Skip to main content

Shifting to a demand-led maize improvement agenda

Partners of the Stress Tolerant Maize for Africa (STMA) project held their annual meeting May 7–9, 2019, in Lusaka, Zambia, to review the achievements of the past year and to discuss the priorities going forward. Launched in 2016, the STMA project aims to develop multiple stress-tolerant maize varieties for diverse agro-ecologies in sub-Saharan Africa, increase genetic gains for key traits preferred by the smallholders, and make these improved seeds available at scale in the target countries in partnership with local public and private seed sector partners.

The project, funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID), is led by the International Maize and Wheat Improvement Center (CIMMYT), and implemented together with the International Institute for Tropical Agriculture (IITA), national agricultural research systems and seed company partners in 13 countries in sub-Saharan Africa.

The meeting was officially opened by the Deputy Director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu. “Maize in Africa faces numerous challenges such as drought, heat, pests and disease. Thankfully, these challenges can be addressed through research. I would like to take this opportunity to thank CIMMYT and IITA. Your presence here is a testament of your commitment to improve the livelihoods of farmers in sub-Saharan Africa,” she said.

The International Maize and Wheat Improvement Center (CIMMYT) and its partners are working together in the fight against challenges such as drought, maize lethal necrosis and fall armyworm. The STMA project applies innovative technologies such as high-throughput phenotyping, doubled haploids, marker-assisted breeding and intensive germplasm screening to develop improved stress-tolerant maize varieties for smallholder farmers. The project team is also strengthening maize seed systems in sub-Saharan Africa through public-private partnerships.

The efforts are paying off: in 2018, 3.5 million smallholder farmers planted stress-tolerant maize varieties in 10 African countries.

The deputy director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu (fourth from left), gives the opening address of the STMA Annual Meeting 2019. Left to right: Mick Mwala, University of Zambia; Tony Cavalieri, Bill & Melinda Gates Foundation; B.M. Prasanna, CIMMYT; Monde Zulu, ZARI; Mwansa Kabamba, ZARI; Cosmos Magorokosho, CIMMYT; and Abebe Menkir, IITA.
The deputy director of the Zambia Agriculture Research Institute (ZARI), Monde Zulu (fourth from left), gives the opening address of the STMA Annual Meeting 2019. Left to right: Mick Mwala, University of Zambia; Tony Cavalieri, Bill & Melinda Gates Foundation; B.M. Prasanna, CIMMYT; Monde Zulu, ZARI; Mwansa Kabamba, ZARI; Cosmos Magorokosho, CIMMYT; and Abebe Menkir, IITA.

Yielding results

CIMMYT researcher and STMA project leader Cosmos Magorokosho reminded the importance of maize in the region. “Maize is grown on over 35 million hectares in sub-Saharan Africa, and more than 208 million farmers depend on it as a staple crop. However, average maize yields in sub-Saharan Africa are among the lowest in the world.” Magorokosho pointed out that the improved maize varieties developed through the project “provide not only increased yields but also yield stability even under challenging conditions like drought, poor soil fertility, pests and diseases.”

“STMA has proved that it is possible to combine multiple stress tolerance and still get good yields,” explained B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE). “One of the important aspects of STMA are the partnerships which have only grown stronger through the years. We are the proud partners of national agricultural research systems and over 100 seed companies across sub-Saharan Africa.”

Keynote speaker Hambulo Ngoma of the Indaba Agricultural Policy Research Institute (IAPRI) addressed the current situation of maize in Zambia, where farmers are currently reeling from recent drought. “Maize is grown by 89% of smallholder farmers in Zambia, on 54% of the country’s cultivable land, but productivity remains low. This problem will be exacerbated by expected population growth, as the population of Zambia is projected to grow from over 17 million to 42 million by 2050,” he said.

STMA meeting participants pose for a group photo during the field visit to QualiBasic Seed. (Photo: Jennifer Johnson/CIMMYT)
STMA meeting participants pose for a group photo during the field visit to QualiBasic Seed. (Photo: Jennifer Johnson/CIMMYT)

Down to business

On May 8, participants visited three partner local seed companies to learn more about the opportunities and challenges of producing improved maize seed for smallholder farmers.

Afriseed CEO Stephanie Angomwile discussed her business strategy and passion for agriculture with participants. She expressed her gratitude for the support CIMMYT has provided to the company, including access to drought-tolerant maize varieties as well as capacity development opportunities for her staff.

Bhola Nath Verma, principal crop breeder at Zamseed, explained how climate change has a visible impact on the Zambian maize sector, as the main maize growing basket moved 500 km North due to increased drought. Verma deeply values the partnership with the STMA project, as he can source drought-tolerant breeding materials from CIMMYT and IITA, allowing him to develop early-maturing improved maize varieties that escape drought and bring much needed yield stability to farmers in Angola, Botswana, the Democratic Republic of the Congo, Tanzania and Zambia.

At QualiBasic Seed, STMA partners were given the opportunity to learn and ask questions about the company’s operations, including the seed multiplication process in Zambia and the importance of high-quality, genetically pure foundation seed for seed companies.

Emmanuel Angomwile (left) and Stephanie Angomwile (center) answer visitors’ questions at their seed company, Afriseed. (Photo: Jennifer Johnson/CIMMYT)
Emmanuel Angomwile (left) and Stephanie Angomwile (center) answer visitors’ questions at their seed company, Afriseed. (Photo: Jennifer Johnson/CIMMYT)

Young ideas

The meeting concluded with an awards ceremony for the winners of the 2019 MAIZE Youth Innovators Awards – Africa, established by MAIZE in collaboration with the Young Professionals for Agricultural Development (YPARD). These awards recognize the contributions of young women and men under 35 who are implementing innovations in African maize-based agri-food systems, including research-for-development, seed systems, agribusiness, and sustainable intensification. This is the second year of the MAIZE Youth Awards, and the first time it has been held in Africa. Winners include Hildegarde Dukunde of Rwanda and Mila Lokwa Giresse of the Democratic Republic of the Congo in the change agent category, Admire Shayanowako of the Republic of South Africa and Ismael Mayanja of Uganda in the research category, and Blessings Likagwa of Malawi in the farmer category.

Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)
Winners of the 2019 MAIZE Youth Innovators Awards – Africa receive their awards at the STMA meeting in Lusaka, Zambia. From left to right: Admire Shayanowako, Blessings Likagwa, Ismael Mayanja and Hildegarde Dukunde. Fifth awardee Mila Lokwa Giresse not pictured. (Photo: J.Bossuet/CIMMYT)

Breaking Ground: Mechanization expert Jelle Van Loon goes as far as creativity allows

In November 2015, Jelle Van Loon set off for Zimbabwe, with a cross-section plan in his backpack. He spent two weeks working with a group of blacksmiths, searching Harare for parts and assembling machines in a bid to test whether the construction plans developed by his team were indeed designed to be built anywhere. “We might have had to change a few things, but three working machines were built, proving the accessibility of the construction plans and inherent replicability of the designs.”

From studying agronomic engineering and crop modelling in Belgium to working on supply chain issues in Peru, Jelle Van Loon amassed a range of experience before joining the International Maize and Wheat Improvement Center (CIMMYT) in 2012. Soon after joining, he began shaping up a team to work on mechanization issues.

“First and foremost I’m an agricultural engineer; I just happen to have a high affinity with mechanics,” he says. “I think my advantage is having a broad knowledge, being able to understand agronomy as well as mechanical engineering, and having studied agricultural economics in developing countries.”

This background has served him well in a role where a hands-on, multidisciplinary approach is crucial.

“Mechanization doesn’t necessarily mean building or creating more machines,” Van Loon explains, “but rather introducing technology and farm equipment to farmers to facilitate their work, as well as supporting them on how and when to use it to increase production efficiency.” Many people also assume that mechanization only involves motorized equipment such as tractors, he adds, when in fact any tool, even simple hand tools, which facilitate farmer work and alleviate drudgery fit into this concept.

CIMMYT’s mechanization team carries out research and development on a range of farm equipment. Team members draw and design prototypes, test them in the field and develop protocols for experiments. Combining agronomy and mechanics, they work to create machinery that supports farmers in their day-to-day work at each stage of the crop cycle: from land preparation, planting and fertilization, to harvest and shelling. They also support the generation of new business models which can deliver appropriate machinery to farmers working within resilient agri-food systems.

