of increasing genetic gains – the amount of increase in performance achieved per unit time through artificial selection – involves considering many variables, including genotypes and phenotypes – selecting crop varieties with desired gene traits and considering how well they perform in a given environment.

Two new research papers by scientists at the International Maize and Wheat Improvement Center (CIMMYT) and partners at Australia’s University of Queensland and Spain’s University of Barcelona published in “Trends in Plant Science” highlight some of the best available tools and strategies for meeting the challenge.

Currently, crop breeding methods and agronomic management put annual productivity increases at 1.2 percent a year, but to ensure food security for future generations, productivity should be at 2.4 percent a year.

By 2050, the United Nations projects that the current global population of 7.6 billion will grow to more than 9.8 billion, making yield increases vital.

The results of grain yield increases each year are a function of the length of the breeding process, the accuracy of which breeders can estimate the potential of new germplasm, the size of the breeding program, the intensity of selection, and the genetic variation for the trait of interest.

“Reducing the length of the breeding process is the fastest way for breeders to increase their gains in grain yield per year,” said HuiHui Li, quantitative geneticist based at CIMMYT Beijing.

Speed breeding and other new techniques have the potential to double gains made by breeders some crops. Speed breeding protocols enable six generations of crops to be generated within a single year, compared to just two generations using traditional protocols.

Pioneered by scientist Lee Hickey at University of Queensland, speed breeding relies on continuous light to trick plants into growing faster, which means speed breeding can only be undertaken in a controlled environment.

Tapping into larger populations increases the probability of identifying superior offspring, but breeding is an expensive and time consuming process due to the variables involved.

One challenge scientists face is high-throughput field phenotyping, which involves characterising hundreds of plants a day to identify the best genetic variation for making new varieties. New phenotyping tools can estimate key traits such as senescence, reducing the time of data collection from a day or more to less than an hour.

“If breeders could reduce the cost of phenotyping, they can reallocate resources towards growing larger populations,” said Mainassara Zaman-Allah, a senior scientist at CIMMYT-Zimbabwe and a key contributor to the paper “Translating High Throughput Phenotyping into Genetic Gain.”

“Limitations on phenotyping efficiency are considered a key constraint to genetic advance in breeding programs,” said Mike Olsen, maize upstream trait pipeline coordinator with CIMMYT, based in Nairobi. “New phenotyping tools to more efficiently measure required traits will play an important role in increasing gains.”

New tools and techniques can only help contribute to food security if they are easily available and adopted. The CGIAR Excellence in Breeding Platform, launched in 2017, will play a pivotal role in ensuring these new tools reach breeding programs targeting the developing world.

Related:

Translating high-throughput phenotyping into genetic gain

Fast-forwarding genetic gain

 

CIMMYTNEWSlayer1

 

Breaking ground: Mike Olsen uses new technology to improve farmer’s yields

MO Postcard 01 MarchEL BATAN, Mexico (CIMMYT) — Global challenges to agriculture such as climate change, crop diseases and pests mean that the International Maize and Wheat Improvement Center (CIMMYT) is constantly working to develop new, improved, resistant varieties for farmers.

However, crop breeding is expensive, time-consuming work, meaning that it takes several years for farmers to get seed solutions to the challenges they are facing today.

Mike Olsen, upstream research coordinator for CIMMYT maize program, works with scientists to use new technologies to increase breeding program efficiency and genetic gain — developing improved maize varieties with the traits smallholder farmers’ need, such as disease resistance or drought tolerance, using less time and resources than ever before.

“Our whole team is trying to improve genetic gain for various traits, and to deliver more genetic gain with fewer resources, through the application of phenotyping innovation, genomics and molecular markers for crop improvement,” Olsen said. “Our work at CIMMYT assists our breeding teams to be more effective in developing improved products for farmers.”

