Skip to main content

Harnessing research for climate-resilient wheat

This month, the world’s eyes are upon global leaders gathered in Madrid for COP25 to negotiate collective action to slow the devastating impacts of climate change.

According to the UN, the world is heading for a 3.2 degrees Celsius global temperature rise over pre-industrial levels, leading to a host of destructive climate impacts, including hotter and drier environments and more extreme weather events. Under these conditions, the world’s staple food crops are under threat.

A new video highlights the work of the Heat and Drought Wheat Improvement Network (HeDWIC), a global research and capacity development network under the Wheat Initiative, that harnesses the latest technologies in crop physiology, genetics and breeding to help create new climate-resilient wheat varieties. With the help of collaborators and supporters from around the world, HeDWIC takes wheat research from the theoretical to the practical by incorporating the best science into real-life breeding scenarios.

The man who fed the world

Norman Borlaug was awarded the Nobel Peace Prize in 1970 in recognition of his contributions to world peace through increasing food production. In the latest episode of the BBC radio show Witness History, Rebecca Kesby interviews Ronnie Coffman, student and friend of Norman Borlaug.

Among other stories, Coffman recalls the moment when Borlaug was notified about the Nobel Prize — while working in the wheat fields in Mexico — and explores what motivated Borlaug to bring the Green Revolution to India.

Using the MARPLE kit to diagnose wheat rust in Ethiopia

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab developed by a team from the John Innes Centre (JIC), the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR). It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields.

Designed to be used without constant electricity and in varying temperatures, the suitcase-sized lab allows researchers to identify wheat rust to strain level in just 48 hours — something that used to take months using other tools.

The MARPLE team was recognized as Innovator of the Year for international impact in 2019 by the UK Biotechnology and Biological Sciences Research Council (BBSRC).

A new video from the John Innes Centre shows how the MARPLE Diagnostics kit will allow Ethiopia to quickly identify wheat rust strains, instead of sending samples to labs abroad.

Experimental stations in Mexico improve global agriculture

 

The International Maize and Wheat Improvement Center (CIMMYT) operates five agricultural experiment stations in Mexico. Strategically located across the country to take advantage of different growing conditions — spanning arid northern plains to sub-tropical and temperate climatic zones — the stations offer unique and well-managed testing conditions for a variety of biotic and abiotic stresses.

Heat and drought tolerance in wheat is the focus of study at Ciudad Obregón, while the humid, cool conditions at Toluca are ideal for studying wheat resistance to foliar diseases. The tropical and sub-tropical settings of Agua Fría and Tlaltizapán respectively are suited to maize field trials, while at El Batán researchers carry out a wide variety of maize and wheat trials.

A new video highlights the important and valuable contribution of the five experimental stations in Mexico to CIMMYT’s goal of developing maize and wheat that can cope with demanding environments around the world, helping smallholder farmers in Africa, Asia and Latin America adapt to challenges like climate change, emerging pests and disease, and malnutrition.

Featuring aerial cinematography and interviews with each station’s manager, the video takes viewers on a journey to each experimental station to highlight the research and management practices specific to each location.

In addition to their role in breeding maize and wheat varieties, CIMMYT’s experimental stations host educational events throughout the year that train the next generation of farmers, policymakers and crop scientists. They also provide the canvas on which CIMMYT scientists develop and test farming practices and technologies to help farmers grow more with less.

Some of the stations also hold historical significance. Ciudad Obregón and Toluca are two of the sites where Norman Borlaug set up his shuttle breeding program that provided the foundations of the Green Revolution. It was also in Toluca, while at a trial plot alongside six young scientists from four developing nations, where Borlaug first received news of his 1970 Nobel Peace Prize award.

Seeds of progress

 

The maize seed sector in east and southern Africa is male-dominated. However, there are women working in this sector who are breaking social barriers and helping to improve household food security, nutrition and livelihoods by providing jobs and improved seed varieties to farmers.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies.

SRFSI: The West Bengal story

 

In India’s state of West Bengal, the success of men and women farmers and agri-entrepreneurs is paving the way for the out-scaling of climate-smart conservation agriculture practices for sustainable intensification across the region.

Through the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, the International Maize and Wheat Improvement Center (CIMMYT) is improving productivity, profitability and sustainability across the Eastern Gangetic Plains.

Investing in diversity

 

For more than 50 years, CIMMYT has been dedicated to safeguarding and using maize and wheat genetic diversity for the betterment of millions of peoples’ lives around the globe. To accomplish this mission, CIMMYT relies on the diversity of its staff.

