Skip to main content

Battling devastating viral diseases, also in plants

When a maize lethal necrosis (MLN) outbreak happened in Kenya in 2011, scientists knew they needed to act fast. This viral disease, new to Kenya, was decimating maize fields. Within a few years, the viral disease spread rapidly in eastern Africa, through both insect vectors and contaminated seeds. If the virus were to spread into southern or West Africa, it would spell disaster for the smallholder farmers across the continent who depended on maize as a staple crop and for their family’s income and livelihoods.

The International Maize and Wheat Improvement Center (CIMMYT) and its partners immediately took action to impose a strict seed quarantine and restrict the movement of seed between eastern Africa and other regions in Africa. In addition, they worked intensively on developing and disseminating improved maize cultivars with tolerance or resistance to MLN, undertook extensive surveillance efforts, and sensitized partners on the importance of producing and commercializing MLN-free seed.

Due to these efforts, in the last nine years MLN has not been reported in sub-Saharan Africa outside of eastern Africa.

On the occasion of a recent publication on Virus Research about how MLN was contained, we interviewed B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE), to discuss the MLN success story, the global COVID-19 crisis, and the similarities in the challenge to tackle plant and human viral diseases.

B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE). (Photo: Alfonso Cortés/CIMMYT)
B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE). (Photo: Alfonso Cortés/CIMMYT)

What were some of the extreme measures CIMMYT had to take to stop the spread of MLN?

The first step that we had to take in the fight against MLN was to rigorously analyze seed for any possible contamination with MLN-causing viruses and restrict movement of seed from eastern Africa to southern Africa.

The second most important step was to sensitize the national partners and the commercial seed sector about the danger of seed contamination with MLN-causing viruses, and how seed contamination can lead to the proliferation or spread of the disease.

The third important step was to build a new MLN quarantine facility in Zimbabwe, in partnership with the National Plant Quarantine Institute. Only when that quarantine facility was functional in 2017, we reinitiated transfer of research material from CIMMYT’s breeding hub in Kenya to CIMMYT in Zimbabwe. Only when the materials were certified to be MLN-free both in Kenya and Zimbabwe, through plant-by-plant analysis using immunodiagnostic kits, the seed was multiplied and further distributed to partners. So, the principle of containment and effective management is extremely important, whether it is a plant viral disease or a human viral disease.

We must note here that in terms of scale and intensity, as well as global effects and implications, any plant disease, including MLN, cannot be compared with a pandemic like COVID-19, which has affected every aspect of our lives.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

How do you think the COVID-19 pandemic is going to impact our food systems?

We are indeed in a grim situation. The pandemic will undoubtedly have a serious effect on food security.

Many countries which do not have enough food reserves or those where the food systems are vulnerable to shocks like this are suffering. The people’s capacity to procure inputs for agriculture, including seed, is going to be affected too, as the markets are affected. This is really a serious situation that we all should be concerned about. The CGIAR has an important role to play, in terms of working closely with national partners and mitigating the impact of COVID-19 on agriculture.

We should be particularly worried about farmers, especially smallholder farmers, who are quite vulnerable to the ongoing challenge. Even without COVID-19, agriculture in many developing countries worldwide has been already under distress. Small and marginal farmers were often unable to find a market for their produce and earn sufficient income to support their families. Their livelihoods are fragile, and vulnerable to climate change and volatile market prices. The ongoing COVID-19 crisis is unfortunately compounding the crisis.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

What lessons can agricultural research learn from this pandemic?

What do these pandemics or epidemics teach us? They remind us that systems need to be in place to prevent the proliferation of such diseases, whether it is plant diseases or animal diseases or human diseases. No country can be considered completely safe, and such diseases do not discriminate between a developed and a developing country, or the rich and the poor.

The second most important lesson is emergency preparedness. Whenever such devastating transboundary viral diseases show up, how quickly the country can respond — containing that infected area and not allowing the disease to spread, and then mitigating the damage systematically and quickly — is key. This is not the first time that a disease like MLN has emerged. There could be more serious viral or fungal diseases that could emerge in the future due to various reasons, including changing climates, international trade, movement of human beings, air currents, etc.  There are multiple ways that diseases can go across continents, across countries within a continent, and within countries. Therefore, the key is how well we can capacitate the national systems to be able to proactively prevent, detect, and intervene very fast.

Another big lesson here for agricultural systems is that a problem that happens in some other continent cannot be ignored because you work in a different continent. What COVID-19 shows is that the world is far more connected than we think.

CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

For you, what is the biggest takeaway from the MLN success story?

I won’t say it is still a complete success. Through intensive partnerships and efforts, we were able to prevent the disease from devastating maize production in millions of smallholder farmers’ fields in sub-Saharan Africa. Since 2014, there has been no new country in Africa — outside eastern Africa — that has reported an outbreak of MLN. That, to me, is a tremendous success.

The work is still not over. The journey has to continue. And we still need to make sure that countries are continuously protected from devastating diseases like MLN. MLN is still not eradicated from eastern Africa. It may not be even possible to completely eradicate this disease, as the two viruses that together cause it can survive not just on maize but on multiple grasses. We can however contain the disease and limit its impact through continued efforts, like what we have done for the past 7 or 8 years. But if we lower our guard, there is a very high likelihood that the disease can still spread to other countries in sub-Saharan Africa, especially the major maize-growing countries in southern Africa or West Africa. Efforts need to continue. So, let us continue to maintain a high vigil to protect the smallholders in Africa from transboundary diseases like MLN.

Read the full article on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

This little seed went to market

It’s not always easy to produce and sell new maize varieties in Malawi.

Seed companies often serve as the link between breeders and farmers, but numerous challenges — from lack of infrastructure to inconvenient finance systems — mean that the journey from the laboratory to the field is not always a smooth one.

In spite of this, the sector continues to grow, with established and up-and-coming seed companies all vying to carve their own niche in the country’s competitive maize seed market. To help bolster the industry, CIMMYT is working with around 15 seed companies in Malawi, providing them with early generation seed for CIMMYT-derived maize varieties, technical production training and marketing advice.

In a series of interviews, representatives from three of these companies share how they chose their flagship varieties and got them onto the market, and the CIMMYT support that helped them along the way.

Staff bag maize cobs at a Demeter Seeds warehouse in Lilongwe, Malawi. (Photo: Emma Orchardson/CIMMYT)
Staff bag maize cobs at a Demeter Seeds warehouse in Lilongwe, Malawi. (Photo: Emma Orchardson/CIMMYT)

Francis Maideni, Technical Breeder and Management Advisor at Demeter Seeds

The company started primarily because we wanted to help farmers — the issue of profits came later. The founders of Demeter Seeds saw a gap in the market for open-pollinated varieties (OPVs) and thought they could fill it. We’ve now migrated halfway into hybrids, but we still feel that we should serve both communities.

At the beginning we used to multiply and sell OPVs from CIMMYT, and we started doing our own multiplication here a few years ago. What I like about CIMMYT is they have been continuing to give us technical support. The breeding teams are our regular visitors. When they give us materials they come here, work with us, we go to the fields together. We’re so proud of this collaboration. Our whole company is based on CIMMYT germplasm since we don’t have our own breeding program to develop our own varieties.

How do you decide which varieties to work with?

When we were starting out, the decision of which varieties to work with was based on what CIMMYT recommended based on the data from on-farm trials. Most Malawian farmers use local maize varieties so it’s a good step for them to start using improved varieties – not necessarily hybrids.

Apart from the yields, what else do Malawian farmers look for? It has to be white and it has to be poundable or flint varieties with a hard endosperm. Of course, there are other attributes you have to worry about as well such as yield and drought tolerance. The seasons are changing, the rainfall period is becoming shorter so we’re looking for short-maturing materials in particular. If you have a variety that takes 90-100 days to mature, you’re OK, but if you choose one that takes 140-150, the farmer can be at risk of losing out because it doesn’t fit well into the growing season.

Having looked at those particular parameters we can decide on the variety we’re going to go for because this feeds into what our regular farmers want.

Is it easy to get farmers to buy those varieties, given that you know exactly what they’re looking for?

We’re not the only ones dealing with maize hybrids, so if you’re not aggressive enough in marketing you’ll not be able to survive.

You can’t just see that the demand is there and then put the product out. We have a marketing team within the company whose role is to market and advise the farmers. We try to listen to what’s happening on the ground, see how our varieties are performing and share results with the breeders. If you sell your seed you have to get feedback – whether it’s doing well or not.