Originally from the United States, Olsen grew up on a small farm in Wisconsin and would go on to study plant breeding and genetics at the University of Minnesota. “During my undergrad years I had the chance to visit South Africa and saw rural poverty for the first time. At the time, I was taking classes in plant biology and genetics and I was inspired by the idea of using agricultural improvement as a method for poverty eradication—it’s a big part of why I went into plant breeding,” he said. “As a graduate student, I became very interested in the mission of CIMMYT. I was studying at Norman Borlaug’s alma mater — working in Borlaug Hall, in fact — which inspired me to pursue a career at a CGIAR center. CIMMYT was a perfect fit that allowed me to do something I’ve wanted to do since I was 19 years old.”

The farmers he has met around the world inspire Olsen to come into work every day. “Knowing that the outcome of our work is providing income and food security to millions of vulnerable people is what’s so exciting about what we do. Being able to serve as a conduit for bringing advanced technology for crop improvement for resource poor farmers and consumers is incredible,” he said.

Beyond the day-to-day activities of conference calls, travel and airports, the big picture work of what Olsen does is to lead a global team of talented scientists, help with grant writing and project oversight, with a focus on breeding program optimization. “I have been very involved with the Genomics and Open Source Breeding informatics initiative (GOBii), which helps breeding programs efficiently use genetic information, and I’m currently working on a collaboration with DuPont Pioneer on seed production in Africa to deliver higher quality seed to smallholder farmers,” Olsen said. “What I most enjoy about my work is the people. I have to be honest, coming to CIMMYT I was moving out of a hands-on science role into working with people, and the collaborative nature of this job has been really energizing for me. I’ve had the opportunity to mentor some of our talented young scientists into greater leadership roles, and it has been really exciting seeing their professional growth. It’s the CIMMYT mission that gets us all out of bed in the morning, but I really enjoy the people I work and collaborate with.”

CIMMYT promotes gender awareness in agriculture research and development in Ethiopia

CIMMYT research in Ethiopia and other countries has shown that, in communities where women and men work together and women have access to knowledge and resources and share in decision making, everyone benefits. Photo: CIMMYT/Apollo Habtamu
CIMMYT research in Ethiopia and other countries has shown that, in communities where women and men work together and women have access to knowledge and resources and share in decision making, everyone benefits. Photo: CIMMYT/Apollo Habtamu

Gender awareness and gender-sensitive approaches are slowly spreading into agricultural research, extension, and policy in Ethiopia, based on recent statements from a cross section of professionals and practitioners in the country.

An initiative led by the International Maize and Wheat Improvement Center (CIMMYT) is helping to drive evidence-based approaches to foster gender equality and include it in mainstream agricultural research.

Moges Bizuneh, deputy head of the agricultural office of Basona District, attended a CIMMYT-organized workshop in which Ethiopia-specific results were presented from GENNOVATE, a large-scale qualitative study involving focus groups and interviews with more than 7,500 rural men and women in 26 developing countries. “I have learned a lot about gender and it’s not just about women, but about both women and men,” said Bizuneh.

The District of Basona has nearly 30,000 households, 98 percent of which depend on agriculture for food and livelihoods but have access to an average of only 1.5 hectares of land. More than 10,000 of those households are headed by females, because many males and youth have left Basona to seek opportunities in large cities or other countries.

Bizuneh and his colleagues are working with a district gender specialist and a women and gender unit to make gender sensitive approaches a regular part of their activities. In this, he concedes that he and other professionals are contending with “deep-rooted social and cultural norms around divisions of labor and a lack of awareness regarding gender issues.”

One surprise for Bizuneh, from group discussions regarding innovation and involvement in CIMMYT’s gender research, was that women said it was important to share experiences with other farmers and obtain new knowledge.

“No men mentioned that,” he remarked. “This shows that, if provided with information and support, women can innovate.”

Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agirculture for development professionals. Photo: CIMMYT/Apollo Habtamu
Kristie Drucza, CIMMYT gender and development specialist, has been studying, publishing on, and presenting widely about people-centered, evidence-based approaches for gender equality that are being taken up by agriculture-for-development professionals. Photo: CIMMYT/Apollo Habtamu

Women and men plan and change together

Another product from the project is a 2017 review of gender-transformative methodologies for Ethiopia’s agriculture sector, co-authored by Kristie Drucza, project lead, and Wondimu Abebe, a research assistant, both from CIMMYT.