Just as there is no future for our food security and health of ecosystems without plant and animal biodiversity, an organization can only go so far without diversity and inclusion. These are no longer trendy keywords, they ensure success. According to recent studies, as organizations become more inclusive — in terms of age, gender, sexual orientation, race — the performance of their staff can skyrocket by 30% or more.

On the occasion of the International Day for Biological Diversity, we sat down with CIMMYT’s Director of Human Resources, Monika Altmaier, to discuss what organizations can do to become better, more resilient and efficient through investing in the diversity of staff.

Q: How do you see CIMMYT using diversity to support its growth and goals?

Monika Altmaier: As a research organization, we need to be innovative to stay relevant. Hiring diversity fosters just that. Different backgrounds provide different approaches, therefore speeding up the process of locating the best solution. According to experts, inclusive organizations are 1.7 times more likely to be innovation leaders in their market. Combining peoples’ diverse perspectives opens doors to innovation.

Employing diverse staff allows us to be more creative, competitive and improves our best practices. It provides a fresh pair of eyes. For me, diversity is an asset that enables us to learn about ourselves and others and grow, as people and professionals. Figuring out how people think and why is so interesting.

Q: What is CIMMYT doing to attract and retain more diverse talent?

MA: We have just finished sharpening our Gender and Diversity in Research and the Workplace policy. This document outlines how CIMMYT integrates gender and social inclusiveness in its research and innovation for development. Also, it describes what needs to be done to promote gender equality and diversity at all stages of employment, from securing new talent to retaining it.

Creating a 360-degree induction in multiple languages for all of our staff has been high on our agenda ever since hearing opinions of staff from 46 countries that gathered at our Science Week last year. This induction course will outline what is expected from everyone at CIMMYT: respect and dignity for all colleagues and stakeholders, regardless of gender identity and expression, disability or health status.

On a monthly basis, when doing outreach, HR post vacancy announcements that are attractive to people from different countries, that use gender-sensitive language and invite everyone, especially women to apply. We include colleagues of different genders, nationalities, and from various research and administration units in the selection and interview process. We scrutinize shortlists and make sure we are giving everyone the same opportunity.

One thing that is harder to change is the market. Still today, in some countries women do not get the same opportunities as men, not to talk about people from marginalized communities and members from the LGBTQ community. I hope that this will change because equality not only helps companies, but also countries, to have a happier population. CIMMYT works closely with universities across the world to make sure that more and more talent trickles where it is most needed: into research for development.

Monika Altmaier (center) takes a selfie with CIMMYT scientists during CIMMYT's Science Week 2018. (Photo: Alfredo Saenz for CIMMYT)
Monika Altmaier (center) takes a selfie with CIMMYT scientists during CIMMYT’s Science Week 2018. (Photo: Alfredo Saenz for CIMMYT)

Q: In line with hiring diversity, how is CIMMYT attracting millennial talent (people who are mainly born between 1980 and 2000)?

MA: Millennials are a vast workforce. In just a couple years they will reach the peak of representation in the labor force. There is no issue with attracting millennials: thankfully, our mission resonates with them and they are already working for us across all of our offices.

With this Millennial-centric shift, however, the key thing is to meet the needs that they express. Studies say, and I see this in all of our offices, that young people want a more collaborative approach to work. They want to embrace relationships, transparency, dialogue and creativity.

At CIMMYT’s HR, we are exploring different approaches to talent management and succession planning. Traditionally, one progresses hierarchically. But the world, even the research world, is moving too fast to be satisfied with that. We are currently putting our focus on training, which helps with functional evolution. We are exploring the geographic mobility of staff both within the organization and outside, within our vast network of partners, including those within CGIAR. We are also putting more emphasis on work-life balance, which is said to improve employee retention by more than 50%. In the future, we plan to explore functional mobility, too, and encourage young people to think outside the box they may have preselected for themselves at the beginning of their careers.

Q: What do you think about investing in cognitive diversity?

MA: Cognitive diversity helps teams solve problems faster because it unites people with diverse perspective or information processing styles. Basically, how people think about or engage with new uncertain and complex situations.

It’s not easy to surface cognitive diversity and equally complex to harness its benefits. At CIMMYT, we started with doing psychometric testing when hiring team leaders. These tests are designed to measure candidates’ personality characteristics and cognitive abilities. They show if people would fit in a team. Since then we have expanded to testing research and admin teams. In my experience, such tests are highly trustworthy and interesting, and can help team building.