Welcome to the machine

One of the biggest challenges is changing the way farmers work. Many are resistant to investing in new machinery because they are unsure of how to use it, and simply cannot afford the risk of failure. As such, the team also places an emphasis on extension work. They have set up centers where growers can learn about the equipment and rent out some model machines. They also build the capacity of service providers through training on functional engineering for blacksmiths and manufacturers, and market intelligence for small sector entrepreneurs.

“It’s beyond just designing the machine. It’s really about taking products out to the field, seeing what works well and where, and then thinking about how we can get these products into the hands of farmers.”

Building on the work being carried out in Mexico, Van Loon is always looking at how other regions can also benefit from the mechanization unit and opportunities for collaborating with colleagues and partners in Africa and Asia. Equipment developed for farmers in Africa or Latin America could be adapted for use in South Asia or vice versa, but this requires a solid understanding of each region’s unique opportunities and challenges.

He points to the example of the two-wheel tractor engine, developed in China and popularized in Asia during the 1980s, when famine and the loss of draft animals prompted governments to subsidize that particular piece of equipment at the right time. The tractor is ubiquitous in countries such as Bangladesh, but it is unclear whether the same success is replicable in Africa and Latin America, neither of which has the same conditions, second-hand markets or import facilities. “We’re trying to learn from cross-regional efforts to scale up. Being able to understand different areas helps us find the weakest links and create more enabling environments,” Van Loon explains.

He and his team are continuously developing and evaluating new ideas, trialing ways of embedding mechatronics or sensory-based technology into their machines to help capture data and ease farmer workloads. Finding a way to keep these low-cost and convenient for farmer use may be a challenge, but positive testimonials from farmers keep him excited about the possibilities.

“I think it’s worthwhile to follow through on wild new ideas and see what happens because when it works out, the positive impact and change we help create is all that matters,” Van Loon notes.

“And more so, the cool thing about working in mechanization is we can go as far as our creativity lets us.”

Jelle Van Loon demonstrates machinery for visitors at CIMMYT's global headquarters in Mexico. (Photo: Gerardo Mejía/CIMMYT)
Jelle Van Loon demonstrates machinery for visitors at CIMMYT’s global headquarters in Mexico. (Photo: Gerardo Mejía/CIMMYT)

Tracing maize landraces, 50 years later

Maize is more than a crop in Mexico. While it provides food, feed and raw materials, it is also a bloodline running through the generations, connecting Mexico’s people with their past.

The fascinating diversity of maize in Mexico is rooted in its cultural and biological legacy as the center of origin of maize. Landraces, which are maize varieties that have been cultivated and subjected to selection by farmers for generations, retaining a distinct identity and lacking formal crop improvement, provide the basis of this diversity.

As with any cultural legacy, the cultivation of maize landraces can be lost with the passage of time as farmers adapt to changing markets and generational shifts take place.

Doctoral candidate Denisse McLean-Rodríguez, from the Sant’Anna School of Advanced Studies in Italy, and researchers from the International Maize and Wheat Improvement Center (CIMMYT) have undertaken a new study that traces the conservation and abandonment of maize landraces over the last 50 years in Morelos, Mexico’s second smallest state.

The study is based on a collection of 93 maize landrace samples, collected by Ángel Kato as a research assistant back in 1966-67 and stored in CIMMYT’s Maize Germplasm Bank. Researchers traced the 66 families in Morelos who donated the samples and explored the reasons why they abandoned or conserved their landraces.

Doctoral candidate Denisse McLean-Rodríguez (left) interviews maize farmer Roque Juarez Ramirez at his family home in Morelos to explore his opinions on landrace conservation. (Photo: E. Orchardson/CIMMYT)
Doctoral candidate Denisse McLean-Rodríguez (left) interviews maize farmer Roque Juarez Ramirez at his family home in Morelos to explore his opinions on landrace conservation. (Photo: E. Orchardson/CIMMYT)

Tracing landrace abandonment

In six cases, researchers were able to interview the original farmers who donated the samples to CIMMYT. In other cases, they interviewed their family members, most frequently the sons or daughters, or alternatively their grandchildren, siblings, nephews or widows.

The study reveals that maize landrace cultivation has diminished significantly within the families. Only 13 of the 66 families are still cultivating the same maize seed lots as in 1966-67 and there was consensus that the current social, economic and physical environments are unfavorable for landrace cultivation.

Among the reasons for abandonment are changes in maize cultivation technologies, shifting markets for maize and other crops, policy changes, shifting cultural preferences, urbanization and climate change.

“By finding out about landrace continuity in farmers’ fields and the factors driving change, we were able to better understand the context in which these landraces are currently cultivated,” said McLean-Rodríguez. “Our study also allowed us to evaluate the importance of ex situ conservation in facilities like CIMMYT’s Germplasm Bank.”

Juarez and Oliveros’s grandson shows the family’s heirloom maize: maíz colorado (left) and Ancho maize. (Photo: E. Orchardson/CIMMYT)
Juarez and Oliveros’s grandson shows the family’s heirloom maize: maíz colorado (left) and Ancho maize. (Photo: E. Orchardson/CIMMYT)

Maize biodiversity conservation

Maize landraces can be conserved “in situ” in farmers’ fields and “ex situ” in a protected space such as a germplasm bank or community seed bank.

“These conservation strategies are complementary,” explained McLean-Rodríguez. “Ex situ conservation helps to secure landraces in case of unpredictable conditions that threaten their conservation in the field, while in situ cultivation allows the processes that generated maize’s diversity to continue, allowing the emergence of mutations and the evolution of new potentially beneficial traits.”

The loss of landraces in farmers’ fields over 50 years emphasizes the importance of ex situ conservation. CIMMYT’s Maize Germplasm Bank holds 28,000 samples of maize and its wild relatives from 88 countries, spanning collections dating back to 1943. Safeguarded seed stored in the Germplasm Bank is protected from crises or natural disasters, and is available for breeding and research. Traits found in landraces can be incorporated into new varieties to address some of the world’s most pressing agriculture challenges like changing climates, emerging pests and disease, and malnutrition.

McLean-Rodríguez recalls an aspect of the study that she found particularly rewarding: “Many of the families who had lost their landrace for one reason or another were interested in receiving back samples of their maize from the CIMMYT Germplasm Bank. Some were interested due to personal value, while others were more interested in the productive value. They were very happy to retrieve their maize from the Germplasm Bank, and it would be very interesting to learn whether the repatriated seed is cultivated in the future.”

Ventura Oliveros Garcia holds a photograph of her father, Santos Oliveros, who was one of the maize farmers who donated seed to CIMMYT’s genebank in 1966-67. (Photo: E. Orchardson/CIMMYT)
Ventura Oliveros Garcia holds a photograph of her father, Santos Oliveros, who was one of the maize farmers who donated seed to CIMMYT’s germplasm bank in 1966-67. (Photo: E. Orchardson/CIMMYT)

A family tradition

One of the families to take part in the study was farmer Roque Juarez Ramirez and his wife, Ventura Oliveros Garcia, whose father was one of the donor farmers from Morelos. “I was so happy to hear the name of my father, [Santos Oliveros],” recalls Oliveros, remembering the moment McLean-Rodríguez contacted her. “He had always been a maize farmer, as in his day they didn’t cultivate anything else. He planted on his communal village land [ejido] and he was always able to harvest a lot of maize, many ears. He planted an heirloom variety of maize that we called arribeño, or marceño, because it was always planted in March.”

Juarez senses his responsibility as a maize farmer: “I feel that the importance [of maize farming] is not small, but big. We are not talking about keeping 10 or 20 people alive; we have to feed a whole country of people who eat and drink, apart from providing for our families. We, the farmers, generate the food.”

Filling vessels of champurrado, a Mexican maize-based sweet drink, and presenting samples of the family’s staple maize — maíz colorado and the Ancho landrace — Oliveros describes what maize means to her: “Maize is very important to my family and me because it is our main source of food, for both humans and animals. We use our maize variety to make pozole, tortillas, tamales, atole, quesadillas, picadas and many other foods.”