Drucza presented on the people-centered methodologies described in the publication at a recent workshop in Addis Ababa, offering diverse lessons of use for research and development professionals.

“The methodologies involve participatory research to help households and communities assess their situation and develop solutions to problems,” said Drucza. “By working with men and boys and allowing communities to set the pace of change, these approaches reduce the likelihood of a backlash against women—something that too frequently accompanies gender-focused programs.”

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), intends to apply some of the same methods to help rural families understand household and community gender dynamics and their role in managing the families’ goats, sheep, and other livestock.

Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives
Annet Abenakyo Mulema, social scientist in gender at the International Livestock Research Institute (ILRI), is applying participatory research and gender-sensitive methods to help households and communities assess their situation and develop solutions to problems. Photo: ILRI archives

“A 2015 study we did uncovered gender relationships associated with disease transmission,” Mulema explained. “Women and girls normally clean the animal pens and so are exposed to infections. Social conventions in the community make women feel inferior and not empowered to speak out about animal health, which is considered a man’s domain. We encouraged men and women to share roles and work together, and this made it easier for both to quickly identify disease outbreaks at early stages and prevent infections from spreading throughout the herd or to humans.”

Mulema said Drucza’s workshop helped her to understand and appreciate methodologies such as social analysis and action, community conversations, and gender action learning systems to support a shared, local response to the problem. “As another outcome, we spoke to service providers, such as veterinarians and extension agents, who needed to understand how gender related to animal health and the fact that the relationships between women and men in a community can change.”

Meskerem Mulatu, gender and nutrition specialist in Ethiopia’s Agricultural Growth Program II (AGP II) Capacity Development Support Facility (CDSF), said her group invited Drucza to speak on gender and social norms at a national workshop organized by AGP II CDSF in October 2017.

“Our event was on gender, nutrition, and climate-smart agriculture,” according to Meskerem. “Many technologies are gender-sensitive but research and extension are not giving this adequate attention because there is no common operational definition. Their preconception is ‘technology is technology; it’s the same for men and women.’ Drucza’s evidence-based presentation showed that men and women may have different technology demands.”

Meskerem is going to train district agricultural officers to use a transformative methodology identified by Drucza. “Kristie’s report is really good timing,” she said. “We were thinking of doing something in terms of gender and these methodologies make sense.”

Recording data on changes in social norms

In June 2017, Drucza presented the findings of her meta-analysis of evaluations of gender in Ethiopian agricultural development at a senior staff meeting of the Ethiopia office of CARE, the global humanitarian organization. Among the 26 agricultural program evaluations considered, explained Drucza, only three had strong findings, a heavy inclusion of gender, and evidence of changes in social norms—and all three were CARE projects.

Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman
Moges Bizuneh helps lead an agricultural office in Basona District, home to more than 10,000 female-headed households, and is working to support innovation by women. Photo: CIMMYT/Mike Listman

One was the Graduation with Resilience to Achieve Sustainable Development (GRAD) initiative. As an outcome of Drucza’s presentation, CARE is refining the way it records certain social data, according to Elisabeth Farmer, Deputy Chief of Party for the CARE’s Feed the Future Ethiopia–Livelihoods for Resilience Activity project, which emerged from GRAD.

“Our baseline study protocol and questionnaire for the new project hadn’t been finalized yet,” Farmer said. “We were thinking through the difference between using a scale that scores responses along a range, such as a Likert scale, versus asking respondents “yes or no”-type questions, for instance regarding women’s access to information or equitable decision-making in the household.

“As Drucza explained, when it comes to gender norms, you may not get all the way from a “no” to a “yes”, but only from a “2” to “3”, and we want to make sure that we are capturing these smaller shifts, so we incorporated scales with ranges into our baseline and will ensure that these are used in future assessments to track transformations in social norms.”