Learn more about job opportunities at CIMMYT

How gender equity and social inclusion are improving the lives of rural families in Africa

Women have the potential to be drivers of agricultural transformation in Africa, holding the key to improving their families’ livelihoods and food security. However, constraints such as lack of access to initial capital, machinery, reliable markets, and knowledge and training are difficult to overcome, leading to restricted participation by women and young people in agricultural systems in Africa.

A new video from the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project highlights the importance of gender equity and social inclusion to achieving project impacts and outcomes, helping to drive transformative change towards securing a food-secure future for Africa. Case studies and interviews with women and men farmers — including young people — detail how SIMLESA’s approach has re-shaped their maize-based farming lives.

The video is aligned with the theme for International Women’s Day 2019, Think Equal, Build Smart, Innovate for Change,” which places the spotlight on innovative ways in which we can advance gender equality and the empowerment of women.

“This video is intended to educate the agricultural community and wider public on the importance of applying sustainable intensification agricultural practices and technologies in order to bridge the gender gap in agricultural productivity and achieve agricultural transformation for smallholder farmers in Africa,” said Rahma Adam, Gender and Development Specialist with CIMMYT in Kenya. “We hope stakeholders will be able to see the benefits of these practices and technologies, and work towards finding ways to implement them into their agricultural practices or programs.”

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)
SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)

Putting equal opportunities at the center

Following a participatory research for development approach, the SIMLESA team works alongside farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently and empowering women, men and young people to make decisions.

The SIMLESA project achieves impact by integrating gender sensitivity into all project activities and developing a deep understanding of social contexts and factors that constrain access to, and adoption of, improved technologies. Initiatives are able to reach all individuals in the project’s target communities, leaving no one out.

“The benefits of fostering equal opportunities for women, men and young people through SIMLESA’s work are enormous,” said Adam. Equal opportunities mean better access to information, markets, and improved varieties of seeds; participation in field trials, demonstrations and training; and the provision of leadership opportunities in local innovation platforms.

Central to the success of the SIMLESA project is the concept of Agricultural Innovation Platforms. “Being members of these platforms, farmers can access credits, which they can use to purchase farm inputs,” explained Adam. “They are able to take part in collective marketing and get a better price for their crops. The Agricultural Innovation Platforms also facilitate training on better agribusiness management practices and the sharing of ideas about other productive investment opportunities to better farmers’ lives. All these benefits were hard to come by when the women and youth farmers were farming on their own without being associated to the SIMLESA project or part of the platforms.”

The words of Rukaya Hasani Mtambo, a farmer from Tanzania, are a testimony to the power of this idea. “As a woman, I am leader of our group and head of my household. I always encourage my fellow women, convincing them we are capable. We should not underestimate what we can do.”

To watch the full video, click here.

To watch other videos about the SIMLESA project, click here.

Farmers and scientists celebrate SIMLESA achievements

Maize is currently grown on 35 million hectares of land in Africa and is easily the most important staple food crop in the continent, feeding more than 200-300 million people and providing income security to millions of smallholder farmers. Nonetheless, African maize growers face many challenges, including lower than average yields, crop susceptibility to pests and diseases, and abiotic stresses such as droughts. They generally lack access to high yielding improved seed and other farming innovations that could help them overcome those challenges.

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project, launched in 2010, supports farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently.

SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries: Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

A new video highlights the outcomes and achievements of the SIMLESA project and it features interviews with farmers and scientists.

Among the outstanding achievements of the SIMLESA project are the release of 40 new maize varieties, the selection of more than 50 legume varieties for official release in partner countries, yield increases of 10 to 30 percent and enhanced adoption of innovative technologies that will aid sustainable intensification of agriculture in sub-Saharan Africa. Over 230,000 farmers have adopted sustainable intensification technologies and the project has helped nurture future scientists by supporting more than 40 students pursuing MSc degrees and more than 20 PhD students.

“The SIMLESA project has successfully adapted and disseminated many scalable technologies to smallholder farmers that will help them achieve higher yields with reduced resource use,” said CIMMYT scientist Paswel Marenya, the coordinator of the project. “We have also sought to understand and improve the entire farming system so that farmers are supported through enabling policies, markets and institutional frameworks.”

The SIMLESA project will be coming to an end in 2019. “The lessons learned from SIMLESA can be used by national and international decision makers to help guide their policy, programming and investment priorities in support of achieving sustainable and resilient agricultural systems in Africa,” Marenya said.