But it can be difficult with the lack of infrastructure in Malawi. There are some places which are not accessible, so there are farmers who want your seed but you can’t reach them. Those farmers end up planting some local seed, which they might not have planted if they had access to improved varieties.

Chingati Phiri stands in front of a CPM plot reading for sowing in Bunda, Malawi. (Photo: Emma Orchardson/CIMMYT)
Chingati Phiri stands in front of a CPM plot reading for sowing in Bunda, Malawi. (Photo: Emma Orchardson/CIMMYT)

Chingati Phiri, Managing Director at CPM Agri-Enterprises

CIMMYT equals maize, so there’s very little we’d be doing without them. There has been collaboration and partnership since we started the seed business.

We got all the parent materials, expertise and production training from CIMMYT. We now even have our own CIMMYT-trained internal inspectors, who ensure that the seed that we produce meet quality standards that are required. When they were giving us the lines, they also helped us with production of the basic seed to start our maize production. Without CIMMYT, we wouldn’t be here.

You’re one of the few seed companies in Malawi producing vitamin A biofortified maize, which CIMMYT develops in partnership with HarvestPlus. How did you decide to work on that variety?

We selected the orange vitamin A maize firstly because of corporate social responsibility reasons. There is a developmental aspect to what we do, and we’re not just here for money. I think whatever we’re doing should also help the people that are buying from us. We knew that micronutrient deficiency is an issue in Malawi, so we hoped that the vitamin A biofortified maize could address some of the country’s malnutrition problems.

When the Government said it was looking at alternative ways of combating malnutrition, this was one of the proposed solutions and we thought we should be the first to do it. As of now, I think that of the 20-something lead seed businesses in Malawi, we’re one of only three producing this maize.

How challenging has it been to promote that variety?

Very, because the orange maize was not popular to begin with. In the first year, we had about 25 metric tons of seed and we didn’t even sell 10.

Yellow maize was brought in to feed people during a famine in the early 90s, so I think when people see orange maize now they are reminded of that hunger. There are still those negative associations. So we had to do some convincing, visiting farmers with HarvestPlus and telling them about the benefits.

But this is our third year and we don’t have any seed left — it’s all gone. Combined, the three companies involved in orange maize production had about 65 metric tons. But this year the demand has been around 1,050 metric tons. What we produced is not even one tenth of what is required.

Now that the orange maize has been popularized, we see demand increasing in the next five years as well. Apart from farmers, we’ve also had inquiries from people that want to use it for industrial purposes and are looking for very large quantities. Now we know, if people are looking for orange maize, we’ll be among the first to provide it.

Shane Phiri, Operations Manager at Global Seeds, shows a bag of MH34 seed. (Photo: Emma Orchardson/CIMMYT)
Shane Phiri, Operations Manager at Global Seeds, shows a bag of MH34 seed. (Photo: Emma Orchardson/CIMMYT)

Shane Phiri, Operations Manager at Global Seeds

I studied agribusiness management for my first degree and went into farming immediately after. Later I completed a Masters in Agronomy, but the moment I started talking to CIMMYT I knew that I was lacking knowledge on the technical side. Over the years I’ve attended a number of courses — maize technician courses and programs to help people in the seed industry learn about hybrids — thanks to CIMMYT. A large part of my knowledge has come from those trainings, visiting the research station in Harare and attending field days.

Global Seeds is known for its flagship product, MH34. Why did you decide to focus on that specific variety?

One of the main driving factors for us to go for MH34 was that it was not being produced by anyone else. This was a new variety that no other company had branded as their own yet, so it was a good opportunity for us to own it.

At the same time, I liked this variety because it had two lines from CIMMYT and one line that’s bred locally. It’s kind of a mix. I really liked that because it meant that it would be a bit of a challenge for anyone outside the country to produce it because they would not get that extra 25% from the Malawian line.

Did that also make it difficult for Global Seeds to produce?

It was not easy for us to get it on the market. It’s one of the stories I’m most proud of — to say we’re one of the few companies producing this variety — especially when I look back at the last three years and the work it took to get it to where we are.

We got the lines we needed from CIMMYT, but when we went to the local program to get that one last ingredient, we got less than 1.4 kilograms. Normally we would need at least 5 kilograms.

We knew we had to produce quickly to commercialize the variety, so we took 900 grams and started trying to increase the line under irrigation. Then the water supply ran out and we had to hire a water bowser. It was quite a journey but in the end we produced a handful of seed, and now the story is that this variety is flying off the shelves.

Fall armyworm survey marks CIMMYT’s first research project in Laos

A major farmer survey is gathering data to understand how smallholders in Laos are responding to fall armyworm invasion and develop agroecological management options to control its spread.

The study, led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Lao Farmer Network (LFN) and the National Agriculture and Forestry Research Institute (NAFRI), is CIMMYT’s first official research initiative in the country.

Farmer surveys are being conducted in some of the country’s key maize farming areas, recording attempts to manage the pest and laying the groundwork to raise awareness on sustainable best-bet agroecological strategies that promote a healthy system approach to maize farming, says Horst Weyerhaeuser, a scientific program consultant working with CIMMYT.

“Currently, researchers, policy makers and extension officers possess little information on fall armyworm pest management and control in Laos,” he explains. “The survey is working to build a knowledge-base.”

In June 2019, CIMMYT and national research scientists confirmed that fall armyworm, a global pest that affects the food security of millions of maize farmers, was present in the country.

Working with CIMMYT, LFN trained lead farmers to conduct surveys and collect data from farmers in their local areas. The network has also been distributing a series of infographics and videos in local languages, developed by CIMMYT and translated with major support from HELVETAS Swiss Intercooperation and the Lao Farmer Rural Advisory Project, to describe appropriate pesticide use and sustainable farming practices to limit impact on harvests.

“The survey data explores how farmers respond to the armyworm in their maize fields, so that integrated pest management strategies can be promoted for successful pest control and especially to limit excessive use of harmful pesticides,” says Phoutthasinh Phimmachanh, who leads the LFN secretariat. “The survey also asks about farmers’ plans for the upcoming rainy season and if they experienced a fall armyworm infestation in 2019 will it change their crop selection and planting schemes.”

The initiative is part of a larger strategy to work with government and farmers in southeast Asia to build a knowledge base on sustainable maize farming through the CGIAR program on MAIZE. Due to the impact of COVID-19, researchers are currently exploring options to continue these and additional surveys digitally and via telephone.

As maize farming increases, so does the risk fall armyworm poses to farmer livelihoods

A woman in Oudomxhai, Laos, stands in her maize field damaged by fall armyworm. (Photo: H. Weyerhaeuser/CIMMYT)
A woman in Oudomxhai, Laos, stands in her maize field damaged by fall armyworm. (Photo: H. Weyerhaeuser/CIMMYT)

Maize is becoming an increasingly important cash crop in southeast Asia as diets change and consumer preferences for white meat and pork drive a transition from subsistence to commercial maize feed production. Farmer focus groups in northern Laos suggest that maize sales deliver more than 60% of smallholders’ annual cash income.

“Maize is the only cash crop for thousands of smallholder farmers in Laos. Fall armyworm poses a credible threat to their livelihoods and could push them to a vicious circle of poverty and damage to the environment,” explains CIMMYT economist Amjath Babu.

“We want to confirm anecdotal accounts suggesting uninformed farmers are buying whatever pesticides they can get their hands on in a bid to control the pest’s impact on harvests. This reaction mimics that of initial farmer responses in sub-Saharan Africa when the pest first broke out there in 2016.” In this sense, he adds, CIMMYT’s partnership with LFN helps to measure the implications of fall armyworm and the potential for this pest to reduce farmers’ profit margins while encouraging unsustainable pesticide use.

Pesticides must be used with extreme caution and only appropriately if they are to be a part of any fall armyworm management regime, warns CIMMYT Senior Scientist Tim Krupnik.

“The pest has particular habits — like living under leaves, hiding in hard to reach places of the plant, and feeding mainly at night,” he explains. “This makes indiscriminate application of insecticides relatively less useful.” It could also inadvertently contribute to the loss of biodiversity and ecosystem services through overuse of pesticides that cause mortality for natural enemies and parasitoids.

Scientists want to explore whether the higher production costs farmers may incur through additional insecticide purchase is encouraging a shift from maize cash crop monocultures to a more diverse production including replacement or rotations with cassava, fodder crops, and rotational grazing, where feasible.

“By building an evidence base we can work with the National Agriculture and Forestry Research Institute,the  agricultural department and farmers to build sustainable, resilient maize farming systems that ensure farmers continue to cash in on maize while diversifying production into sensible alternative crops, with emphasis on protecting their health and the environment,” Babu adds.