According to Drucza, who leads the CIMMYT project “Understanding gender in wheat-based livelihoods for enhanced WHEAT R4D impact in Afghanistan, Pakistan and Ethiopia,” funded by the German Federal Ministry for Economic Cooperation and Development, research must be relevant and useful.

“I’m happy to learn that our results are useful to a diverse range of actors, from development partners to policy makers and local agricultural officers,” she said.

Breaking Ground: Good data management key in fight against food insecurity, says Carolina Rivera

BGRivieraOver the next 50 years, the world’s population is set to be more than 9 billion. To feed this amount of people food production will need to more than double.

Doing this will require us to grow food faster than ever before, a global task which will be even more challenging if we don’t first improve the way we collect and share information, according to Carolina Rivera, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and data coordinator with the International Wheat Yield Partnership (IWYP).

Demand for wheat by 2050 is predicted to increase by 70 percent from today’s levels due to population growth and dietary changes, but the challenges to wheat production are stark and growing. The crop is at risk from new and more aggressive pests and diseases, diminishing water resources, limited available land and unstable weather conditions related to climate change.

“The data tells us that we won’t meet future demand unless we’re able to significantly increase genetic gains,” says Rivera. Current annual genetic yield gains of cereals range from 0.5 to 1 percent, meaning that genetic improvements made to crops by scientists are at best resulting in 1 percent higher yields than the previous year, notwithstanding the possibility of improvements due to crop management which are known to be much harder for resource-poor farmers to implement.

Since Rivera started as an IWYP data coordinator, she’s helped release a new instance of the public database called “Germinate,” which hosts phenotypic, genotypic and other data on wheat collected by CIMMYT staff, IWYP project members, and partners around the world. She seeks to deploy new technologies to capture data and develop better systems to standardize, collect, compile and curate field data gathered by members of her CIMMYT research team and their partners.

“Three years ago, around 80 percent of CIMMYT’s wheat physiology field data in Mexico were collected manually,” said Rivera. “But now, the use of tablets for data collection, improved protocols for data processing, among other tools allow us to have real-time quality control. By standardizing our results and facilitating data curation and analysis, we help scientists make faster, more informed decisions.”

Rivera has a unique perspective in crop data management because she applies her on-the-ground knowledge of wheat research to adopt and adapt new technologies and systems that meet the needs of scientists. As a wheat physiologist, she has identified new traits associated with the optimization of plant morphology aiming to boost grain number and yield.

“Data management can seem like an afterthought to the research, but having more controlled and optimized workflows will become crucial for breeding programs as data volumes increase,” says Rivera. “Achieving high-quality data management is a challenge – like with any change in technology, it requires a huge shift in the way people do their job and tools they use.”

Despite this, more than 2 billion genotypic data from CIMMYT have been made available in the Germinate and Dataverse platforms, and Rivera believes that data sharing will eventually become part and parcel to the work wheat researchers conduct.

Before starting her current position at CIMMYT, Rivera received her doctorate in crop science from the University of Nottingham. Ultimately, she believes that the adoption of better data management practices across research institutions will soon become a cornerstone in the ability to create “ideal” wheat plants that produce more grains, feeding more people.

The International Wheat Yield Partnership (IWYP) is a long-term global collaboration with funding from public and private research organizations that seeks to increase the genetic yield potential of wheat by 50 percent in 20 years. Find a full list of funders here.

 

Ag women speak out for International Day of Girls and Women in Science

Girls and women are underrepresented in the fields of science, technology, engineering and mathematics (STEM). The likelihood of female students graduating with a degree in a science-related field is much lower than for male students, according to a U.N. study conducted in 14 countries. In an effort to improve their representation, a U.N. resolution established February 11 as the International Day of Women and Girls in Science.

To celebrate the occasion this year, CIMMYT asked women involved in agricultural science to share their views on what they would like to see change.