To watch a playlist of SIMLESA videos, click here.

How to identify and scout for fall armyworm

A new 3-D animation video published yesterday shows farmers how to scout for and identify the fall armyworm (Spodoptera frugiperda).

The video shows scouting techniques and highlights the importance of identifying any pest damage at the early stages of crop growth. If the fall armyworm is present, integrated pest management practices can help farmers protect against this pest.
Farmers should avoid applying an indiscriminate amount of chemical pesticides, as that will lead to the fall armyworm building resistance to pesticides. It may also cause harm to people and to the environment.

The video was produced by Scientific Animations Without Borders (SAWBO), funded by USAID and developed by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA) and Michigan State University.

The presence of the fall armyworm in Asia was recently confirmed in India. Native to the Americas, the fall armyworm was detected in Nigeria in 2016, and quickly spread to 44 countries in sub-Saharan Africa, where it caused major crop damage.

Happy Birthday, Norman Borlaug!

Today, the International Maize and Wheat Improvement Center will celebrate what would have been Dr. Norman E. Borlaug’s 100th birthday with the Borlaug Summit on Wheat for Food Security, which brings together wheat scientists, policymakers, and donor agencies to reflect on the successes of the Green Revolution; the new challenges we are facing in terms of wheat production, environmental sustainability, and food security; and the innovations and partnerships we are going to need to meet those challenges. At the Summit, CIMMYT and Biology Fortified will debut a brand new music video produced by John Boswell of Melodysheep featuring Norman Borlaug and some of his signature phrases, fiery outlook, and passion for using science to make the world a less hungry place.

 
The music video combines archival footage of Dr. Borlaug and an inspiring soundtrack to highlight his tireless fight to bring new, useful technologies to farmers. The problems that motivated Dr. Borlaug are still relevant today, and the music video highlights these issues while showing how people can work toward solving them. Boswell, who produced the popular Symphony of Science music video series, transforms the spoken words of famous scientists into music.

The Borlaug Summit on Wheat for Food Security honors the 100th anniversary of the birth and the legacy of Dr. Norman Borlaug, a legendary CIMMYT scientist who developed high-yielding, semi-dwarf wheat that is credited with saving over 1 billion people from starvation. The Summit will look back at Borlaug’s legacy as the father of the Green Revolution, which sparked key advances in food production. He was awarded the Nobel Peace Prize in 1970 in recognition of his contributions to world peace through an increased food supply. Borlaug’s wheat varieties were grown in Mexico, Turkey, India and Pakistan, boosting harvests in those countries, avoiding famine in South Asia and sparking widespread adoption of improved crop varieties and farming practices.

In celebration of Dr. Borlaug’s centennial, throughout the year Biology Fortified will produce content – interviews, articles, blog posts, and other interactive features – about wheat and its importance around the world. Biology Fortified will aim to educate about the history and biology of the crop, and spark discussions of critical issues in its future. They will also include videos about how wheat is used in cuisines throughout the world, with recipes that people can try at home.

View the Play Hard video on YouTube.

For more information on the Borlaug Summit on Wheat for Food Security, visit www.borlaug100.org.

Dr. Norman E. Borlaug

 
CIMMYT fights hunger and poverty in the developing world through smarter agriculture. We are the world’s number one caretaker and developer of maize and wheat, two of humanity’s most vital crops. Maize and wheat are grown on 200 million hectares in developing countries. 84 million of those hectares are planted with varieties of CIMMYT seed. We also maintain the world’s largest maize and wheat seed bank at our headquarters in Mexico.

We are probably best known for prompting the Green Revolution, which saved millions of lives across Asia and led to CIMMYT’s Norman Borlaug receiving the Nobel Peace Prize. Because of population growth, natural resource degradation, and climate change the current challenge is to feed more people, with less resources, and in a more environmentally responsible way than ever before. It can be done.

Why invest in wheat research?

 

Wheat is the most important food crop worldwide and a principal source of nutrients in some of the poorest countries of Asia, Africa, and Latin America. But wheat, like all living organisms, is unimaginably complex.

CIMMYT scientist Matthew Reynolds believes that for this reason we need a whole consortium of scientists to improve its yield. This video highlights work that has already been done to increase the productivity of wheat through research in spike photosynthesis, roots and breeding. Because when it comes down to it, crop yields cannot be improved overnight, certainly not sustainably. It takes time and investment, and by planning ahead we are actually trying to preempt a disaster, with research and with partnership.