Fall armyworm survey part of a larger increase in maize research in southeast Asia

The expansion of maize in Laos has been accompanied by a progressive decrease in landscape and agricultural biodiversity, as farmers respond to opportunities to export maize at relatively profitable prices, largely to neighboring Vietnam and China, by resorting to an expansion of slash-and-burn agriculture with shortened fallows. The rapidly growing demand for maize has resulted in unsustainable farming systems intensification, explains Krupnik, with many farmers clearing forests to plant, and using excessive amounts of herbicides to keep weeds at bay.

“Combined with the fall armyworm invasion, potentially dangerous pesticides have been added to this scenario, with quite concerning potential consequences for further biodiversity loss and contamination of mountain streams by agrochemicals,” he says.

“Projects run by Helvetas, which has helped support our research through coordination and convening efforts, have measured dangerous levels of pesticides in the blood of samples taken from farmers and their families and government officials.”

Maize is important for income generation, but more sustainable and diverse cropping systems are needed to reduce the impact on biodiversity, while avoiding the worst pesticides that comprise human health. The data generated from this research will help design strategies to respond to these problems with more appropriate agricultural practices.

The ministry of agriculture has welcomed support from CIMMYT’s maize systems experts to aid in building a base of knowledge to inform the development of agricultural policy, says Chay Bounphanousay, director general of the National Agriculture and Forestry Research Institute. “With the rise of maize farming and the associated challenges and opportunities it brings, an increase in research will inform agricultural policy to improve farmer livelihoods while protecting the environment.”

Cover photo: Traditional mixed maize farming system in northern Laos. (Photo: H. Weyerhaeuser/CIMMYT)

Breaking Ground: Maria Itria Ibba and the lab that bakes bread

The rising and shifting demand for wheat, with rapid urbanization and increasingly globalized food markets, is pushing farmers more than ever to produce high-quality grain, according to the scientist who leads wheat quality research in the world’s foremost publicly-funded wheat breeding program.

“Wheat quality is becoming more and more important, as the industrial production of bread and other wheat-based foods increases to meet the demands of city dwellers, working women, and wheat consumers in wheat-importing countries,” said Maria Itria Ibba, head of the Wheat Chemistry and Quality Laboratory at the International Maize and Wheat Improvement Center (CIMMYT).

“Companies that produce and market food for such consumers demand high, consistent quality in grain they purchase and we have to help wheat farmers to meet stringent requirements.”

This is so important that CIMMYT’s Global Wheat Program — whose contributions figure in more than half of the wheat varieties released worldwide — directly uses lab data on milling, processing and end-use quality to decide which bread and durum wheat lines to move forward in its breeding programs, according to Ibba.

“Assessing quality is a huge task, because wheat is used to make hundreds of different foods, including all kinds of leavened bread, flat breads, pastas, noodles and steamed bread,” said Ibba. “Our lab is an integral part of breeding, analyzing thousands of grain samples from thousands of wheat lines each year for nearly a dozen quality parameters.”

Cut out for quality

A native of Viterbo, Italy, Ibba has led the Wheat Chemistry and Quality Laboratory since 2019 and is uniquely qualified for the job, with a bachelor’s degree in biotechnology, a master’s degree in biotechnology for the safety and quality of agricultural products — both from the University of Tuscia, Viterbo — and a doctorate in crop science from the Washington State University. Her Ph.D. dissertation addressed “low-molecular-weight glutenin subunit gene family members and their relationship with wheat end-use quality parameters.”

With a mother who studied medicine and a father who worked at the Italian Space Agency, Ibba said that in school she always enjoyed science subjects such as biology and chemistry. “They were easy for me to understand and I really liked how, after studying them, I was able to explain and understand many things around me.”

Ibba said the biggest challenges for her and her lab team are to understand wheat quality needs and conduct faster and better analyses.

“Several of the tests we do are expensive, time-consuming, and require skilled personnel and significant amounts of grain,” she explained, citing the use of exotically named devices such as the “Quadrumat Senior mill,” the “mixograph,” and the “alveograph,” to list a few. “We’re continuously looking for novel methods that are quicker, use smaller samples of grain, and with lower costs.”

Understanding the biochemical and genetic bases of wheat grain and flour quality traits is key to this, according to Ibba, but wheat quality traits are so complex genetically that DNA markers are of little help in breeding. “We’ve begun to explore whole genome selection for wheat quality traits, in collaboration with Kansas State University, but this will never completely replace the laboratory tests.”

Let’s talk health and nutrition

A staple of tours for the hundreds of visitors that come each year to CIMMYT in Mexico, the wheat quality laboratory combines the razzle-dazzle of high-tech devices with hands-on, sensory attractions such as inflating dough balls and freshly baked test loaves.

Ibba’s work includes talking to visitors about wheat, its important history and role in human nutrition and food, and concerns in the popular media regarding wheat and health.

“I think people know more now about what gluten is and its importance, but there is still the need to talk about gluten and wheat so that people can make informed decisions based on scientific facts,” she said. “I was happy to see the recent article from CIMMYT on a review study which, among many other things, showed there was no scientific evidence for the idea that eating refined flour is bad for your health.”

“Wheat provides about 20 percent of calories and protein for more than 4.5 billion people in developing countries,” Ibba pointed out. “There’s an increasing focus on understanding and improving the nutritional quality of wheat and its products because of the greater overall interest in diets and in the nutritional value of diverse foods.”

In the best possible taste

The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.

They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.

In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.

In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.

Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.

Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.

Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Tastes differ

“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”

For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.

A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.

“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.

Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)

That’s the way I like it

For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.

Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.

While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.

“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”

Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.

“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.

Out of the classroom and into the field

When farmers in rural Kasungu, Malawi, are asked to list some of the challenges they face, much of what they say is to be expected. Crop pests, climate change, low soil fertility, and lack of improved seed and purchasing power — these are faced by smallholders across districts and the country as a whole.

But there is one surprising response. “Sometimes it’s difficult to get feedback from research centers on what does and doesn’t work,” says Maxwell Phiri.

Capacity building and knowledge transfer are key elements of agricultural development work, but there is often a gap between research, outreach and extension to farmers. New techniques and crop varieties tested at experimental stations can take a while to reach rural communities, who want solutions to the challenges they are facing in real time.

“But now it’s easier for us because the research is being done here.” Phiri points to the farmer field school in Msambafumu, a few hectares of communal land where 23 smallholders from the surrounding area meet regularly to learn about new technologies and farming techniques.

At the school they have been able to learn first-hand about improved and new agricultural practices and technologies. Following an introduction to climate-smart agriculture practices, they have moved on to agroforestry, learning about the benefits of intercropping drought-tolerant maize with pigeon peas and fruit trees. “We’ve even started practicing climate-smart agriculture in our own fields and planting agroforestry trees,” says Ntendeleza Mwale, a member of the field school in Msambafumu and chair of a network of 17 schools in the district. “Now everybody is growing fruit trees at home.”

“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)
“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)

Back to school

A farmer field school is a group of 25-30 farmers, led by a master trainer, who come together to solve common challenges faced in their local area, such as soil degradation or poor water availability. Since 2014, the Government of Malawi has been using this innovative approach to help farmers learn about and improve their production systems through the KULIMA project. With support from a CGIAR consortium led by the International Potato Center (CIP), 15 schools have been established across the districts of Kasungu, Mulanje and Mzuzu, including master training hubs and outreach centers run by NGOs.

The overall objective is to increase agricultural productivity and diversification by upscaling climate-smart technologies,” explains Mathinda Sopo, a monitoring and evaluation specialist and project manager at the International Maize and Wheat Improvement Center (CIMMYT). “Master trainer candidates are selected in each district and then invited to sit down with researchers and identify their core production challenges. The plans are then developed collaboratively and based on agroecological zone.”

In February 2020, a new cohort of trainees arrived at the Lisasadizi Regional Training Center in Kasungu, where the Ministry of Agriculture coordinates trainings on four key topics — soil health, climate change, pests and diseases and nutrition — in collaboration with the UN Food and Agriculture Organization (FAO) and the CGIAR consortium, supported by the German development agency GIZ.

The 13-week residential course is mostly practical but does include some classroom-based study and a community outreach component. Guided by a facilitator — usually a researcher or extension worker — participants are encouraged to learn from their experiences as they conduct experiments in their own fields, make observations and evaluate results throughout the cropping season. Outside of the core curriculum, they are free to investigate additional topics of their own choice.