RahmaAdamWnG

Rahma Adam

CIMMYT Gender and Development Specialist

Nairobi, Kenya

There are two inspiring women in science, who have made significant contributions to the world. The first woman is Wangari Maathai and the second woman is Marie Curie. Maathai was the first woman in East and Central Africa to earn a doctoral degree, the first to become a professor at the University of Nairobi. She made a significant contribution to environmental/forest conservation, women’s rights and peace.  In 1977, Maathai founded the Green Belt Movement (GBM), an organization focused on the planting of trees, environmental conservation and women’s rights. The GBM has planted over 51 million trees in Kenya. In 2004, she became the first African woman to win the Nobel Peace Prize.

French-Polish scientist Curie’s work led to the discovery of radium and polonium in 1898, setting the stage for nuclear medicine, which allows internal imaging of tumors. Curie is the first person and only woman to win a Nobel Prize twice, including the 1903 physics prize jointly with her husband Pierre Curie and Henri Becquerel, and the 1911 chemistry prize. She was also the first woman to win the Nobel Prize.

The key factor that will encourage women and young girls to get involved in science is to be paired up with already practicing women scientists through mentorship programs so that they see firsthand what it is like to be a female scientist, and what it takes to become one. Starting a mentorship early in life – from the primary school level – will inspire young female students to take more interest in science classes and contemplate a career in science.

BevPostmaWnG

Bev Postma

HarvestPlus CEO

Washington DC, United States

Women’s contributions to science are vast and immeasurable. Heroes like Jane Goodall and Marie Curie, are some of the world’s most famous scientists who also happen to be women. One of my own personal role models from the past is Antoinette Brown Blackwell, who isn’t usually remembered as a scientist, but her efforts to dismantle the barriers to women in science and other research and intellectual fields is a major source of inspiration to me. Today, I am inspired every day by the young scientists in the CGIAR, both women and men, who continue to challenge all forms of gender disparity and are making huge contributions to our body of knowledge.

Women have long contributed innovations to various scientific fields, but their efforts are not always acknowledged, remembered or encouraged as readily as their male counterparts. Women of all ages have been fighting an uphill battle to become equals in the scientific community. Progress is being made but young women still face too many barriers to enter STEM fields and there are still too many hurdles to clear once they enter the workforce. The statistics speak for themselves and must not be ignored. The world needs these women scientists and we need to do all we can to nurture them and encourage a new generation of young women to enter into STEM fields. We must encourage and excite young women about studying STEM subjects, especially in developing countries. We can do this by profiling more female role models and by ensuring that new and established scientists get their fair share of airtime in publications and on conference panels. Sadly, I still see far too many male-only panels at STEM conferences. We all have a role to play in creating a work environment that provides opportunities for everyone to succeed, regardless of gender. Together, we must continue to support and elevate woman scientists within our workplaces and throughout the CGIAR system. I pledge to do my part to support and champion this movement.

JulieBorlaugWnG

Julie Borlaug

Inari Agriculture, Inc. VP Communications and Public Relations

United States

In my opinion, getting more girls and women involved in science will create more innovation, creativity and competitiveness. Women look at issues and research in a different light than men and are often more effective in communication. We must change the current perception of science as a negative, especially in agriculture. It is my hope that women will be able to talk about the benefits of innovation and technology in a manner that makes it easier to understand and acceptable to the public.

I would like to see more STEM programs in schools as well as in after-school programs and camps to introduce girls to science at an early age. Introduction at an early age is critical to furthering their passion and interest. By the time they are teenagers, they are more influenced by their peers and it is often too late to gain their interest.

Additionally, there are many opportunities for parents to provide toys that expose girls to math, chemistry and physics at an early age. Lego sets and many science kits have lines focused solely on girls and provide an important way for girls to grow confident in their capabilities. Several web-based STEM-themed games and apps have been released to encourage girls’ interests.

We need more young female scientists to serve as mentors to girls through various media, including social media outreach. It is hard to find programs or social media activities that highlight young female scientists to inspire girls. We must make a concerted effort to change this and empower the current and future generation of scientists!