The Juarez-Oliveros family substituted the Ancho seed lot from Olivero’s father with another seed lot from the Ancho landrace obtained from her husband’s family. The Ancho landrace is used to make pozole, and continues to be widely cultivated in some municipalities of Morelos, including Totolapan, where the family resides. However, researchers found other landraces present in the 1966-67 collection, such as Pepitilla, were harder to trace 50 years later.

Maíz colorado (left), or red maize, is an important part of the family’s diet. The family’s Ancho maize (right) has characteristically wide and flat kernels, and is a key ingredient of the pozole stew. (Photo: E. Orchardson/CIMMYT)
Maíz colorado (left), or red maize, is an important part of the family’s diet. The family’s Ancho maize (right) has characteristically wide and flat kernels, and is a key ingredient of the pozole stew. (Photo: E. Orchardson/CIMMYT)

The study shows that landrace abandonment is common when farming passed from one generation to the next. Older farmers were attached to their landraces and continued cultivating them, even in the face of pressing reasons to change or replace them. When the younger generations take over farm management, these landraces are often abandoned.

Nonetheless, young farmers still value the cultural and culinary importance of landraces. “Maize has an important traditional and cultural significance, and is fundamental to our economy,” said Isaac Juarez Oliveros, son of Roque and Ventura. “I have been planting [maize landraces] since I was around 15 to 20 years old. I got my maize seed from my parents. I believe it is important for families to keep planting their maize, as it has become tradition passed down through many generations.”

The family’s son, Isaac Juarez Oliveros, stands outside the maize storage room where they store and dry their harvested maize for sale and consumption. (Photo: E. Orchardson/CIMMYT)
The family’s son, Isaac Juarez Oliveros, stands outside the maize storage room where they store and dry their harvested maize for sale and consumption. (Photo: E. Orchardson/CIMMYT)

The legacy for future generations

Global food security depends on the maintenance of high genetic biodiversity in such key staple food crops as maize. Understanding the causes of landrace abandonment can help to develop effective landrace conservation strategies. The authors suggest that niches for landrace conservation and even expansion can be supported in the same manner that niches have been created for improved maize and other commercial crops. Meanwhile, management of genetic resources is vital, both in the field and in germplasm banks, especially in developing countries where broader diversity exists.

For Oliveros, it is a matter of family legacy: “It means a lot to me that [my family’s seed] was preserved because it has allowed my family’s maize and my father’s memory to stay alive.”

“Farmers who cultivate landraces are providing an invaluable global public service,” state the authors of the study. “It will be key to encourage maize landrace cultivation in younger farmers. Tapping into the conservation potential of the current generation of farmers is an opportunity we should not miss.”

 

Read the full study:
The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective

Funding for this research was provided by the CGIAR Research Program on Maize (MAIZE), the Sant’Anna School of Advanced Studies and Wageningen University.

A special acknowledgement to the families, focus group participants and municipal authorities from the state of Morelos who kindly devoted time to share their experiences with us, on the challenges and rewards of maize landrace conservation.

New role in Nepal is “a dream come true”

Cynthia Carmona will always remember the directive her supervisor gave to a researcher panicked by mounting paperwork: You go and work on the science. We’ll take care of the admin part.

“They already have their hands full with research and building partnership strategies. They shouldn’t have to be concerned about whether or not an invoice has been sent,” she says.

Growing up in the Mexican state of Sonora, Carmona was aware of the International Maize and Wheat Improvement Center’s (CIMMYT) Obregon experimental station from a young age. “It was an organization that I knew existed, but all I knew was that they worked on wheat.”

After studying international relations at Tecnológico de Monterrey in Mexico City, Carmona spent a couple of years working in government and the private sector but she remained on the look-out for global-facing opportunities. Drawn to the opportunity to work with donors, Carmona joined CIMMYT’s Project Management Unit (PMU) six years ago.

“When I first arrived it was more of a grant management unit and we were divided by grant cycle. One person would work on proposals, another on contracts and so on, so you didn’t really get to see the whole process from start to finish.”

The unit has evolved since then, and growing responsibility means that the team is now divided by specialty, from donor relations and resource mobilization to grant management and monitoring and evaluation. “The structure we have now definitely gives you a broader understanding of each project.”

Carmona stresses that even though PMU staff don’t work in the field or in laboratories, they do make significant contributions to project implementation by encouraging smoother processes, alleviating administrative problems and ‘speaking a common language’ between researchers and management. When she took on the role of grant management coordinator, she impressed upon her team the extent to which their action or inaction could affect the projects they support. “Making things happen was my favorite part of the role, and I saw my job as that of an ‘issue solver’.”

Carmona is currently based in Kathmandu, Nepal, where she is serving as interim project manager on CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) project.

“I’m very excited about this new opportunity. CSISA has always been a flagship project for CIMMYT, so when they invited me to help them it was like a dream come true.”

She first visited Nepal in December 2018, where she spent time shadowing the outgoing manager who provided her with an introduction to the country, the region and the project itself.

“It was like a two-week bootcamp. But even though it was intense, I didn’t feel overwhelmed.”

Working in PMU, Carmona explains, provides a solid background for project management and an understanding of how CIMMYT projects work, from start to finish, as well as how to communicate with funders and build shared knowledge by bringing people together, from scientists and researchers to program and service unit staff.

Besides learning about how a project is run on-the-ground, Carmona is most looking forward to gaining field experience while in Nepal. “Talking to farmers and project teams, listening to their experiences and witnessing CIMMYT’s work on-the-ground really gives you a sense of belonging and a connection to our mission.”

Research busts common myths about agricultural labor in Africa, suggests a shift in mechanization policy

New farm-level research into agricultural labor in eastern and southern Africa found that a lack of farm power is costing smallholders in productivity, demonstrating a far higher demand for mechanization than commonly thought.

The study identified African farming households are far more dependent on labor markets than previously assumed, and thus far more inclined to hire mechanization services. The findings call on governments in the region to create an enabling environment to promote appropriate mechanization for small-scale farmers, said lead researcher Frédéric Baudron, systems agronomist with the International Maize and Wheat Improvement Center (CIMMYT).

“The high number of households already hiring farm power challenges common myths that suggest smallholder farms depends almost entirely on labor as it’s provided by family members. The demand for mechanized farm power is there, the supply isn’t and that is the issue,” he explained.

Unlike studies before it, the research avoided country-level indicators, such as the share of fallow land or population density, to assess the need for mechanized farming operations. Instead, it gathered detailed labor data from households in eight sites dominated by smallholder agriculture across Ethiopia, Kenya, Tanzania and Zimbabwe.

The study demonstrated that households that invest in agricultural power improve food production.

“To increase farm productivity, profitability, and sustainability, African farmers need greater access to affordable farm machinery to optimize processes,” Baudron said.

Small-scale mechanization appropriately sized for small farms — such as technologies based on two-wheel tractors, including direct planters — represents a shift away from conventional mechanization strategies dependent on large machines, leading to land consolidation and the disappearance of otherwise-productive small farms, Baudron said.

“Governments in the region need to create an enabling environment for mechanization supply chains to develop,” he explained. “This includes the creation of mechanization policy instruments, such as subsidies and training, that further respond to smallholder demand.”

Training and supporting hire service providers has shown to improve the equitable access to mechanization, which reduces labor drudgery and promotes sustainable intensification practices.

The research also presented a more nuanced analysis of the interrelations between male and female labor than usually presented in academic studies. It found women provide less labor than men and hired labor and suggests reducing drudgery among women relies upon understanding men’s chores and improving both as a two-way process.

In all sites studied rural women found that the priority for mechanization should be given to crop establishment, which would benefit both men and women. Land preparation and planting are tasks commonly performed by males, but their optimization influences weeding and postharvest tasks, primarily completed by women.

“These interconnections between men’s and women’s tasks have rarely been mentioned before, and should be tapped into for gender-sensitive interventions,” said Baudron.

Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)
Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)

Five persistent myths related to labor in African smallholder agriculture, challenged

Myth 1: Labor is abundant and cheap; thus, farm power does not limit agricultural productivity

Reality: It is commonly believed farm power does not limit agricultural productivity because there is an abundant amount of cheap labor options in southern and eastern Africa. However, the farm-level study showed a lack of farm power is holding back productivity and illustrated a much higher demand for mechanization than macroeconomic analyses, pointing to a problem of access rather than a lack of demand. It revealed the importance of labor or other sources of farm power in explaining the variability of land productivity. It also found that investments in farm power at the farm level improved land productivity.