After completing the course, master trainers move back to their respective areas to help train facilitators, who are ultimately responsible for running the field schools with support from NGO extension staff.

“The CGIAR centers bring in technologies they want to promote like improved crop varieties, but there are ongoing evaluations throughout the process to respond to newly emerging challenges such as fall armyworm,” says Sopo. “There’s also a review at the end of each season to discuss lessons learned and knowledge gaps.”

CIMMYT, for example, is focusing on promoting drought-tolerant, quality protein maize (QPM), and provitamin A maize, as well as climate-smart agriculture practices. At Msambafumu, the group have been comparing five improved maize varieties with local ones. “So far we’ve seen that the new varieties have bigger yields and cob sizes,” says Mwale. “Varieties like Chitedze 2 QPM and MH43A are also early maturing and are more nutritious.”

Farmers at the field schools in Msambafumu and Tiyese, in Malawi, have been surprised to find that banana trees can be grown in their area. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)

Learning by doing

A few kilometers down the road, in Galika village, members of the Tiyese field school have been learning how to control a variety of pests and diseases. So far, they have been taught about different pesticides and the benefits of using inoculant on soya beans and ground nuts to improve soil fertility, and how to identify and mitigate disease in susceptible potato varieties. They have also been learning how to apply Aflasafe while crops are still in the field to reduce aflatoxins in maize and groundnuts.

But the most pressing challenge is fall armyworm, says Matolino Zimba, a member of the Tiyese field school. “We’ve been trying new methods for controlling it,” he explains. “Last year we planted mucuna beans in our banana orchard as a cover crop. Later we soaked mucuna leaves in water and poured the solution on the infested maize and noticed that the worms were dying.”

Zimba is satisfied with the learning methods at the field school. “This approach is better for us because we get to see the process, rather than just receiving an explanation.”

Emily Kaponda agrees. She first joined the group after noticing that participating farmers were getting higher yields by using new planting methods. “The school has a smaller plot of land than I do, but their bundles of maize were much larger,” she explains.

Since joining the field school, she has learned how to increase her yields, how to conserve moisture in the soil using zero-tillage farming and the importance of diversifying her family’s diets. “We’re learning how we can use cassava or sweet potato as a starch, instead of only using maize.”

Zimba and Kaponda are both excited to be trying out QPM and provitamin A maize varieties, as well as new varieties of cassava, orange-fleshed sweet potato, improved groundnuts, biofortified beans and bananas. Much like their peers at Msambafumu, they had not known that many of these could be grown in the area, and the group has already started planning to multiply planting materials to use in their own fields next year.

“These groups are really inspirational,” says Sopo. “Most members are already practicing things they’ve learned at their school and are getting positive results.”

Sopo is already seeing success stories from schools established one year ago, but collaboration will need to be sustained to ensure lasting progress. A new research initiative, Development-Smart Innovations through Research in Agriculture (DeSIRA), will help to maintain the positive feedback loop by investigating emerging issues raised during on-farm experiments. “We can take farmer observations from the study plots to DeSIRA for further research, and the outputs from that will complement KULIMA.”

Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Breaking Ground: Sylvanus Odjo finds the right technology for each farmer

A series of coincidences led Sylvanus Odjo to study agronomy. It was only after finishing his first degree that he learned that his namesake, Silvanus, was the Latin deity of forests and fields.

Spurred by a curiosity about the natural world, he spent several years working at the National Institute of Agriculture in his native Benin, before pursuing advanced degrees in Belgium, where he developed his interest in cereals research.

“Obviously by that point I knew about the CGIAR centers and the International Maize and Wheat Improvement Center,” he explains. “If you’re working on maize, you’ll know about CIMMYT.”

He joined the organization as a postdoctoral researcher in 2017 and now works as a postharvest specialist. He coordinates a network of platforms which evaluates and validates potential solutions and transfers them to farmers across Mexico and Latin America.

“All the projects I’m working on now have the same objective: finding ways to avoid and reduce postharvest losses.” These, Odjo estimates, can be as high as 40% in some parts of Mexico, with dramatic consequences for smallholder farmers whose food security is directly linked to the amount of grain they have. They are also the most likely to be affected by the effects of climate change.

“A lot of people think postharvest just means storage,” he points out, “but it actually encompasses everything from the moment of harvest and includes processes like drying, shelling, technical and economic activities.”

A drying specialist by training, Odjo now works across the entire postharvest system. There are two central components to his work. The first involves testing postharvest technologies to develop recommendations for farmers, conducting trials under controlled conditions on CIMMYT research stations and with local collaborators across Mexico and assessing how drying and storage technologies fare under different conditions. The second, and perhaps more challenging, is promoting the successful ones, such as hermetic grain storage bags, among farmers and providing training on how to use them appropriately.

“We see a lot of publications agreeing that we need to promote hermetic technologies, which is true.” The question, Odjo asks, is how to do it. “How can we succeed in making a solution available to farmers? And once that has happened, how do we convince them to use it? Those are big questions which people were asking 50 years ago but they’re still being discussed today.”

Odjo demonstrates the use of a handheld grain moisture tester in Comitán de Dominguez, Chiapas, Mexico. (Photo: Juan Carlos Reynoso)
Odjo demonstrates the use of a handheld grain moisture tester in Comitán de Dominguez, Chiapas, Mexico. (Photo: Juan Carlos Reynoso)

Finding answers to the big questions

“The potential solutions sound so simple, but when you actually try to implement these things it can be very complex.”

Odjo can reel off a list of postharvest interventions which seem straightforward initially but fail at the moment of implementation. Farmers might be instructed to harvest their grain at a particular time, which turns out to conflict with the timing of an important traditional ceremony, which cannot be rescheduled. Elsewhere they may be encouraged to avoid reducing moisture levels by purchasing a dryer but lack the resources to do so.

Much of Odjo’s work involves conducting research into the process of technology transfer and the scaling of postharvest technologies, working with a number of projects in Mexico to find the most efficient ways of training farmers and providing them with the tools they need to use improved practices and technologies.

“What we’re looking for is the right technology for each farmer,” he explains. “Because the conditions in the highlands of Guanajuato are not the same as in coastal Yucatán, or any of the other locations we work in.” Hermetic technology has been proven to be effective in most conditions, but the choice to use hermetic silos, hermetic bags, or a cocoon storage container ultimately depends on farmer preferences and the specific conditions in their local area. “We noticed, for example, that in the highlands pests tend to pose less of a threat to stored grain, so we need to use a different strategy than we would at sea level, where humidity can significantly increase the risk of grain becoming contaminated.”

Odjo and his team have also noted that in Mexico, although many postharvest activities such as shelling are led by women, men are more likely to attend farmer trainings, which makes it harder to ensure that they are reaching their target demographic. “Gender has emerged as a key parameter that we need to take into account, so we’re working with an excellent gender specialist at CIMMYT to find ways of making sure we transfer knowledge and technologies efficiently.”

While it can be challenging coordinating with so many different stakeholders, each with their distinct priorities and interests, Odjo is adamant that postharvest research can only be successful when it is fully interdisciplinary and collaborative. Though farmers are their core audience, he and his team make sure they work with extension agents, government actors, researchers and development practitioners to find solutions. “I can’t do anything alone so I’m open to collaboration,” he adds. “We always need fresh ideas.”

“A lot of people think postharvest just means storage, but it actually encompasses everything from the moment of harvest and includes processes like drying, shelling, technical and economic activities,” Odjo explains. (Photo: Francisco Alarcón/CIMMYT)
“A lot of people think postharvest just means storage, but it actually encompasses everything from the moment of harvest and includes processes like drying, shelling, technical and economic activities,” Odjo explains. (Photo: Francisco Alarcón/CIMMYT)

Sharing knowledge in 140 characters

Up until quite recently, Odjo was reluctant to join Twitter because he felt that he had nothing to share. It was only when colleagues encouraged him to use social media as a platform for discussing postharvest issues that he discovered the app is an effective way of sharing recommendations directly with farmers and agricultural service providers. “One of my lecturers used to say that you can understand something if you’re capable of explaining it to a kindergarten-aged child. If you don’t succeed, it means you haven’t understood.”

“That’s become a part of my job that I really enjoy: figuring out how to share research and results of investigations with different audiences in a simple manner.”

His newfound social media presence has also proved useful for connecting with researchers on a global level. In late 2019, researchers in Laos interested in learning about postharvest technologies reached out to Odjo, who was able to arrange for colleagues to travel to the country and share practices developed with local extension agents and blacksmiths in Mexico. “And do you know how they found me? Through my Twitter account.”

