Skip to main content

50 years building peace through agriculture

On December 10, 1970, the former chair of the Nobel Committee, Aase Lionaes, called Norman Borlaug to receive the Nobel Peace Prize arguing, “He has given us a well-founded hope, an alternative of peace and of life — the Green Revolution.”

From that moment, Borlaug became known as “the man who saved one billion lives” from famine and as “the father of the Green Revolution.” Borlaug started a pivotal process in the 20th century, characterized by the development of high-yielding new wheat and maize varieties from the International Maize and Wheat Improvement Center (CIMMYT).

“Food is the moral right of all who are born into this world,” Borlaug said during his acceptance speech or Nobel Lecture almost 50 years ago. The scientist, credited for coining the phrase “You can’t build peace on empty stomachs,” became the world’s most acknowledged advocate of the right to food.

The Nobel Peace Center, the government of Mexico — through its Embassy in Oslo, Norway — and CIMMYT remembered Norman Borlaug’s legacy to commemorate the International Day of Peace on September 21. Established in 1981 by the United Nations General Assembly, this day calls to halt all forms of violence for 24 hours and to strengthen the ideals of peace, including Sustainable Development Goal number 2, ‘zero hunger.’

“Dr. Borlaug’s impact is an example of international cooperation for us to learn from and build the future,” said Ulises Canchola Gutiérrez, Mexico’s Ambassador to Norway, in the video Borlaug’s legacy: Agriculture for Peace #PeaceDay 2020.

According to the Nobel Peace Center, “Dr. Norman Borlaug’s work is one of the greatest achievements for humankind.” On a similar note, CIMMYT’s director general, Martin Kropff, noted that “Peace lies in the hands of those who cultivate the land. We can build peace through agriculture.”

CIMMYT carries on Borlaug’s legacy by implementing integrated strategic development projects that aim to transform food production units into sustainable, resilient and healthy agri-food systems. For that reason, CIMMYT issued a call to form an international coalition to tackle the current crisis and avert a new food crisis.

“Norman Borlaug led the charge in the war against hunger more than 50 years ago; let us learn from this experience, let us do it again together by listening to the current crisis and by developing a matching transformative answer to overcome today’s challenges and shortcomings,” said Bram Govaerts, director of CIMMYT’s Integrated Development program and representative for the Americas.

How do I become a zero-till farmer?

“What you are now about to witness didn’t exist even a few years ago,” begins the first video in a series on zero tillage produced by the International Maize and Wheat Improvement Center (CIMMYT). Zero tillage, an integral part of conservation agriculture-based sustainable intensification, can save farmers time, money and irrigation water.

Through storytelling, the videos demonstrate the process to become a zero till farmer or service provider: from learning how to prepare a field for zero tillage to the safe use of herbicides.

All videos are available in Bengali, Hindi and English.

This videos were produced as part of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, funded by the Australian Centre for International Agricultural Research (ACIAR). The videos were scripted with regional partners and filmed with communities in West Bengal, India.

Conservation Agriculture Visual Syllabus (English):

 

Conservation Agriculture Visual Syllabus (Hindi):

 

Conservation Agriculture Visual Syllabus (Bengali):

Lessons for gender in seed systems

Seed systems are complex and dynamic, involving diverse, interdisciplinary actors. Women play an important role in the seed value chain, although underlying social and cultural norms can impact their equal participation. Gender-sensitive seed systems will create more opportunities for women and increase food security.

The International Maize and Wheat Improvement Center (CIMMYT) convened a multi-stakeholder technical workshop titled, “Gender dynamics in seed systems in sub-Saharan Africa and worldwide lessons” on December 2, 2019, in Nairobi, Kenya. Researchers and development practitioners operating in the nexus of gender and seed systems shared lessons learned and research findings to identify knowledge gaps and exchange ideas on promising — and implementable — interventions and approaches that expand opportunities for women in the seed sector.

Preserving the legacy of biodiversity

Seed security is the first step towards food security. The International Maize and Wheat Improvement Center (CIMMYT) preserves 28,000 unique seed samples of maize and 150,000 of wheat at its genebank in Mexico.

The Global Seed Vault in Svalbard opened in 2008. Since then, CIMMYT has duplicated and deposited 50 million seeds — 170,000 samples of maize and wheat — at Svalbard.

This year, CIMMYT sent 24 boxes of seed, with 332 samples of maize and 15,231 samples of wheat.

Join these seeds on a journey, as they travel more than 8,000 km from CIMMYT’s genebank in Mexico to the Global Seed Vault in the Arctic.

A supermarket, rather than a museum

This treasure, kept in the global network of genebanks, is key to ensuring sustainable, nutritious agricultural systems for future generations.

The purpose of genebanks is not just to preserve seed, but to use its biodiversity to address the needs of the future — and the needs of today.