ReshmiDasWnG

Reshmi Rani Das

CIMMYT Research Scholar

Hyderabad, India

Women and girls have made significant contributions in various science disciplines, especially in agriculture, irrespective of their social status. We know women are the major workforce in agriculture worldwide, but sometimes they are marginalized due to limited land rights. When this is the case, they have less control over resources. Women’s contributions to agriculture are significant, across the sector, starting with research and development, and including the deployment of scalable technology leading to the capacity to make an impact on humanity.

It is essential to bring women working in agriculture into the mainstream and to empower them with direct access to knowledge of improved agricultural technologies. The female presence in scientific fields has been largely disproportional compared to male; however, the trend is slowly changing, as more and more women are entering these fields.

Equality in recognition of their contributions and equal rights in ownership of the resources might work as a strong motivator for women and girls to get more involved in science.  Introducing women and girls to scientific fields and encouraging them to follow their hearts and minds irrespective of social issues that influence career choices could also help overcome the negative perceptions that girls develop at a young age that science is a hard subject, leading them to avoid it. Friendly environments in high school and the university level, inviting females to participate and get over a fear of science, would encourage those with talent and a genuine interest to develop their interest.

Encouraging women to participate in training and workshops by motivating young girls to explore and challenge typically male-dominated fields could also help bolster the number of women in the field. As well as providing more financial assistance in the form of fellowships so that they become financially independent.

Parents are primary mentors, and therefore right from the beginning if there is support, women and girls can accomplish much more. The value of mentorship outside the home is also irreplaceable. In the past, we have seen the majority of successful women credit their success to their mentors for helping them reach career goals.

MinaDekvotaWnG

Mina K. Devkota

CIMMYT Systems Agronomist

Kathmandu, Nepal

Many girls begin making a significant contribution to science from a very early age. As they grow older, a sizeable portion of them will work in various research organizations, contributing to science in different fields. Women often also play a big supporting role in the successes of men working for science. Thus, women, directly and indirectly, contribute to scientific advancement.

In my opinion, enabling environments in family, society and in communities, promoting knowledge gathering, support for education and career development will encourage more women and girls to get involved in science. For example, in some countries, certain people have the mindset that women and girls must still be confined to household activities, an unfair bias limiting access to opportunities and exposure to science.

Are you a wizard or a prophet?

"The Wizard and the Prophet" looks at the world’s most threatening challenges through the eyes of scientists Norman Borlaug (left) and William Vogt. (Photos: CIMMYT, AICBC)
“The Wizard and the Prophet” looks at the world’s most threatening challenges through the eyes of scientists Norman Borlaug (left) and William Vogt. (Photos: CIMMYT, AICBC)

Charles Mann’s The Wizard and the Prophet released today seeks to reconcile two worldviews spurred by agronomist Norman Borlaug and ecologist William Vogt, to help us better understand how we can feed 10 billion people by 2050; without destroying our planet in the process.

Borlaug, the “wizard” of the book, launched his vision from a small parcel of “badly damaged land” near Mexico City that would become the International Maize and Wheat Improvement Center (CIMMYT). He was a key figure in developing high-yielding wheat varieties that saved millions from starvation in the 1960s, launching a global Green Revolution and becoming an emblem for “techno-optimism,” or the view that science and technology will meet humanity’s growing demands.

Vogt’s 1948 book “The Road to Survival” became the blueprint for today’s modern environmental movement, prophesizing that unless humankind drastically reduces consumption, its growing numbers and appetite will overwhelm the planet’s resources. His novels and speeches inspired conservationists from Rachel Carson to Paul Ehrlich, and defined our concept of “environment” as an entity that deserves respect and protection.

Mann uses the views of Borlaug and Vogt as endpoints on a “wizard-prophet” spectrum to illustrate different approaches experts are taking to solve four great, complex challenges of our time: food, water, energy and climate change.