Moving forward, Odjo hopes to extend the scope of his activities beyond Latin America and carry out more knowledge exchange with his peers across the world. “In research, a lot of people are working on the same topics, but we don’t always share the information. I’m open to sharing my experience, because I’m sure I can learn a lot from others that will be useful for my job.”

Kenya in particular stands out as a case study he can learn from, where a high incidence of aflatoxins in maize, heavy government intervention and fierce market competition among providers of hermetic bags have allowed for the successful scaling of postharvest technologies. “It would be great to be able to analyze their scaling process and learn from it. Not to replicate it entirely, because obviously the conditions aren’t the same, but there will undoubtedly be lessons we can take and apply here in Mexico and Latin America.”

Safeguarding biodiversity is essential to prevent the next COVID-19

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While the world’s attention is focused on controlling COVID-19, evidence points at the biodiversity crisis as a leading factor in its emergence. At first glance, the two issues might seem unrelated, but disease outbreaks and degraded ecosystems are deeply connected. Frédéric Baudron, systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and Florian Liégeois, virologist at the Institut de Recherche pour le Développement (IRD) share their insights on the current COVID-19 crisis and the link between biodiversity loss and emerging infectious diseases.

What trends are we seeing with infectious diseases like COVID-19?

We see that outbreaks of infectious diseases are becoming more frequent, even when we account for the so-called “reporting bias”: surveillance of such events becoming better with time and surveillance being better funded in the North than in the South.

60% of infectious diseases are zoonotic, meaning that they are spread from animals to humans and 72% of these zoonoses originate from wildlife. COVID-19 is just the last in a long list of zoonoses originating from wildlife. Other recent outbreaks include SARS, Ebola, avian influenza and swine influenza. As human activities continue to disturb ecosystems worldwide, we are likely to see more pathogens crossing from wildlife to humans in the future. This should serve as a call to better manage our relationship with nature in general, and wildlife in particular.

Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)
Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)

Why are we seeing more cases of diseases crossing from animals to humans? Where are they coming from?

Evidence points to bushmeat trade and consumption as the likely driver for the emergence of COVID-19. The emergence of SARS and Ebola was also driven by bushmeat consumption and trade. However, when looking at past outbreaks of zoonoses caused by a pathogen with a wildlife origin, land use changes, generally due to changes in agricultural practices, has been the leading driver.

Pathogens tends to emerge in well known “disease hotspots,” which tend to be areas where high wildlife biodiversity overlaps with high population density. These hotspots also tend to be at lower latitude. Interestingly, many of these are located in regions where CIMMYT’s activities are concentrated: Central America, East Africa and South Asia. This, in addition to the fact that agricultural changes are a major driver of the emergence of zoonoses, means that CIMMYT researchers may have a role to play in preventing the next global pandemic.

Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)
Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)

How exactly does biodiversity loss and land use change cause an increase in zoonotic diseases?

There are at least three mechanisms at play. First, increased contact between wildlife and humans and their livestock because of encroachment in ecosystems. Second, selection of wildlife species most able to infect humans and/or their livestock — often rodents and bats — because they thrive in human-dominated landscapes. Third, more pathogens being carried by these surviving wildlife species in simplified ecosystems. Pathogens tend to be “diluted” in complex, undisturbed, ecosystems.

The fast increase in the population of humans and their livestock means that they are interacting more and more frequently with wildlife species and the pathogens they carry. Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates: there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth! We live on an increasingly “cultivated planet,” with new species assemblages and new opportunities for pathogens to move from one species to another.

Wildlife trade and bushmeat consumption have received a lot of attention as primary causes of the spread of these viruses. Why has there been so little discussion on the connection with biodiversity loss?

The problem of biodiversity loss as a driver of the emergence of zoonoses is a complex one: it doesn’t have a simple solution, such as banning wet markets in China. It’s difficult to communicate this issue effectively to the public. It’s easy to find support for ending bushmeat trade and consumption because it’s easy for the public to understand how these can lead to the emergence of zoonoses, and sources of bushmeat include emblematic species with public appeal, like apes and pangolins. Bushmeat trafficking and consumption also gives the public an easy way to shift the blame: this is a local, rather than global, issue and for most of us, a distant one.

There is an inconvenient truth in the biodiversity crisis: we all drive it through our consumption patterns. Think of your annual consumption of coffee, tea, chocolate, sugar, textiles, fish, etc. But the biodiversity crisis is often not perceived as a global issue, nor as a pressing one. Media coverage for the biodiversity crisis is eight times lower than for the climate crisis.

The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)
The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)

Agriculture is a major cause of land use change and biodiversity loss. What can farmers do to preserve biodiversity, without losing out on crop yields?

Farming practices that reduce the impact of agriculture on biodiversity are well known and form the foundation of sustainable intensification, for which CIMMYT has an entire program. A better question might be what we can do collectively to support them in doing so. Supportive policies, like replacing subsidies by incentives that promote sustainable intensification, and supportive markets, for example using certification and labeling, are part of the solution.

But these measures are likely to be insufficient alone, as a large share of the global food doesn’t enter the market, but is rather consumed by the small-scale family farmers who produce it.

Reducing the negative impact of food production on biodiversity is likely to require a global, concerted effort similar to the Paris Agreements for climate. As the COVID-19 pandemic is shocking the world, strong measures are likely to be taken globally to avoid the next pandemic. There is a risk that some of these measures will go too far and end up threatening rural livelihoods, especially the most vulnerable ones. For example, recommending “land sparing” — segregating human activities from nature by maximizing yield on areas as small as possible —  is tempting to reduce the possibility of pathogen spillover from wildlife species to humans and livestock. But food production depends on ecosystem services supported by biodiversity, like soil fertility maintenance, pest control and pollination. These services are particularly important for small-scale family farmers who tend to use few external inputs.

How can we prevent pandemics like COVID-19 from happening again in the future?

There is little doubt that new pathogens will emerge. First and foremost, we need to be able to control emerging infectious diseases as early as possible. This requires increased investment in disease surveillance and in the health systems of the countries where the next infectious disease is most likely to emerge. In parallel, we also need to reduce the frequency of these outbreaks by conserving and restoring biodiversity globally, most crucially in disease hotspots.

Farming tends to be a major driver of biodiversity loss in these areas but is also a main source of livelihoods. The burden of reducing the impact of agriculture on biodiversity in disease hotspots cannot be left to local farmers, who tend to be poor small-scale farmers: it will have to be shared with the rest of us.

Cover photo: Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)

Collective efforts to fight fall armyworm in Nepal

Three years ago, farmers in the country were combatting the threats of a destructive tomato pest, Tuta Absoluta, and are now battling their way to manage the attack of fall armyworm on maize fields across the country. Since the government’s Plant Quarantine and Pest Management Centre (PQPMC) declared the arrival of fall armyworm on August 2019, this pest is reported to have infested almost half the districts of Nepal and continues to spread further.

“I wasn’t able to gather even half the yields I used to get from my maize field following the fall armyworm outbreak last year,” said Pavitra, a farmer from Sindhupalchowk district, Nepal.

The level of incidence and damage varies from place to place, but farmers have reported up to 80% crop loss in extreme cases. In Nepal, the fall armyworm has the potential to cause maize yield losses of 20-25%, which translates to the loss of more than half a million tons of the annual maize production — estimated at around $200 million. If the pest is left unrestrained, its impact will be huge for farmers and the economy.

This calls for a collective effort and broad mobilization to effectively manage fall armyworm and limit its spread across the country. Since the pest was expected to reach Nepal, partners have conducted workshops and community mobilization initiatives.

Experts at the International Maize and Wheat Improvement Center (CIMMYT) have been working with public and private partners before and after the arrival of the invasive pest in Nepal. The shared efforts have focused on creating awareness, disseminating appropriate technologies and management techniques, and strengthening the capacity of communities, institutions and governments.

The Ministry of Agriculture and Livestock Development has established a national taskforce to fight the pest. Most provinces have established similar taskforces that include researchers, agriculture extension agents, farmers and entrepreneur associations.

Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)

Gearing up to fight the very hungry caterpillar

In collaboration with national and provincial governments, CIMMYT has trained 426 agricultural professionals, including lead farmers, on how to identify and manage fall armyworm.

In February 2020, CIMMYT partnered with agricultural development directorates in two provinces to train 130 people on how to scout for fall armyworm and recommended solutions, based on integrated pest management principles.