Myth 2: Most of the labor is provided by women

Reality: Across the eight sites studied, women were found to provide just 7 to 35% of the labor invested in household farming, far less than the often-claimed percentage of 60 to 80%. Overall, the farm-level study found women tended to provide less labor for farming than men and hired labor. Even when considering female-headed households alone, women were only the main providers of labor in half of the sites — hired labor or children were we the main providers of labor.

The largest share of female labor tended to be invested in activities characterized by high drudgery, weeding and postharvest in particular, although this varied across sites. Weeding was also the main task performed by men in four of the sites studied. In fact, the study revealed that weeding tended to be a shared task between men, women, children, and hired labor, and not as dominated by female labor as commonly thought.

Myth 3: Agricultural tasks are carried out almost entirely by family labor

Reality: The study showed the majority of farming households in the region hire labor to complete agricultural tasks. Farm power hired included human labor, draught animals and, to a much lesser extent, tractor power.

This challenges the common view of Africa being dominated by family farms which, according to FAO, “rely mainly on the labor of family members.” African farming households may be far more dependent on labor markets than commonly assumed, and thus far more inclined to hire mechanization services.

Myth 4: Consolidation, by enabling “efficient” mechanization, would have a positive impact on agricultural productivity

Reality: The study found the maximum land productivity a farm can achieve decreased with increasing farm area in the majority of sites. This supports the so-called “negative farm size–productivity relationship” which has been reported by other studies in eastern and southern Africa.

Mechanization should not be a cause of consolidation — it should rather be driven by economic development. The concept of “appropriate mechanization” embraced by CIMMYT argues that machines should adapt to farm size, and not the opposite. Recent research and development initiatives taking place in the region point to the potential of using small single-axle tractors for agricultural mechanization in areas dominated by small and fragmented fields.

Myth 5: African agriculture is characterized by a wide gender gap

Reality: Research across all eight sites provided little evidence of a consistent gender gap. Land productivity was found not to differ significantly between male-headed households and female-headed households.

The research suggests the limited evidence of any substantial gender gap may stem from the fact that resources are highly inadequate across all sites, limiting large inequalities to manifest. This is not to deny the usefulness of current interventions targeting women-headed households, but rather to highlight the importance of preserving, strengthening, and tapping on social mechanisms in rural communities.

Read the complete study:
A farm-level assessment of labor and mechanization in Eastern and Southern Africa

For more information on appropriate-sized agricultural mechanization in Africa

Breaking Ground: Tawanda Mashonganyika unites crop breeders and market experts for more impactful varieties

Tawanda Mashonganyika

The low rate at which farmers adopt improved varieties is one of the biggest obstacles to overcoming food insecurity. The average maize variety grown by farmers in sub-Saharan Africa is 15 years old, even though maize breeders have been releasing more than 50 new varieties every year.

When it comes to climate change, for example, thanks to a plentiful arsenal of genetic diversity crop breeders are developing varieties adapted to increased heat and drought, but farmers continue to grow crops developed for the climate of yesterday.

One part of the answer is that it is not enough merely to create a variety resistant to heat, drought or flooding; complex dynamics are at play in crop markets and in farmers’ fields that must be reflected in the design of new varieties.

This where product manager Tawanda Mashonganyika comes in, working for the CGIAR Excellence in Breeding Platform (EiB) out of CIMMYT-Kenya, and one of the first to occupy such a role in the CGIAR system.

“This position is supposed to bring in a business kind of thinking in the way products and varieties are developed,” said Mashonganyika, who studied agricultural economics, agribusiness and value chains at the universities of Reading, U.K. and Queensland, Australia, and has professional experience with crops grown in Africa.

“You need to know who you are developing varieties for, who are your customers and clients, and you also need to design products so that they can have success on the market.”

Mashonganyika’s role is to support CGIAR and national agricultural research system (NARS) breeders to design new varieties focused on replacing older products in a specific market, as opposed to only breeding for an agro-ecological zone. Key to this approach is the involvement of experts from other disciplines such as gender, socioeconomics and nutrition, as well as people involved in the value chain itself, such as food processors, seed producers and farmers.

The outcome of this collaboration is a product profile: a written description of a new product with all the traits needed to replace the variety that currently dominates the target market. The profile serves as a common goal for CGIAR and NARS collaboration, and as a tool to communicate with donors. With the breeding program accountable for delivering a pipeline of new products designed for impact, they can ensure that these varieties also deliver traits such as biofortification to farmer’s fields.

Instead of breeding for all the traits that may be desirable in a new variety, what sets the product profile approach apart is that breeding programs can then focus resources on the traits that will have the greatest impact in the market, and therefore the field. This market-focused approach also enables better collaboration between breeders and experts from other disciplines:

“When you bring a cross-functional team together, you really need to give them an understanding of the desired goal of what we want to design and eventually put onto the market,” said Mashonganyika. “We put an emphasis on data-driven decisions, so it is not just a meeting of experts with different opinions; we always try to create a platform to say ‘we need to follow what the market is saying.’”

“[Non-breeding experts] are usually very excited to talk about the data that they have about markets, and the knowledge that they have about how gender or nutrition affects products on the market,” said Mashonganyika. “There are so many women farmers, especially in Africa, so when you begin to incorporate gender, we are increasing the scope of impact.”

Although actors such as seed producers or food processors may have no breeding expertise, Mashonganyika views their input as essential: “They are the ones that are at the mouthpiece of the market, they eventually take up the varieties and they multiply the seed, so they have very good information.”

One example is a collaboration with the National Agricultural Research Organization (NARO), Uganda, where representatives from private sector seed companies are being included to help breeders better understand their customers. “They give information about seed multiplication processes, and what makes a variety be considered for multiplication in seed systems.”

EiB has created a standardized tool to create product profiles, and 200 were submitted to the growing database in the first three months of the pilot period alone, including profiles submitted by 10 national agricultural research programs in Africa and Asia.

In addition to promoting the use of product profiles, a product manager is also involved ensuring communication and accountability throughout the development of new products.

“With product profiles we say a breeder should be accountable for delivering each product in a certain timeframe,” said Tawanda. “We always emphasize that a breeding program should have an annual product review process, because markets are dynamic, they are bound to change. This is a good habit to ensure that your products remain relevant and designed for impact.”

Although Mashonganyika is one of the first CGIAR product managers, a desire to see greater impact in the field is turning others in the same direction.

“I hope that in the near future we will see other CGIAR centers developing similar positions,” said Mashonganyika.

Fighting hidden hunger with agricultural innovation

Maize provides 15-16 percent of total calorie intake in Asia, Latin America and sub-Saharan Africa, while wheat provides 18 percent of our total available calories. Hidden hunger occurs when these calories don’t provide the essential micronutrients, such as iron, zinc and vitamin A, needed for healthy growth and prevention of diseases.

On World Health Day, we are sharing five stories showing how the International Maize and Wheat Improvement Center (CIMMYT) is combating hidden hunger and how agricultural research and innovation leads to healthier families, improved livelihoods and a healthier planet.

Climate change impact and adaptation for wheat protein

Often, work on climate change adaptation in agriculture focuses on productivity instead of nutrition of crops. If nutritional implications of climate change are not addressed, there will be devastating consequences on the health and livelihoods of marginalized people who depend on wheat as a source of protein.

A new study examines why wheat grain protein concentration is often overlooked in relation to improving global crop production in the face of climate change challenges and concludes that not all climate change adaptations have positive impacts on human nutrition.

An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)
An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)

Nutritious vitamin A orange maize boosts health and livelihoods in Zimbabwe

In Zimbabwe, child malnutrition peaked above international thresholds for emergency response. Vitamin A deficiency is the leading cause of preventable blindness in children and can increase risk of measles, diarrhea and respiratory infections. However, biofortification of maize is a sustainable solution to improve health and nutrition in the region.

CIMMYT and Harvest Plus worked together to breed maize with higher amounts of nutritious vitamin A and are working with farmers, seed companies, food processors and millers to make this maize part of the food system in Zimbabwe.

Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O'Leary/ CIMMYT)
Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O’Leary/ CIMMYT)

Pakistan wheat seed makeover: More productive, resilient varieties for thousands of farmers

In Pakistan, CIMMYT is working to develop and spread better wheat production systems, by replacing outdated, disease susceptible seeds with new varieties. These new varieties also come with a health benefit — zinc.

According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality. These new seeds will increase the nutrition content of wheat, Pakistan’s number-one food crop, as well as resist diseases such as wheat rust.

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: Ansaar Ahmad/CIMMYT)
El camino hacia una mejor seguridad alimentaria y nutrición parece esclarecerse para el agricultor Munsif Ullah y su familia, con semillas de una variedad de trigo de alto rendimiento con zinc. (Foto: Ansaar Ahmad/CIMMYT)
Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: Ansaar Ahmad/CIMMYT)
Munfiat, un agricultor del distrito de Nowshera, provincia de Khyber Pakhtunkhwa, Pakistán, está feliz de sembrar y compartir semillas de la variedad de trigo de alto rendimiento y resistente a las enfermedades Faisalabad-08. (Foto: Ansaar Ahmad/CIMMYT)

Better together: Partnership around zinc maize improves nutrition in Guatemala

Over 46 percent of children under five in Guatemala suffer from chronic malnutrition. More than 40 percent of the country’s rural population is deficient in zinc, an essential micronutrient that plays a crucial role in pre-natal and post-natal development and is key to maintaining a healthy immune system.

CIMMYT, HarvestPlus and Semilla Nueva are working together to change this, through the development and deployment of the world’s first biofortified zinc-enriched maize. Called Fortaleza 3 by Semilla Nueva, it fights against hidden hunger, containing 6-12ppm more zinc and 2.5 times more quality protein compared to conventional maize varieties.

“With the extra income I’ve gotten since switching to F3, I’ve been paying for my daughter to go to school. Fortaleza F3 not only gave me a good harvest, but also the ability to support my daughter’s education,” said Rómulo González, a farmer from the southern coast of Guatemala.

Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)
Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)

Farmers key to realizing EAT-Lancet report recommendations in Mexico, CIMMYT highlights

The EAT-Lancet Commission Report aims to answer the question: can we feed a future population of 10 billion people a healthy diet within planetary boundaries? It proposes a “planetary health diet” that balances nutrition with sustainable food production.

CIMMYT participated in the report launch in Mexico. “If anybody is able to manage the complex systems that will sustainably yield the volume of nutritious food that the world needs, that’s the farmer,” said Bram Govaerts, Director of Innovative Business Strategies at CIMMYT. “In Mexico, more than 500 thousand farmers already innovate every day and grow maize, wheat and related crops under sustainable intensification practices that CIMMYT and Mexico’s Agriculture Department promote with MasAgro”.

These innovations he mentioned create healthier families and a healthier planet.

CIMMYT's director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)
CIMMYT’s director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)

How the data revolution could help design better agronomic investments

Profitability under different fertilization recommendation scenarios in Ethiopia and Tanzania, measured in U.S. dollars per hectare.
Profitability under different fertilization recommendation scenarios in Ethiopia and Tanzania, measured in U.S. dollars per hectare.

What fertilizer application will give me the best returns? What maize crop variety should I use?

Each farmer faces constraints related to weather uncertainty, soil fertility management challenges, or access to finance and markets. To improve their yields and incomes, African smallholder farmers need agronomic advice adapted to their specific circumstances. The challenge is even greater in sub-Saharan Africa, where agricultural production landscapes are highly diverse. Yet traditional agronomic research was not designed to fit with complex agroecological regions and farming systems. Compounding the problem, research organizations often have limited resources to develop the necessary experiments to generate farm- and site-specific agronomic advice at scale.

“Agronomic research is traditionally not equipped to consider spatial or socio-economic diversity among the millions of farmers it targets,” said Sebastian Palmas, data scientist at the International Maize and Wheat Improvement Center (CIMMYT) in Nairobi, Kenya.

Palmas presented some of the learnings of the Taking Maize Agronomy to Scale in Africa (TAMASA) project during a science seminar called “A spatial ex ante framework for guiding agronomic investments in sub-Saharan Africa on March, 4, 2019.

The project, funded by the Bill & Melinda Gates Foundation, has used data to improve the way agronomic research for development is done. Researchers working on the TAMASA project addressed this challenge by using available geospatial information and other big data resources, along with new data science tools such as machine learning and Microsoft’s AI for Earth. They were able to produce and package information that can help farmers, research institutions and governments take better decisions on what agronomic practices and investments will give them the best returns.

By adapting the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model to the conditions of small farmers in TAMASA target countries (Ethiopia, Nigeria and Tanzania), using different layers of information, CIMMYT and its partners have developed a versatile geospatial tool for evaluating crop yield responses to fertilizer applications in different areas of a given country. Because calculations integrate spatial variation of fertilizer and grain prices, the tool evaluates the profitability — a key factor influencing farmers’ fertilizer usage — for each location. The project team can generate maps that show, for instance, the estimated agronomic and economic returns to different fertilizer application scenarios.

The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year. (Photo: CIMMYT)
The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year. (Photo: CIMMYT)

Making profits grow

These tools could potentially help national fertilizer subsidy programs be more targeted and impactful, like the ambitious Ethiopia’s Fertilizer Blending initiative which distributes up to 250,000 tons of fertilizer annually. Initial calculations showed that, by optimizing diammonium phosphate (DAP) and urea application, the profitability per hectare could improve by 14 percent on average, compared to the current fertilizer recommendations.

Such an approach could generate farm-specific advice at scale and boost farmers’ incomes. It could also provide insights on many different issues, like estimating market demand for a new fertilizer blend, or the estimated quantity of additional fertilizer required to bring about a targeted maize yield increase.

Future extensions of the framework may incorporate varietal differences in nutrient management responses, and thus enable seed companies to use the framework to predict where a new maize hybrid would perform best. Similarly, crop breeders could adapt this ex ante assessment tool to weigh the pros and cons of a specific trait and the potential impact for farmers.

The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year.

Exploring young Africans’ role and engagement in the rural economy

Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

How do young rural Africans engage in the rural economy? How important is farming relative to non-farm activities for the income of young rural Africans? What social, spatial and policy factors explain different patterns of engagement? These questions are at the heart of an interdisciplinary research project, funded by the International Fund for Agricultural Development (IFAD), that seeks to provide stronger evidence for policy and for the growing number of programs in Africa that want to “invest in youth.”

One component of the Challenges and Opportunities for Rural Youth Employment in Sub-Saharan Africa project, led by the Institute of Development Studies (IDS), draws on data from the World Bank’s Living Standard Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) to develop a more detailed picture of young people’s economic activities. These surveys, covering eight countries in sub-Saharan Africa, were conducted at regular intervals and in most cases followed the same households and individuals through time. While the LSMS-ISA are not specialized youth surveys and therefore may not cover all facets of youth livelihoods and wellbeing in detail, they provide valuable knowledge about the evolving patterns of social and economic characteristics of rural African youth and their households.

LSMS-ISA data are open access, aiming to help national governments and academics analyze the linkages between poverty and agricultural productivity in developing countries,” said Sydney Gourlay, Survey Specialist in the Development Data Group of the World Bank. She explained that LSMS-ISA datasets cover rural and urban livelihoods — including asset ownership, education, farm and non-farm incomes — and contain detailed information on farming practices and productivity. “LSMS-ISA data have untapped potential for valuable youth analyses that could lead to evidence-based youth policy reform,” Gourlay said.

To stimulate greater use of LSMS-ISA data for research on these issues, the International Maize and Wheat Improvement Center (CIMMYT), IDS, and the LSMS team of the World Bank organized a workshop for young African social scientists, hosted by CIMMYT in Nairobi from February 4 to February 8, 2019.

Early-career social scientists from Ethiopia, Ghana, Kenya, Nigeria, Uganda, and Zimbabwe explored the potential of LSMS-ISA data, identified research issues, and developed strategies to create new analyses. The workshop was also a chance to uncover potential areas for increased data collection on youth, as part of the LSMS team’s IFAD-funded initiative “Improving Data on Women and Youth.”