But who is right? We, humans, are the only species on Earth that have been able to bend nature to our will. For thousands of years we burned forests to kill insects and encourage the growth of useful species, then later turned the planet into our “personal petri dish,” as Mann puts it, with the rise of agriculture and creation of crops like maize, which allowed Mesoamerican civilizations to grow and flourish. Today, violence and poverty are at an all-time low due to the wizardly-successes of Borlaug and others

However, Mann cautions past successes are no guarantee of the future. Vogt’s Malthusian predictions didn’t come to pass, but Borlaug’s wizardry also had unintended social and environmental consequences. Fertilizer runoff, over-extraction of groundwater and the burning of fossil fuels are creating an increasingly inhospitable planet and arguably pushing us closer to Vogt’s envisioned planetary limits than ever before.

Norman Borlaug works with researchers in the field. (Photo: CIMMYT archives)
Norman Borlaug works with researchers in the field. (Photo: CIMMYT archives)

Both Borlaug and Vogt identified as environmentalists trying to solve the same monumental challenge of having too many people to feed but not enough resources. Their ideological heirs are also working to solve equally challenging problems but are bitterly opposed, in large part because the argument is less about facts and more about values.

Prophets see humans as living in a finite world with constrained limits imposed by the environment, while wizards believe human ingenuity gives us an endless array of tools to manage the environment for our needs.

Mann doesn’t take either side, but rather offers solutions proposed by both prophets and wizards. He cites efforts to change the way photosynthesis works in rice at the International Rice Research Institute, but also initiatives like the domestication of wild perennial plants at the Land Institute. Both prophets and wizards have multiple, on-going efforts to meet all four challenges that Mann covers in the book. He says that it’s possible individual efforts won’t work, but the odds of all efforts failing are equally small.

Most importantly, there are many individuals and organizations today that are attempting to embrace both ideologies. CIMMYT, an organization that was founded by the original wizard, now incorporates sustainable agriculture practices into its work globally, with an emphasis on social inclusion.

The Wizard and the Prophet’s in-depth mix of biographical, historical, philosophical and scientific detail allows us to confront our wizard/prophet bias, and leaves one with a greater sense of respect for those with differing views on how we should shape our world in the 21st century.

Buy “The Wizard and the Prophet: Two Remarkable Scientists and Their Dueling Visions to Shape Tomorrow’s World” here.

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.
Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver to farmers over 3,400 tons of high quality seed that was sown on more than 100,300 hectares.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Farmers are using maize and wheat varieties suitable for drought-affected areas and resistant to prevalent crop diseases. Photo: CIMMYT/A.Habtamu
Farmers are growing maize and wheat varieties suitable for drought- and disease-affected areas. Photo: CIMMYT/ A. Habtamu

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates Foundation, Ethiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Women are the foundation for change in rural Ethiopia

The idea that “Educating women/girls is nothing but a loss,” used to be a common sentiment amongst members of rural Ethiopian communities where the Nutritious Maize for Ethiopia (NuME) project works. Now one is more likely to hear “Women are the foundation for change.”

The International Maize and Wheat Improvement Center (CIMMYT)-led NuME project is reducing food insecurity in Ethiopia by increasing the country’s capacity to feed itself. The project is improving household food and nutritional security, especially for young children and women, through shifting gender norms and the adoption of Quality Protein Maize (QPM).

QPM refers to a type of maize biofortified with two essential amino acids through traditional breeding to improve the inadequacy of protein quality of the conventional maize grown widely by farmers. Consumption of QPM instead of conventional maize leads to increase in the rate of growth in infants and young children with mild to moderate undernutrition from populations in which maize is the major staple food.

According to the World Bank, women contribute 40-60 percent of the labor in agricultural production in Ethiopia and play an important role in income generation, as well as unpaid household tasks. However, many women face severely restricted access to resources and services and lack control over income, greatly hindering their participation in and benefit from new innovations.

A community conversation session in Shebedino, Ethiopia. Photo: Tsegaye, M./SNNPR.

A community conversation session in Shebedino, Ethiopia. Photo: Tsegaye, M./SNNPR.