In late 2019, CIMMYT engaged with the public and private sector through training workshops to disseminate proven practices to control the pest.

“Before, I was unable to recognize the pest that had destroyed my maize field. The hands-on training has been very informative,” said Urmila Banjgayu, a lead farmer who participated in one of the trainings. “I am certain to share the knowledge and practices that I learned with other farmers in my locality. They need to know what to do and what not to.”

Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT staff is working closely with the Ministry of Agriculture and Livestock Development, the Nepal Agricultural Research Council (NARC), the PQPMC, provincial governments, and other USAID-funded projects and development partners in Nepal. Together, they have developed integrated pest management packages, informative factsheets and surveillance guidelines. CIMMYT researchers have shared experiences on pest management, surveillance and scouting techniques from other countries in Asia and Africa. They have also demonstrated digital tools that will help map the spread of the pest and build accurate interpretation for better management.

Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)

Fall armyworm awareness campaign

Farmers must learn how to identify and manage this pest. Bijaya Ghimire, a lead farmer from Kanchanpur district, had heard about fall armyworm from a nearby seed company and a few of his friends. He informed the Agriculture Knowledge Center about the symptoms he observed in his maize field, and verification of the larvae and damage confirmed the presence of fall armyworm. Luckily, Ghimire was able to control the pest before severe damage was done.

CIMMYT researchers collaborated with the Prime Minister Agricultural Modernization Project (PMAMP) to implement outreach campaigns in Banke district. This included a mobile information booth, local dissemination of audio messages, and distribution of posters and fact sheets about fall armyworm. The two-day campaign successfully raised awareness about the pest, reaching more than 1,000 farmers from four villages in maize growing areas.

Researchers also worked with Scientific Animations Without Borders (SAWBO) and adapted an educational video on how to identify and scout for fall armyworm in a field into Nepali. In collaboration with the PQPMC, the video was broadcast 42 times on three local TV channels, to an estimated audience of more than one million viewers in June 2019. The video has also received over 2,000 online views. The animated video is being shown to farmers using mobile phones and displayed on big screens during community events and workshops.

“Seamless collaboration is required among the major stakeholders in the country to collectively fight the pest,” said AbduRahman Beshir, CIMMYT seed systems lead for the NSAF project and member of the national fall armyworm taskforce. “The potential impact of fall armyworm poses a fundamental challenge for smallholder farmers in Nepal. If unattended, it is going to be a food security issue and an equally daunting task to safeguard livelihoods.”

Crossing boundaries

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

Daily life as we know it has grinded to a halt and crop scientists are pondering next steps in face of the global COVID-19 crisis. Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, joins us for a virtual chat to discuss the need for increased investment in crop disease research as the world risks a food security crisis.

What have you learned from your work on contagious wheat diseases that we can take away during this time?

Wheat epidemics go back to biblical times. Wheat scientists now believe Egypt’s “seven bad years” of harvest referenced in the Bible were due to a stem rust outbreak.

So, we know what happens when we have a crop epidemic: diseases can completely wipe out a harvest. I have seen subsistence farmers stand in front of their swaying, golden wheat fields, but there is not a single grain inside the spikes. All because of wheat blast.

There are a lot of parallel issues that I see with COVID-19.

The epidemiology models for humans which we see now have a lot in common with plant epidemiology. For example, if you take a wheat field sown with a variety which is rust-resistant and then you get a spore which mutates and overcomes the resistance — like COVID-19 overcomes the human immune system — it then takes about two weeks for it to sporulate again and produce millions of these mutated spores. They sporulate once more and then you have billions and trillions of spores — then the wheat fields at the local, national and, in the worst case, regional level are severely damaged and in worst case are going to die.

The problem is that since we cannot quarantine wheat, if the weather is favorable these spores will fly everywhere and — just like with COVID-19 — they don’t need a passport to travel.

Could you elaborate on that? How can wheat diseases go global?

Usually it takes around 5 years, sometimes less, until a mutation in a rust spore can overcome the resistance of a wheat variety. Every so often, we see rust epidemics which cover an entire region. To monitor this movement, the Borlaug Global Rust Initiative of Cornell University and CIMMYT, funded by the Bill & Melinda Gates Foundation and DFID, established a global rust monitoring system that provides live data on spore movements.

For example, if you have a new race of stem rust in Yemen — and in Yemen wheat matures early — and then farmers burn the straw, their action “pushes” the spores up into the air, thus allowing them to enter the jet stream and cover 2,000 to 5,000 kilometers in a short period of time. Spores can also be carried on clothes or shoes by people who walked into an infected wheat field. Take Australia, for example, which has very strict quarantine laws. It is surrounded by sea and still eventually they get the new rust races which fly around or come with travelers. One just cannot prevent it.

Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)
Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)

Could climate change exacerbate the spreading of crop diseases?

Yes, the climate and its variability have a lot to do with it. For example, in the case of yellow rust, what’s extremely important is the time it takes from sporulation to sporulation. Take a rust spore. It germinates, then it grows, it multiplies and then once it is ready it will disperse and infect wheat plants. From one dispersal to the next it takes about two weeks.

In the last decades, in particular for yellow rust, new races are better adapted to high temperature and are multiplying faster. In a Nature paper, we showed that 30 years ago yellow rust was not present in the Great Plains in the US. Today, it is the most important wheat disease there. So there really is something going on and changing and that’s why we are so concerned about new wheat disease races when they come up.

What could an epidemiologist specialized in human viruses take from this?

Well, I think human epidemiologists know very well what happens in a case like COVID-19. Ordinary citizens now also start to understand what a pandemic is and what its related exponential growth means.

Maybe you should ask what policymakers can learn from COVID-19 in order to prevent plant epidemics. When it comes to epidemics, what applies to humans applies to plants. If there is a new race of a given crop disease, in that moment, the plant does not have a defense mechanism, like humans in the case of COVID-19, because we haven’t developed any immunity. While in developed countries farmers can use chemicals to control plant diseases, resource-poor farmers do not have this option, due to lack to access or if the plant protective has not been registered in their country.

In addition to this, our lines of work share a sense of urgency. If “doomsday” happens, it will be too late to react. At present, with a human pandemic, people are worried about the supply chain from food processing to the supermarket. But if we have an epidemic in plants, then we do not have the supply chain from the field to the food processing industry. And if people have nothing to eat, they will go to the streets and we will see violence. We simply cannot put this aside.

What other lessons can policymakers and other stakeholders take away from the current crisis?

The world needs to learn that we cannot use economics as the basis for disease research. We need to better foresee what could happen.

Let’s take the example of wheat blast, a devastating disease that can destroy the wheat spike and was initially confined to South America. The disease arrived in Bangladesh in 2016 and caused small economic damage, maybe 30,000 tons loss in a small geographic area — a small fraction of the national production but a disaster for the smallholder farmer, who thus would have lost her entire wheat harvest. The disease is now controlled with chemicals. But what if chemical resistance is developed and the disease spreads to the 10 million hectares in the Indo-Gangetic Plains of India and the south of Pakistan. Unlikely? But what if it happens?

Agriculture accounts for 30% of the global GDP and the research money [going to agriculture] in comparison to other areas is small. Globally only 5% of R&D is invested in research for development related to agriculture. Such a discrepancy! A million U.S. dollars invested in wheat blast research goes a long way and if you don’t do it, you risk a disaster.

If there is any flip side to the COVID-19 disaster, it is that hopefully our governments realize that they have to play a much more serious role in many areas, in particular public health and disease control in humans but also in plants.

A Lloyd’s report concluded that a global food crisis could be caused by governments taking isolating actions to protect their own countries in response to a breadbasket failure elsewhere. I’m concerned that as the COVID-19 crisis continues, governments will stop exports as some did during the 2008 food price crisis, and then, even if there is enough food around, the 2008 scenario might happen again and food prices will go through the roof, with disastrous impact on the lives of the poorest.

This article was originally published by the CGIAR Research Program on Wheat (WHEAT):
Crossing boundaries: looking at wheat diseases in times of the COVID-19 crisis.

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

Seeing is believing

Nancy Wawira strolls through a small plot of maize at Kithimu, in Kenya’s Embu County. She is charmed by the attributes of a maize variety that can yield 2,700kg per acre or more. The variety can endure drought-like conditions, matures in less than 120 days and has potential for double-cobbing.

Wawira is visiting a demonstration farm to witness the performance of several high yielding, early to medium maturing, drought-tolerant maize varieties.