What does that data point represent?

The workshop stressed the importance of getting to know the data before analyzing them. As explained by World Bank senior economist Talip Kilic in The Crowd and the Cloud, “Every data point has a human story.” It is important to decipher what the data points represent and the limits within which they can be interpreted. For instance, the definition of youth differs by country, so comparative studies across countries must harmonize data from different sources.

“Because LSMS-ISA survey locations are georeferenced, it is possible to integrate spatial information from multiple sources and gain new insights about patterns of interest, as well as the drivers associated with such patterns,” said Jordan Chamberlin, spatial economics expert at CIMMYT. “For example, in all countries we’ve examined, the degree of non-farm economic engagement is strongly associated with distance from urban centers.”

Chamberlin noted that georeferencing also has limitations. For instance, to ensure privacy, LSMS-ISA coordinates for households are randomly offset by as much as 5 km. Nonetheless, diverse geospatial data from the datasets — distance to the nearest tarmac road or population density, among other information — may be integrated via the location coordinates.

A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

One key variable to assess farm productivity is harvested area. The LSMS team’s research has revealed high, systematic discrepancies between farmers’ self-assessments of area, GPS measurements, and compass and rope, which is considered the most accurate method. Methodological validation data from Ethiopia, Nigeria, and Tanzania show that on average farmers overestimate the area of plots smaller than 200 m2 by more than 370 percent and underestimate the size of plots larger than 2 hectares by 13 percent, relative to compass and rope measurements. Such errors can skew yield analyses and the accuracy of assessments of national agricultural research programs’ impact.

Several workshop participants expressed interest in using the LSMS dataset for studies on migration, given that it contains information about this variable. In the case of internal migrants — that is, persons who have moved to another area in the same country — LSMS enumerators will find and interview them and these migrants will continue to be included in future rounds of the panel survey. In Malawi, for example, about 93 percent of individuals were tracked between the 2010/11 and the 2013 Integrated Household Surveys. Plot characteristics — such as type of soil, input use, and crop production — include information on the person who manages the plot, allowing for identification and analysis of male and female managed plots.

Following the training, the participants have better articulated their research ideas on youth. Prospective youth studies from the group include how land productivity affects youth opportunities and whether migration induces greater involvement of women in agriculture or raises the cost of rural labor. Better studies will generate more accurate knowledge to help design more effective youth policies.

 

Sustainable intensification practices build resilience in Bangladesh’s charlands

Anzuma Begam (left) and her husband, Hossain Ali, working together in their maize field.
Anzuma Begam (left) and her husband, Hossain Ali, working together in their maize field.

The charlands, island-like tracts of land arising from riverbeds as a result of erosion and accretion, are home to millions of Bangladesh’s most vulnerable people. The lives of these people, much like the land itself, are exposed to nature’s forces such as erosion and floods.

In Eachlirchar, an area of charland in Lakkhitari Union, Gangachara, Rangpur district, where the soil struggles to yield even rice, the fate of the marginalized char community is arbitrarily determined by the course of nature. However, mother of three Anzuma Begam is living proof of the resilience and socioeconomic development catalyzed by adopting conservation agriculture-based sustainable intensification technologies.

Promoted by the International Maize and Wheat Improvement Center (CIMMYT) through its Sustainable and Resilient Farming Systems Intensification (SRFSI) project, sustainable intensification technologies have been heralded as a major breakthrough in the fight against charland aridity since 2014. By reducing drudgery, irrigation and costs, conservation agriculture enables the soil of the charlands to produce rice and maize yields consecutively.

Given its eventual success, it is surprising that the first phase of CIMMYT’s work in Eachlirchar did not run according to plan, as the tobacco-producing community did not welcome new technologies. Begam’s husband, Hossain Ali, even rejected her initial proposal to participate in the SRFSI project’s introductory training on zero tillage, weed management and new seeds. However, in spite of her husband’s disapproval and defying patriarchal constraints, Begam stepped forward to accept the new agricultural technology.

Anzuma Begam’s husband takes pride in his wife's achievements.
Anzuma Begam’s husband takes pride in his wife’s achievements.

After engaging with the project, Begam decided apply conservation agriculture-based sustainable intensification practices on her small plot of land. She began to produce mechanically transplanted rice and strip-till maize. Her first harvest in 2015 deepened her understanding of the benefits of comparatively low utilization of irrigation, pesticides and labor.

Begam has since yielded a bumper maize crop using strip-till technology and her socioeconomic progress is an inspiration to her charland community. Even the floods of June 2017 failed take the smiles off her family’s faces and, in 2018, she and her family moved from a shack into a well-built tin-shaded house.

The profits from Begam’s higher yielding and more reliable maize and rice harvests have ensured access to proper education and food for her children, and her husband now helps cultivate their land using conservation agriculture technologies. “Anzuma did the right thing by not listening to my wrong decision back then in 2014,” he explains. “SRFSI showed her the right way to attain self-reliance through conservation agriculture technologies. I am proud of my wife.”

The Sustainable and Resilient Farming Systems Intensification (SRFSI) project is funded by the Australian Centre for International Agricultural Research (ACIAR).

Solving the “last mile” challenge of maize seeds

Philomena Muthoni Mwangi stands at the entrance of her agrodealer shop, Farm Care, in the village of Ngarariga. (Photo: Jerome Bossuet/CIMMYT)
Philomena Muthoni Mwangi stands at the entrance of her agrodealer shop, Farm Care, in the village of Ngarariga. (Photo: Jerome Bossuet/CIMMYT)

Agrodealers play a pivotal role in delivering the gains of the green revolution to millions of smallholders in Africa. Reaching even the most remote corners of the continent, they give farmers access to agricultural inputs and services.

So far, seed systems research has mainly focused on the factors influencing farmers’ adoption of or seed companies’ investment in new varieties. However, little is known about independent agrodealers, who play an important role in the “last mile” of seed systems, distributing improved maize seeds and fertilizers as well as giving agronomic advice. There is a gap of knowledge about who they are, their needs and constraints, and the ways in which they secure and develop their businesses.

Understanding how to better support agrodealers is important for the International Maize and Wheat Improvement Center (CIMMYT), to ensure that new varieties reach the largest possible number of farmers. Under the Stress Tolerant Maize for Africa (STMA) project, CIMMYT has launched a new research effort to better understand agrodealers in Kenya, with a specific focus on maize seed marketing.

Researchers are now testing the tools and expect to begin field work in March 2019, during the next maize planting season. “We want to collect detailed quantitative and qualitative data about the way agrodealers outsource and choose their maize varieties, and how they market these seeds to farmers,” explained CIMMYT associate scientist Pieter Rutsaert, who leads the study. This research will help government agencies, NGOs and funders to design better interventions related to agrodealers, for greater and more sustainable impact.

CIMMYT researchers Jason Donovan (left) and Pieter Rutsaert (right) discuss the research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)
CIMMYT researchers Jason Donovan (left) and Pieter Rutsaert (right) discuss the research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)

The million-shilling question

The way questions are selected and phrased, and data collected, is critical. “Figuring out how to ask the right question to the right person is a hard business, especially when we ask agrodealers to evaluate their own performance,” recognized Rutsaert. For example, it could be challenging to estimate the importance of maize seed sales if owners are hesitant to provide details about their businesses to outsiders. Anticipating the challenges of collecting reliable and comparable data, Rutsaert’s team will use visual tools, like illustrated cards, to facilitate conversations with interviewees. They will also use innovative exercises, like the shop investment game, where owners are asked how they would invest one million Kenyan shillings (about US$10,000).

Standing behind the counter of her shop, selling bags of feeding supplements for dairy cattle and small pesticide bottles on dusty shelves, Philomena Muthoni Mwangi explained she had run out of maize seeds for sale. This small agrodealer in the village of Ngarariga, in central Kenya, will restock her maize seeds from a big agrovet shop nearby at the onset of the rainy season.

This is quite common, as agrodealers do not take risks when it comes to selling new varieties. Not knowing the future demand, leftover seed stock after the planting season would severely reduce Mwangi’s potential profit, as margins per bag are low. To address this issue, CIMMYT researchers will conduct an intercept farmer survey in the coming weeks, to better understand what farmers look for when buying maize seeds.