Few programs have specifically considered gender relations when implementing new initiatives in communities, however, when NuME found lower participation of women in the community-based promotion and dissemination of QPM, adapted community conversations were launched in two selected project woredas, or districts – Shebedino and Meskan – for a nine-month pilot in an attempt to raise women’s role in the project.

Community conversation (CC) is a facilitated approach based on the principle that communities have the capacity to identify their societal, economic and political challenges; set priorities; mobilize human, physical and financial resources; plan for action and address their challenges sustainably. It focuses on people’s strengths, resources and how they relate to challenges or problems communities face.

The people benefiting from a CC-driven project set priorities and create a plan of action to mobilize resources to address their challenges sustainably. This helps communities develop a sense of ownership, use local resources and take responsibility to bring about sustainable changes.

Because this approach involves the entire community, it also includes traditionally marginalized groups like women and youth.

When NuME first started community conversations, seating was very rigid due to cultural and religious traditions, but as the sessions continue paving the way for more community awareness on issues around gender norms and stereotypes, the seating has become much more mixed.

A facilitator from Shebedino woreda said, “Participants can’t wait for the bi-monthly conversations and they never want to miss them. These exchanges have helped men and women to get together and discuss their concerns, which was not a common practice before.”

“Women have begun raising their voices during community conversation meetings, while they used to be too shy and afraid to speak and very much reserved about sharing their ideas in public,” a female participant from Meskan woreda reported.

Community conversation participants have started changing the traditional gender stereotypes.

Through debate and the sharing of opinions, and more active participation from women, community conversations have educated participants on gender inequality, its prevalence and harm and have allowed men and women community members to exchange ideas about nutrition more effectively.

The NuME project will continue into 2019. Read more about how CIMMYT is working to equally boost the livelihoods of women, youth and men here.

The NuME Project is funded by Global Affairs Canada with major implementing partners the Ethiopian Ministry of Agriculture and Natural Resources (MoANR), the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Public Health Institute (EPHI), the Sasakawa Africa Association (SAA)/Sasakawa Global 2000 (SG2000) and Farm Radio International (FRI).

CIMMYTNEWSlayer1

Facing the fall armyworm threat

MEXICO CITY, Mexico (CIMMYT) – In a new blog published by Farming First, B.M. Prasanna, Director of the Global Maize Program and the CGIAR Research Program on Maize at the International Maize and Wheat Improvement Center (CIMMYT) discusses overcoming a pest that has been ravaging fields in Africa.

“Fall armyworm is one of the most destructive insect pests worldwide…In just under two years, the pest has devastated almost 1.5 million hectares of maize crops in 6 countries in Africa,” he said.

Prasanna advises that without proper management, over the next two years, “fall armyworm is expected to cause up to six billion dollars of damage across affected maize growing regions.”

With the rapid rise of this pest, some countries purchased highly toxic pesticides and started distributing these pesticides to people without proper personal protective equipment or an understanding of the potential danger.

“We must raise awareness among farming communities on how to make wise decisions on application of the right kind of pesticides at the right stage.”

In terms of immediate solutions, “There are many pesticides derived from naturally occurring bacteria and viruses that could be helpful. The capacity to quickly validate these options, scale them up and release them is extremely important”, he said.

“We are running a marathon here, not a 100-meter race. “

In terms of long-term solutions, “we are extensively testing maize and wheat varieties against the fall armyworm populations in Africa and we have some very promising sources of resistance which we will be validating very soon.”

“CIMMYT, in partnership with USAID and other collaborators, is working to produce a comprehensive manual on fall armyworm pest management in Africa which will be available in January.”

Prasanna emphasized, “there is a tremendous coordination effort that is required in the years to come in order to make these things happen,” but said that CIMMYT is ready to stand with others to beat this pest. With a unified and systematic approach, it can be done.

Read the entire blog “How Fall Armyworm Can Be Beaten in Africa” on the Farming First website.

Fall armyworm found on crops in Zimbabwe. Photo credit: CIMMYT/M. Shindler
Fall armyworm found on crops in Zimbabwe. Photo credit: CIMMYT/M. Shindler

CIMMYTNEWSlayer1