Climate change is already impacting resource-poor farmers and consumers in low- and middle-income countries. Researchers and breeders at CIMMYT are rolling out solutions to these challenges, based on the diverse genetic resources kept in the genebank. As a result, farmers can use new varieties that yield more, need less inputs, and are more tolerant to drought or heat.

Our internal estimates show that about 30% of maize and more than 50% of wheat grown worldwide can be traced to CIMMYT germplasm.

Humanity’s legacy

Maize and wheat originated about 10,000 years ago. Since then, it’s survived war, drought, diseases, migration, birds, low yields — and the hard choice between feeding children or planting again.

Keepers of genebanks around the world are only the depositors of this legacy, which belongs to all humanity. CIMMYT will continue to preserve these seeds and to make their biodiversity available to researchers and famers, to solve today’s and tomorrow’s most pressing issues.

Cover photo: A NordGen staff member brings a box of seed into the Global Seed Vault in Svalbard, Norway. (Photo: Thomas Sonne/Common Ground Media for NordGen)

The value of research on plant resistance to insects

Crop pest outbreaks are a serious threat to food security worldwide. Swarms of locusts continue to form in the Horn of Africa, threatening food security and farmer livelihoods ahead of a new cropping season. The devastating fall armyworm continues cause extensive damage in Africa and South Asia.

With almost 40% of food crops lost annually due to pests and diseases, plants resistance to insects is more important than ever. Last month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT) global headquarters outside Mexico City.

Watch Mike Smith, entomologist and distinguished professor emeritus at Kansas State University explain the importance of working with economists to document the value of plant insect resistance research, and why communication is crucial for raising awareness of the threat of crop pests and insect resistance solutions.

One-minute science: Cesar Petroli and genomic profiles

Cesar Petroli, High-throughput Genotyping Specialist with the International Maize and Wheat Improvement Center (CIMMYT), develops genomic profiles of DNA samples, generating tens or even hundreds of thousands of molecular markers. This helps the team to set up genetic diversity analysis, improve genebank collections management and identify genomic regions associated with the expression of important agronomic traits.

Watch him explain how this molecular information can help the breeding process, to ultimately help farmers face climate change and food security challenges.

Wheat curl mites: What are they and how can we fight them?

The wheat curl mite, a pesky wheat pest which can cause up to 100% yield losses, is a significant threat to wheat crops worldwide. The pest has been confirmed in Asia, Australia, Europe, North America and parts of South America. Almost invisible to the naked eye, the microscopic pest is one of the most difficult pests to manage in wheat due to its ability to evade insecticides.

We caught up with Punya Nachappa, an assistant professor at Colorado State University, at this year’s International Plant Resistance to Insects (IPRI) Workshop to discuss wheat curl mites and how to fight them. She explains how the mite cleverly avoids insecticides, how climate change is leading to increasing populations and why breeding for host plant resistance is the main defense against outbreaks.

ICARDA’s Mustapha El-Bouhssini explains how crop pests are moving in a warming world

Insect resistance in plants is needed now more than ever. The UN, which has named 2020 as the International Year of Plant Health, estimates that almost 40% of food crops are lost annually due to plant pests and diseases.

Earlier this month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT).

We caught up with Mustapha El-Bouhssini, principal scientist at the International Center for Agricultural Research in the Dry Areas (ICARDA) to discuss insect pests and climate change. He explains how pests such as the Hessian fly — a destructive wheat pest which resembles a mosquito — and the chickpea pod borer are extending their geographical ranges in response to rising temperatures.

One-minute science: Suchismita Mondal on breeding resilient wheat

Reduced water availability for irrigation and increasing temperatures are of great concern. These two factors can considerably affect wheat production and reduce grain yields.

Watch CIMMYT Wheat Breeder Suchismita Mondal explain — in just one minute — how breeders are developing wheat varieties that have stable grain yield under low water availability and high temperatures.

One-minute science: Trent Blare and blue maize products

Some of Mexico’s favorite dishes are taking on a new hue with blue corn chips, blue tortillas or blue tamales. But should breeders, millers, processors and farmer organizations invest in expanding the production of blue maize and blue maize products? Are consumers really interested, and are they willing to pay more?

CIMMYT markets and value chain specialist Trent Blare explains, in one minute, the results of his study, which gives insight into Mexican consumers’ preferences and demand for blue maize tortillas. Consumers near Mexico City perceived blue maize tortillas to taste better and were willing to pay up to a third more to buy them for special family events or to consume them in a restaurant .

One-minute science: Khondoker Mottaleb on how to meet food demand by 2030

How can we ensure we have enough food to meet the demand by 2030? First, we need to understand food consumption patterns and how they are influenced by variables such as urbanization, population and economic growth, income, beliefs and more. 

Agricultural economist Khondoker Mottaleb is working on a project to examine food demand by 2030, considering these factors. Watch him share preliminary results  in just one minute.  