By coming to this demonstration farm, Wawira hoped to identify a newer maize variety she could plant on her quarter-acre of land to get higher yield. The plot she stood on was the exact replica of what she was looking for. “Occasions such as this field day are very important for me and I always endeavor to attend them, as there is always something new to see or learn,” she says.

On her farm, she has been planting one of the old but popular commercial varieties suitable for this mid-altitude ecology. She normally harvests 4 bags of maize, of 90kg each, every season. However, if there is not enough rain or if there are pests or diseases, which is often the case, she harvests just 2 bags or less. This is hardly enough to meet her family’s food requirements for the year.

Switching to the maize variety she was interested in, and applying recommended farming practices, she could harvest 6 bags per season or more.

“Today, I have learnt how to improve my farming,” says Wawira. “Even when I access the variety that is high yielding, drought-tolerant and can mature in about three and a half months, as I witnessed on one of the plots, I still need to pay attention to proper crop husbandry related to spacing, timing of the planting, seed, fertilizer and pesticide application besides weed control,” she says.

Nancy Wawira examines maize in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira examines maize in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)

Made-to-order

Wawira was one of the more than 400 farmers from nearby Manyatta sub-county visiting the demonstration farm on February 7, 2020. They were able to see varieties and learn about their traits, invited by the Seed Trade Association of Kenya (STAK) with the support of the International Maize and Wheat Improvement Center (CIMMYT).

The demonstration is a continuation of the work started under the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project and later under the Stress Tolerant Maize for Africa (STMA) project.

Officials from Embu County, led by its minister in charge of agriculture Jamleck Muturi, were present during the farmers’ visit. Ten seed firms, some of which use CIMMYT’s germplasm for seed propagation and marketing, participated as well.

“Several of our member seed companies are showcasing the varieties developed through CIMMYT’s breeding pipeline,” said Duncan Ochieng’, the chief executive officer of STAK. “The maize varieties showcased on these demo farms were designed to be drought-tolerant, high yielding and range from early to medium maturing. These varieties are juxta-posted with other commercial varieties suitable for this region.”

During visits to demonstration farms, farmers give feedback on their variety preferences. Seed companies can then align their breeding, germplasm-access requests, seed production or marketing plans with farmers’ expectations.

Some of the farmers who participated in the field day in Embu County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Some of the farmers who participated in the field day in Embu County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Jackline Wanja in one of the demo plots of the variety she liked. (Photo: Joshua Masinde/CIMMYT)
Jackline Wanja in one of the demo plots of the variety she liked. (Photo: Joshua Masinde/CIMMYT)
A seed company representative shows seeds to a farmer during the visit to the demonstration farm. (Photo: Joshua Masinde/CIMMYT)
A seed company representative shows seeds to a farmer during the visit to the demonstration farm. (Photo: Joshua Masinde/CIMMYT)
STAK chief executive officer Duncan Ochieng' examines a maize cob in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)
STAK chief executive officer Duncan Ochieng’ examines a maize cob in one of the demo plots. (Photo: Joshua Masinde/CIMMYT)

Dire traits

Farming stresses such as pests, diseases, heat and drought have made targeted breeding a critical necessity.

Young farmers are increasingly choosing varieties that can mature faster, typically in less than three months. They also favor varieties that offer higher yield than the popular commercial varieties, many of which have been on the market for at least a decade. Other sought-after traits are good performance in low or erratic rains, tolerance to maize lethal necrosis, reduced lodging, and efficiency in nitrogen use.

Jackline Wanja, 25, relies on her one-acre farm for survival. “On average, I harvest about 25 bags per acre. On the demo farm, I got to know of a variety than can yield at least 30 bags per acre. I also learnt that the variety is not only drought-resilient but can also mature in about three and a half months. This is the variety that I plan to plant my farm next season,” Wanja said.

For John Njiru, 52, a higher-yielding variety with a lot of foliage, which remains green even after the maize cob has dried, is what he came looking for. For this farmer with 12 acres of land, the green maize foliage is a significant source of income when sold to livestock keepers. Njiru feeds his own livestock with it, making substantial savings on animal feed expenditure. “If this variety is as high yielding as I have been made to understand and can offer me at least 30 bags per acre, I would be a happy farmer. My farming would be very profitable,” he says.

John Njiru on a demo plot of the variety he liked. (Photo: Joshua Masinde/CIMMYT)
John Njiru on a demo plot of the variety he liked. (Photo: Joshua Masinde/CIMMYT)

New greenhouse honors scientist, aims to further maize wild relatives research

On February 27, 2020, the International Maize and Wheat Improvement Center (CIMMYT) opened a new greenhouse at its research station in Tlaltizapán, in Mexico’s state of Morelos. The Garrison Wilkes Center for Maize Wild Relatives is named after a pioneering scientist in the field of maize genetics.

“The name teosinte refers to a group of wild relatives of maize,” said Denise Costich, manager of the maize germplasm collection at CIMMYT. “The seven members of this group — all in the genus Zea — are more grass-like than maize, produce hard-shelled seeds that are virtually inedible, and are capable of enduring biotic and abiotic stressors better than their crop relative.” Teosintes must be protected, Costich explained, as they possess some desirable qualities that could help improve maize resilience in difficult conditions. Since CIMMYT’s Germplasm Bank is the global source for teosinte seed, the new greenhouse, designed exclusively for the regeneration of teosinte accessions from the bank collection, will ensure that there will always be seed available for research and breeding.

Garrison Wilkes was one of the first scientists to emphasize the importance of the teosintes and their close biological relationship to maize. He spent more than 50 years working on maize conservation in collaboration with CIMMYT.  Together with scientists such as Angel Kato, a former CIMMYT research assistant and longtime professor, Suketoshi Taba, former head of CIMMYT’s Germplasm Bank, and Jesus Sanchez, as researchers at the University of Guadalajara, he contributed to the development of the global maize collection of CIMMYT’s Germplasm Bank as it exists today.

(From left to right) Garrison Wilkes, Angel Kato and Jesus Sanchez, study a teosinte population in Los Reyes, near Texcoco, Mexico, in 1992. (Photo: Mike Listman/CIMMYT)
(From left to right) Garrison Wilkes, Angel Kato and Jesus Sanchez, study a teosinte population in Los Reyes, near Texcoco, Mexico, in 1992. (Photo: Mike Listman/CIMMYT)

Keeping seeds alive

Teosintes are the wild plants from which maize was domesticated about 7,000 years ago. They are durable, with natural resistance to disease and unfavorable weather, and grow primarily in Mexico, Guatemala, Honduras and Nicaragua. “What makes [teosinte] a wild plant is its seed dispersal. Corn doesn’t disperse its seed — it’s stuck on the cob. To be a wild plant means they can sow their own seed and survive,” explained Wilkes. Keeping these seeds alive could be the key to developing resilient modern maize with the potential to feed millions.

One of the difficulties in growing maize and teosinte in Tlaltizapán to produce seed for global distribution is that the station is surrounded by sugarcane fields. Sugarcane carries a disease called the Sugarcane Mosaic Virus (SCMV), to which maize and teosinte are susceptible, and SCMV-positive seed cannot be distributed outside of Mexico. Additionally, if teosinte and maize are grown in close proximity to one another, it becomes very difficult to control gene flow between them via airborne pollen. Several experiments, ranging from growing the teosinte in pots to monitoring that the maize and teosinte flower at different times, could not fully guarantee that there was no cross-contamination. Therefore, in order to continue to cultivate maize and teosinte within the same station, the CIMMYT Germplasm Bank needed to create an isolated environment.

Garrison Wilkes describes characteristic features of the teosinte grown in the greenhouse. (Photo: Alfonso Cortés/CIMMYT)
Garrison Wilkes describes characteristic features of the teosinte grown in the greenhouse. (Photo: Alfonso Cortés/CIMMYT)

On average, the teosinte seed collections in the germplasm bank were nearly 19 years old, and 29% were not available for distribution due to low seed numbers. Researchers needed to find a way to produce more high-quality seed and get started as soon as possible. “My staff and I visited Jesus Sanchez, a world-renowned teosinte expert, and learned as much as we could about how to cultivate teosinte in greenhouses,” explained Costich “We realized that this could be the solution to our teosinte regeneration problem.”

Construction of the new greenhouse began in late 2017, with funding received from the 2016 Save a Seed Campaign — a crowdfunding initiative which raised more than $50,000. Donations contributed to activities such as seed storage, tours and educational sessions, seed collection, seed repatriation and regeneration of depleted seeds. With the new greenhouse, CIMMYT scientists can now breed teosinte without worrying about maize contamination, and prevent the extinction of these valuable species.