Agrodealers are not a homogeneous group. Ranging from large one-stop shops to small shacks, their business models, seed marketing strategy and type of clients may differ a lot. This study will provide useful insights to design targeted seed scaling strategies that consider all kinds of agrodealers, moving away from a one-size-fits-all approach.

The Stress Tolerant Maize for Africa (STMA) project is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).

The 70-year-old owner of a farm input shop in Kikuyu town, Kiambu County, answers the questions of CIMMYT researchers. (Photo: Jerome Bossuet/CIMMYT)
The 70-year-old owner of a farm input shop in Kikuyu town, Kiambu County, answers the questions of CIMMYT researchers. (Photo: Jerome Bossuet/CIMMYT)

The Molecular Maize Atlas encourages genetic diversity

Maize ears from CIMMYT's collection, showing a wide variety of colors and shapes. CIMMYT's germplasm bank contains about 28,000 unique samples of cultivated maize and its wild relatives, teosinte and Tripsacum. These include about 26,000 samples of farmer landraces — traditional, locally-adapted varieties that are rich in diversity. The bank both conserves this diversity and makes it available as a resource for breeding. (Photo: Xochiquetzal Fonseca/CIMMYT)
Maize ears from CIMMYT’s collection, showing a wide variety of colors and shapes. CIMMYT’s germplasm bank contains about 28,000 unique samples of cultivated maize and its wild relatives, teosinte and Tripsacum. These include about 26,000 samples of farmer landraces — traditional, locally-adapted varieties that are rich in diversity. The bank both conserves this diversity and makes it available as a resource for breeding. (Photo: Xochiquetzal Fonseca/CIMMYT)

Imagine walking through a grocery store, doing your weekly shopping. Everything seems normal, but as you pick up a can, there’s no label. There’s nothing to tell you what the product is, and now you can’t reliably choose anything to eat this week.

Now switch gears and imagine a germplasm bank. Without the right labeling on these different varieties, it’s difficult to tell what’s new and what’s already been discovered when working on new research projects.

That’s where the Molecular Maize Atlas steps into play.

About nine years ago, the International Maize and Wheat Improvement Center (CIMMYT) started an initiative called the Seeds of Discovery (SeeD). This initiative facilitates easier access to and use of maize and wheat genetic resources.

SeeD achieves impact through five main components: genotyping, phenotyping, software tools, pre-breeding and capacity building.

“One of the aims of Seeds of Discovery was to best characterize germplasm,” says Sarah Hearne, a molecular geneticist and maize lead of SeeD. “At CIMMYT, our international germplasm bank holds in trust one of the largest and most diverse publicly available maize collections in the world.”

However, Hearne says this germplasm bank used to look like a grocery store without any labels or without labels that would allow someone to select a can of value. To combat this, SeeD decided to work on a labeling process for the germplasm bank: the Molecular Maize Atlas.

The Molecular Maize Atlas is an information platform that brings genotypic data resources and associated tools together. This genotypic data provides unifying information across landraces and acts as a common backbone, which other valuable information, like phenotypic data, can be added to.

Read the full article on SeedWorld.

Support groups open women’s access to farm technologies in northeast India

In Odisha and Bihar, CSISA has leveraged the social capital of women's self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)
In Odisha and Bihar, CSISA has leveraged the social capital of women’s self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)

Self-help groups in Bihar, India, are putting thousands of rural women in touch with agricultural innovations, including mechanization and sustainable intensification, that save time, money, and critical resources such as soil and water, benefiting households and the environment.

The Bihar Rural Livelihoods Promotion Society, locally known as Jeevika, has partnered with the Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT), to train women’s self-help groups and other stakeholders in practices such as zero tillage, early sowing of wheat, direct-seeded rice and community nurseries.

Through their efforts to date, more than 35,000 households are planting wheat earlier than was customary, with the advantage that the crop fully fills its grain before the hot weather of late spring. In addition, some 18,000 households are using zero tillage, in which they sow wheat directly into unplowed fields and residues, a practice that improves soil quality and saves water, among other benefits. As many as 5,000 households have tested non-flooded, direct-seeded rice cultivation during 2018-19, which also saves water and can reduce greenhouse gas emissions.

An autonomous body under the Bihar Department of Rural Development, Jeevika is also helping women to obtain specialized equipment for zero tillage and for the mechanized transplanting of rice seedlings into paddies, which reduces women’s hard labor of hand transplanting.

“Mechanization is helping us manage our costs and judiciously use our time in farming,” says Rekha Devi, a woman farmer member of Jeevika Gulab self-help group of Beniwal Village, Jamui District. “We have learned many new techniques through our self-help group.”

With more than 100 million inhabitants and over 1,000 persons per square kilometer, Bihar is India’s most densely-populated state. Nearly 90 percent of its people live in rural areas and agriculture is the main occupation. Women in Bihar play key roles in agriculture, weeding, harvesting, threshing, and milling crops, in addition to their household chores and bearing and caring for children, but they often lack access to training, vital information, or strategic technology.

Like all farmers in South Asia, they also face risks from rising temperatures, variable rainfall, resource degradation, and financial constraints.

Jeevika has formed more than 700,000 self-help groups in Bihar, mobilizing nearly 8.4 million poor households, 25,000 village organizations, and 318 cluster-level federations in all 38 districts of Bihar.

The organization also fosters access for women to “custom-hiring” businesses, which own the specialized implement for practices such as zero tillage and will sow or perform other mechanized services for farmers at a cost. “Custom hiring centers help farmers save time in sowing, harvesting and threshing,” said Anil Kumar, Program Manager, Jeevika.

The staff training, knowledge and tools shared by CSISA have been immensely helpful in strengthening the capacity of women farmers, according to D. Balamurugan, CEO of Jeevika. “We aim to further strengthen our partnership with CSISA and accelerate our work with women farmers, improving their productivity while saving their time and costs,” Balamurugan said.

CSISA is implemented jointly by the International Maize and Wheat Improvement Center (CIMMYT), the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). It is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).

Breaking Ground: Rahma Adam unleashes the agricultural productivity of Africa’s women and youth

Breaking Ground Rahma Adam

Despite great innovations in African agriculture in recent years, much of the continent still struggles to feed itself. With the population growing at an unprecedented rate, avoiding fatal food insecurity lies in the ability to maximize agricultural capacity.

Sociologist Rahma Adam believes there is one vital resource that remains untapped. One which, when unleashed, will not only increase food security but also boost livelihoods: the human capital of Africa’s women and youth.

“Smallholder production and livelihoods are stifled by the unequal access woman and youth have to farming information and resources, compared to men,” said Adam. “Limited access to land and technical services inhibits their agricultural productivity and holds back the food security of all.”

As a gender and development specialist with the International Maize and Wheat Improvement Center (CIMMYT), Adam adds a social inclusion lens to Africa’s development dialogue. Her research asks questions as to why women and youth are overrepresented among the poor and how to improve their access to agricultural training and markets.

The interaction between biology and anthropology has fascinated Adam since she was an undergraduate student at Macalester College. However, it was not until researching women and men in the local food markets of her native Dar es Salaam, Tanzania — as part of an exercise for her master’s degree in Public Policy at Harvard University — that she realized how social equity could improve the livelihoods of all African farmers.

“Working alongside farming women, I saw first-hand the disproportionate number of challenges they face to overcome poverty, gather finance for inputs, produce enough food to sustain a family and improve their livelihoods. However, I also saw their potential,” Adam explained.

Inspired to tackle these complex issues, she got her doctoral degree in rural sociology, with a focus on agriculture, gender and international development, from Pennsylvania State University. Following an early career with nonprofits and the World Bank, she joined CIMMYT as a gender and development specialist in 2015.

Since then, Adam has led research on how best to lift the agricultural productivity of women and youth to its full potential. Working with the Sustainable Intensification for Maize-Legumes Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project, she analyzed the role of gender and social inclusion in maize and legume value chains in Ethiopia, Kenya, Mozambique and Tanzania. She also identified intervention points to achieve gender and age equity across various nodes from field to plate, for example among producers, agrodealers, traders, processors and breeders.