Bringing landraces back home, 50 years later

 

Maize is more than a crop in Mexico. In many cases, it connects families with their past. Landraces are maize varieties that have been cultivated and subjected to selection by farmers for generations, retaining a distinct identity and lacking formal crop improvement. They provide the basis of Mexico’s maize diversity.

Back in 1966-67, researcher Ángel Kato from the International Maize and Wheat Improvement Center (CIMMYT) collected 93 maize landraces samples from 66 families in Mexico’s state of Morelos. These seeds were safeguarded in CIMMYT’s Germplasm Bank, which today stores 28,000 samples of maize and its wild relatives from 88 countries.

50 years later, doctoral candidate Denisse McLean-Rodriguez, from the Sant’Anna School of Advanced Studies in Italy, and researchers from CIMMYT started a new study to trace the conservation and abandonment of maize landraces over the years.

The study shows that landrace abandonment is common when farming passes from one generation to the next. Older farmers were attached to their landraces and continued cultivating them, even in the face of pressing reasons to change or replace them. When the younger generations take over farm management, these landraces are often abandoned. Nonetheless, young farmers still value the cultural importance of landraces.

Maize landraces can be conserved “in situ” in farmers’ fields and “ex situ” in a protected space such as a germplasm bank or community seed bank. The loss of landraces in farmers’ fields over 50 years emphasizes the importance of ex situ conservation. Traits found in landraces can be incorporated into new varieties to address some of the world’s most pressing agriculture challenges like changing climates, emerging pests and disease, and malnutrition.

This research was supported by the CGIAR Research Program on Maize (MAIZE), the Sant’Anna School of Advanced Studies, Wageningen University and the Global Crop Diversity Trust.

Fireflies, food and future systems – scientists share inspiration behind choosing science as a lifestyle

Plant breeding, genetics, math and software development are all stereotypically male fields. For too long, women have been excluded from these fields for social, religious, cultural and “Oh, it’s a boys’ club, I don’t feel welcome” reasons, thus depriving scientific progress of great female minds and ideas.

In light of the International Day of Women and Girls in Science, we stopped to ask four scientists and leaders at the International Maize and Wheat Improvement Center (CIMMYT) why they chose science. Here are some inspiring highlights.

What made you want to become a scientist?

Margaret Bath, Member of the CIMMYT Board of Trustees: “I love food and I love science and math, so I had the opportunity to combine […] three things that I love very much and make a great career out of it. I’m a firm believer in math and science as an enabler for solving complex problems that face our society today.”

https://www.instagram.com/p/B8SFzWyg86c/

Cynthia Ortiz, researcher in CIMMYT’s Genetic Resources Program: “I remember one time when I was watching fireflies. My grandfather approached me and asked me if I understood why they shine and I said ‘no.’ I remember well what he said to me: ‘The world is much more than what we see, hear and feel.’ In that moment, I knew that I wanted to understand more about the things that surround us.”

https://www.instagram.com/p/B8T52Y7nt_r/

What’s the best thing about being a scientist?

Aparna Das, Technical Program Manager in the Global Maize Program, CIMMYT: “The whole idea where I use information, knowledge and technology to generate biological products was very exciting for me. The biggest learning I have had in the 25 years of my career as a plant-breeding scientist […] has been how I can use the vast information, combine it with the present day technological advances and deliver something for the future, which can address the global food crisis problem, which is looming […] in the near future.”

https://www.instagram.com/p/B8Zeau5neHq/

Philomin Juliana, wheat scientist in CIMMYT’s Global Wheat Program: “How you can use scientific research to answer lots of different questions and how you can solve […] different problems using math, data analysis. All these are key questions that affect humankind today and how we can design future systems based on our current understanding of systems and also how all these together can help us make a difference in the lives of farmers and the poor.”

https://www.instagram.com/p/B8Z2WTfH-sh/

Are you passionate about science and want more women to get involved? join CIMMYT’s #WhyIChoseScience campaign. Take out your phone, click ‘record’ and share what made you want to become a scientist!

One-minute science: Jelle Van Loon explains mechanization for agriculture

Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYT’s mechanization work is context-specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.  

Jelle Van Loon, CIMMYT mechanization specialist, explains how his team prototypes innovations that allow precision farming and supports different actors in the value chain from importers to policy-makers to create broader availability of farm equipment.  

One-minute science: Carolina Rivera explains wheat physiology

Wheat provides, on average, 20% of the calories and protein for more than 4.5 billion people in 94 developing countries. To feed a growing population, we need both better agronomic practices and to grow wheat varieties that can withstand the effects of climate change and resist various pests and diseases.

Watch CIMMYT Wheat Physiologist Carolina Rivera discuss — in just one minute — choosing and breeding desirable wheat traits with higher tolerance to stresses.