CIMMYT holds most of the world’s publically accessible collections of teosinte. “The wild relatives are a small part of our collection, but also a very important part, as they are theoretically the future of genetic diversity,” said Costich.“They have been important in the evolution of the crop. If we lose them, we can’t learn anything more from them, which would be a shame.”

Garrison Wilkes (left) poses with maize producer Ventura Garcia and her family. (Photo: Alfonso Cortés/CIMMYT)
Garrison Wilkes (left) poses with maize producer Ventura Garcia and her family. (Photo: Alfonso Cortés/CIMMYT)

Ready for the seed sector

Nepal’s National Seed Vision 2013-2025 identified the critical skills and knowledge gaps in the seed sector, across the value chain. Seed companies often struggle to find skilled human resources in hybrid product development, improved seed production technology and seed business management. One of the reasons is that graduates from agricultural universities might be missing on recent advancements in seed science and technology, required by the seed industry.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) have been collaborating with Agriculture and Forestry University (AFU) to review and update the existing curriculum on seed science and technology, for both undergraduate and postgraduate students. This work is part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) through the Feed the Future initiative.

Realizing the need to increase trained human resources in improved seed technologies, CIMMYT researchers held discussions with representatives from the Department of Agronomy at AFU, to begin revising the curriculum on seed science and technology. Developed four years ago, the current curriculum does not encompass emerging developments in the seed industry. These include, for example, research and product development initiated by local private seed companies engaged in hybrid seed production of various crops, who want to be more competitive in the existing market.

Each year, approximately 200 bachelor’s and 10 master’s students graduate from AFU. In collaboration with CIMMYT, the university identified critical areas that need to be included in the existing curriculum and drafted new courses for endorsement by the academic council. AFU also developed short-term certificate and diploma courses in the subject of seed science and technology.

AbduRahman Beshir, CIMMYT, discusses the importance of linking academic courses with the emerging trends of the seed industry. (Photo: Bandana Pradhan/CIMMYT)
AbduRahman Beshir, CIMMYT, discusses the importance of linking academic courses with the emerging trends of the seed industry. (Photo: Bandana Pradhan/CIMMYT)

Shared knowledge

On November 20, 2019, CIMMYT, AFU and Catholic Relief Services (CRS) organized a consultation workshop with seed stakeholders from the public and private sectors, civil society and academia. Participants discussed emerging needs within Nepal’s seed industry and charted out how higher education can support demand, through a dynamic and responsive program.

Sabry G. Elias, professor at Oregon State University (OSU), discussed recent advances in seed science and technology, and how to improve productivity of smallholder farmers in Nepal. He is supporting the curriculum revision by taking relevant lessons from OSU and adapting them to Nepal’s context. Sabry shared the courses that are to be included in the new program and outlined the importance of linking graduate research with the challenges of the industry. He also stressed the importance of building innovation and the continuous evolution of academic programs.

Sabry Elias, Oregon State University, talks about the importance of critical thinking to bring innovations to the seed sector. (Photo: Bandana Pradhan/CIMMYT)
Sabry Elias, Oregon State University, talks about the importance of critical thinking to bring innovations to the seed sector. (Photo: Bandana Pradhan/CIMMYT)

Professors from AFU, Nepal Polytechnic Institute, Tribhuvan University, and several private colleges introduced the current courses in seed science and technology at their institutions. Santosh Marahatta, head of the Department of Agronomy at AFU, discussed the limitations of the current master’s and doctoral degree programs, and proposed a draft curriculum with integrated courses across the seed value chain. J.P. Dutta, dean of the Faculty of Agriculture at AFU, shared plans to create a curriculum that would reflect advanced practices and experiences in seed science and technology.

Scientists and researchers from Nepal Agricultural Research Council (NARC) presented their activities and suggested key areas to address some of the challenges in the country’s seed sector.

“Our aim is to strengthen local capacity to produce, multiply and manage adequate quality seeds that will help improve domestic seed production and seed self-sufficiency,” said Mitraraj Dawadi, a representative from the Seed Entrepreneurs Association of Nepal (SEAN). “Therefore, we encourage all graduates to get hands-on experience with private companies and become competent future scientists and researchers.”

AbduRahmann Beshir, Seed Systems Lead for the NSAF project at CIMMYT, shared this sentiment. According to him, most current graduates lack practical experience on hybrid seed development, inbred line maintenance and knowledge on the general requirements of a robust seed industry. “It is important that universities can link their students to private seed companies and work together towards a common goal,” he explained. “This human resource development drive is part of CIMMYT’s efforts to help Nepal on its journey to self-reliance.”

Organizers of the stakeholder consultation workshop to enhance the role of higher learning institutions in the Nepal seed sector at AFU, Chitwan. (Photo: Bandana Pradhan/CIMMYT)
Organizers of the stakeholder consultation workshop to enhance the role of higher learning institutions in the Nepal seed sector at AFU, Chitwan. (Photo: Bandana Pradhan/CIMMYT)

Shared responsibilities and equal economic benefits

Women play a crucial role in Ethiopian agriculture. A significant portion of their time is spent in the field helping their male counterparts with land preparation, planting, weeding and harvesting. Despite this, women face barriers in accessing productive resources and gaining financial benefits.

In 2015 and 2016, there was a 9.8% gap in farming plot productivity between woman- and man- managed farms in Ethiopia, which translated to a $203.5 million loss in the country’s GDP. Access to mechanization services though service provision could contribute to decreasing this gap.

The International Maize and Wheat Improvement Center (CIMMYT) and the German development agency GIZ have been testing service provision models in different areas of Ethiopia to expand small-scale agricultural mechanization that would benefit both men and women.

Zewdu Tesfaye, a smallholder farmer and mother of two, lives in the Amba Alaje district of the Tigray region. Two years ago, she paid $8 to become a member of the Dellet Agricultural Mechanization Youth Association (DAMYA), established to provide agricultural mechanization services in the area.

Zewdu Tesfaye drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)
Zewdu Tesfaye drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)

Along with other members, Tesfaye provides various services to farmers in her area that need assistance. “I take part in every assignment the group is tasked with. I drive the two-wheel tractor and I support during threshing and irrigation,” she says.

Tesfaye has now secured a job providing these services and has started earning income. In November 2019, she received $72 from the association’s threshing services, which she saved in the bank. If women are given equal opportunities and equal access to resources, she says, they have the capacity to do anything that will empower themselves and change their families’ lives.

DAMYA currently has 12 members — eight men and four women — and all responsibilities are shared, with benefits divided equally. “Agricultural mechanization is an area less accessible to women,” explains group chair Alemayehu Abreha. “Thus, we highly encourage and motivate our women members to maximize their potential and invite other women to witness that everything is possible.”

Belay Tadesse, regional advisor for GIZ’s Integrated Soil Fertility Management project, explained that the initiative aims to benefit both women and men as service providers and recipients. Various trainings are provided for women, so that they are well acquainted with the machinery, as well as with the business aspects of each model. Events and other activities are also helping spread awareness, to attract and encourage more women to get involved in similar jobs, adds Tadesse.

Belay Tadesse shows young women from Dellet how the water should flow. (Photo: Simret Yasabu/CIMMYT)
Belay Tadesse shows young women from Dellet how the water should flow. (Photo: Simret Yasabu/CIMMYT)

In the Gudiya Billa district, located about 220 kilometers away from Addis Ababa, the introduction of the two-wheel tractor has been a blessing for many farmers in the area, especially women. For Kidane Mengistu, farmer and mother of six, harvesting season used to bring an added strain to her already existing chores. Now everything has changed. Through the new service provision model, Mengistu is able to get help with her daily tasks from Habtamu, a farmer professionally trained in agricultural mechanization. “We now hire Habtamu, a service provider, to get different services like threshing,” she says. “He does the job in few hours with reasonable amount of payment. This has given me ample time to spend on other household chores.”

Kidane Mengistu is much happier with the threshing service she gets from the service provider. (Photo: Simret Yasabu/CIMMYT)
Kidane Mengistu is much happier with the threshing service she gets from the service provider. (Photo: Simret Yasabu/CIMMYT)

Maize, sorghum and teff are the three main crops grown on Mengistu’s eight hectares of land. With the introduction of the two-wheel tractor and service provision model, she and Habtamu have been able to begin potato irrigation on two hectares — Mengistu provides the land while Habtamu provides and operates the water pump — and together they share costs and income. Mengistu says she and her family have seen firsthand the benefits of the two-wheel tractor and plan to purchase their own someday.