“Promoting women and youth participation in agricultural value chains improves food security and livelihoods,” she explained. “Allowing these groups to have a voice and encouraging their leadership in farmer groups promotes their participation in agriculture.”

Partnerships for social inclusion

In eastern and southern Africa’s maize and legume farming systems, research shows that in most cases men have the final decision over maize crop production. Women have increased decision-making power regarding certain legumes, such as cowpeas and groundnuts, as they are mostly only for household consumption.

Adam’s work with SIMLESA found that promoting women’s participation in the production of legumes as cash crops is an opportunity to empower them, increase their household income and their food security.

Connecting women and youth to value chains through Agricultural Innovation Platforms improves their access to markets, credit, farming information and capacity development, she said. These platforms bring together farmers with extension workers, researchers, agrodealers, and NGO practitioners, so they can work together to improve maize and legume conservation agriculture-based sustainable intensification.

“It is important policy and development decision makers see that research demonstrates entry points to encourage women and youth to take an active role in value chains and improve productivity,” Adam said.

“You don’t want your research to sit on a shelf. This is why science policy dialogues — like the SIMLESA local, national and regional policy forums taking place this year — are important to ensure that research is introduced into the political landscape.”

An inclusive approach to research

Research must be designed and implemented in a way that women and men, including youth, can participate in and benefit from, Adam explained. They need to be considered in the research process, so they can increase their control of productive assets, participate in decision making, and decrease their labor burdens.

Adam has recently joined CIMMYT’s Stress Tolerant Maize for Africa (STMA) project to unpack gender issues in the formal maize seed sector. She will examine the relationship between gender and adoption of drought-tolerant and other improved varieties of maize. Adam will also analyze and categorize the differences in maize trait preferences between male and female farmers, and she will develop materials to integrate gender considerations in formal maize seed sector development.

“This information will be used by breeders to develop new maize varieties which are valuable to farmers and therefore have an increased chance of adoption,” the sociologist explained. “It will also help stakeholders get an idea of the rate men and women adopt improved varieties, and how they contribute to the evolution and performance of the seed sector in eastern and southern Africa.”

Providing training and consultation to her peers on gender and social inclusion is another important component of Adam’s work at CIMMYT. In June she will deliver a webinar on gender in research for CGIAR centers. At the end of the year she will participate in a regional seed sector workshop with other CGIAR experts, seed companies and NGOs, to ensure that partners use gender and social inclusion research.

Funded by the Australian Centre for International Agricultural Research (ACIAR), the SIMLESA project was led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Rwanda Agricultural Board (RAB), CGIAR centers and national agricultural research institutes in Ethiopia, Kenya, Malawi, Mozambique, Tanzania and Uganda. Other regional and international partners include the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at the University of Queensland, Australia, and the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA).

STMA is implemented by CIMMYT and is funded by the Bill & Melinda Gates Foundation and the United States of Agency for International Development (USAID).

International Women’s Day 2019: Women in seed systems in Africa

The maize seed sector in eastern and southern Africa is male-dominated. Most seed companies operating in the region are owned and run by men. Access to land and financial capital can often be a constraint for women who are keen on investing in agriculture and agribusiness. However, there are women working in this sector, breaking social barriers, making a contribution to improving household nutrition and livelihoods by providing jobs and improved seed varieties.

The Gender team within the International Maize and Wheat Improvement Center’s (CIMMYT) Socioeconomics Program conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies. The resulting stories will be published as a report in May 2019.

These women in leading roles serve as mentors and examples to both male and female employees. In honor of International Women’s Day, held March 8, 2019, CIMMYT would like to share some of their stories to recognize these women — and many others like them — and the important work they do in seed systems in Africa.

Sylvia Horemans

Sylvia Horemans (right) and a warehouse supervisor (left) inspect seeds at Kamano Seeds. (Photo: Lucy Maina/CIMMYT)
Sylvia Horemans (right) and a warehouse supervisor (left) inspect seeds at Kamano Seeds. (Photo: Lucy Maina/CIMMYT)

Sylvia Horemans started Kamano Seeds in April 2004 together with her late husband Desire Horemans. The company derives its name from a stream that runs through their farm in Mwinilinga, Zambia. Kamano means a stream that never dries, aptly describing the growth the company has enjoyed over the years, enabling it to capture 15 percent of the country’s seed market share.  Sylvia became the company’s Chief Executive Officer in 2016.

“The initial business was only to sell commercial products but we realized there was a high demand for seed so we decided to start our own seed business,” says Sylvia. “We work with cooperatives which identify ideal farmers to participate in seed production.”

The company takes pride in the growth they have witnessed in their contract workers. “Most farmers we started with [now] have 20 to 40 hectares. Some are businessmen and have opened agrodealer shops where they sell agricultural inputs,” Sylvia announced.

Kamano prides itself in improving the lives of women smallholders and involving women in decision-making structures. “We empower a lot of women in agriculture through our out-grower scheme,” says Sylvia. She makes a deliberate effort to recruit women farmers, ensuring they receive payment for their seeds. “We pay the women who did the work and not their husbands.”

To read the full story, please click here.

Zubeda Mduruma

Zubeda Mduruma (right) and her colleague check maize seeds at Aminata Quality Seeds. (Photo: Lucy Maina/CIMMYT)
Zubeda Mduruma (right) and her colleague check maize seeds at Aminata Quality Seeds. (Photo: Lucy Maina/CIMMYT)

Zubeda Mduruma, 65, is a plant breeder. She took to agriculture from a young age, as she enjoyed helping her parents in the family farm. After high school, Zubeda obtained a bachelor’s degree in Agriculture. Then she joined Tanzania’s national agriculture research system, working at the Ilonga Agricultural Research Institute (ARI-Ilonga) station. She then pursued her master’s in Plant Breeding and Biometry from Cornell University in the United Stations and obtained a doctorate in Plant Breeding at Sokoine University of Agriculture in Tanzania, while working and raising her family. “I wanted to be in research, so I could breed materials which would be superior than what farmers were using, because they were getting very low yields,” says Zubeda. In the 22 years she was at Ilonga, Zubeda was able to release 15 varieties.

Aminata Quality Seeds is a family business that was registered in 2008, owned by Zubeda, her husband and their four daughters. Aminata entered the seed market as an out-grower, producing seed for local companies for two years. The company started its own seed production in 2010, and the following year it was marketing improved varieties. “I decided to start a company along the Coast and impart my knowledge on improved technologies, so farmers can get quality crops for increased incomes,” says Zubeda.

Zubeda encourages more women to venture into the seed business. “To do any business, you have to have guts. It is not the money; it is the interest. When you have the interest, you will always look for ways on how to start your seed business.”

To read the full story, please click here.

Grace Malindi

Grace Malindi (second from right) at her office in Lilongwe, Malawi. (Photo: Lucy Maina/CIMMYT)
Grace Malindi (second from right) at her office in Lilongwe, Malawi. (Photo: Lucy Maina/CIMMYT)

Grace Malindi, 67, started Mgom’mera in Malawi in 2014 with her sister Florence Kahumbe, who had experience in running agrodealer shops. Florence was key in setting up the business, particularly through engagement with agro-dealers, while Grace’s background in extension was valuable in understanding their market. Grace has a doctoral degree in Human and Community Development with a double minor in Gender and International Development and Agriculture Extension and Advisory from the University of Illinois Urbana-Champaign in the United States. Mgom’mera is a family-owned enterprise. Grace’s three children are involved in the business, serving as directors.

Mgom’mera distinguishes itself from other seed companies because of its focus on maize varieties that have additional nutritive value. The company uses the tagline “Creating seed demand from the table to the soil.” It educates farmers not only on how to plant the seed they sell, but also on how to prepare nutritious dishes with their harvest. The company stocks ZM623, a drought-tolerant open-pollinated variety, and Chitedze 2, a quality protein maize. In the 2019 maize season it will also sell MH39, a pro-vitamin A variety. In addition, they are looking forward to beginning quality protein maize hybrid production in the near future, having started the process of acquiring materials from CIMMYT.

Grace observes that women entrepreneurs are late entrants in seed business. “You need agility, flexibility and experience to run a seed business and with time you will improve,” says Grace, advising women who may be interested in venturing into this male-dominated business.

To read the full story, please click here.