Skip to main content

Farmers trained in irrigation plot layout

As the effects of climate change intensify, rain dependent crop production is becoming more challenging for smallholder farmers in Malawi, Tanzania and Zambia. Farmers often experience either too little or too much rain to effectively grow their crops, which means growing crops under irrigation is becoming key to building resilience to climate shocks. However, smallholder farmers often lack the access to equipment and skills to implement low-cost irrigation technologies.

The Accelerated Innovation Delivery Initiative (AID-I) implemented by the International Center for Maize and Wheat Improvement (CIMMYT) with funding from the United States Agency for International Development (USAID) has partnered with Total LandCare (TLC) Malawi and Zambia to promote Sustainable Intensification practices in eastern and central Malawi. TLC conducted a training session on using treadle pumps for irrigation plot layout in Mumbi Village, Petauke District, Zambia.

Farmers setting up an irrigation plot as a live demonstration. (Photo : TLC)

Letting gravity do the work

The irrigation system operates on the principle of pumping water manually from a low point to a high point from which the water then flows by gravity through a system of channels to irrigate crops.

Properly managed, treadle pump irrigation can improve household food security, income, nutrition, and health sustainably without detrimental effects to the environment.

The training educated 12 farmers in establishing an irrigation layout using gravity-fed basins, with water pumped from a stream downhill using a treadle pump. Participants learned how to erect channels that directed water into basins.

During practical irrigation training in Muya village of Mondolo camp, Petauke district, one of the farmers, Magret Tembo said, “This method of irrigation will negate the burden associated with use of watering cans, a practice which has been giving us backaches. Through this technology, we will experience increased production through better water management and increased area coverage.”

Following the setup demonstration, participants received practical guidance on various aspects of irrigation and crop management, covering such topics as planting techniques and effective fertilizer use, and application of pesticides and fungicides.

Inexpensive and durable

“Treadle pump irrigation offers tremendous opportunities to dramatically increase agricultural production while enriching the livelihoods of many resource-poor farmers,” said Zwide Jere, Co-founder/Managing Director of TLC.

Treadle pumps are inexpensive, so individuals can afford to purchase one and they are durable and easy to maintain, so one pump will work for years for individual households.

“The pumps are also designed to work in many environments,” said Paul Malambo, Country Manager for TLC Zambia. “So, over the years, TLC has been able to distribute the pumps in Malawi, Mozambique, Tanzania and Zambia.”


A farmer demonstrating how to use the pump (top left and right) in Kasenengwa, Zambia (Photo: TLC)

“Providing access to technical knowledge and support for under-utilized land, water and labor resources is an important part of the AID-I project, said Kevin Kabunda, CIMMYT lead for the AID-I. “As is collaboration with local partners like TLC who facilitate the dissemination of expertise.”

TLC is a registered non-governmental organization based in Malawi and active in Zambia. Its mission is to empower self-reliance and prosperity for rural households in the Southern Africa region.

Farmers’ Hub launched in Nigeria to boost food security and agricultural development

In a strategic move to improve food security and promote agricultural development, Syngenta Foundation Nigeria, one of the key partners in the Dryland Crops Program (DCP), has introduced a new initiative known as the AVISA Farmers’ Hub. The initiative was launched at an event in the Murya Community of Obi Local Government Area in the Nasarawa State of North Central Nigeria. The Farmers’ Hub aims to support and empower farmers in the region, contributing to the overall objectives of the DCP.

The introduction of the Farmers’ Hub comes at a time when smallholder farmers in the region are grappling with limited access to essential resources such as knowledge, high-quality inputs, modern technology, and reliable markets, all of which are critical for achieving high-quality agricultural productivity.

A farmers’ hub (FH) is an all-inclusive commercial platform that provides diverse inputs such as seeds, seedlings, fertilizers, and crop protection products, as well as price and weather information. In addition, it provides farmers with value-added services such as aggregation, cleaning, sorting and grading of produce, bulk sales, training, equipment leasing and rental, financing, and trade credit. Smallholder farmers can now take advantage of the opportunities provided by the Farmers’ Hub by transitioning from subsistence agriculture to a commercially oriented system.

Inside the farmer’s hub. The hub is all-inclusive platform offering a wide range of inputs including seeds, seedlings, fertilizers and more (Syngenta Foundation Nigeria).

During the event, the Country Program Manager of Syngenta Foundation Nigeria, Isaiah Gabriel, emphasized the foundation’s dedication to commercializing AVISA crops: “The foundation is working to facilitate the commercialization of cowpea, sorghum, groundnuts, and pear millet.” Gabriel also emphasized the importance of raising awareness among farmers and establishing a platform that provides smallholder farmers with improved seeds, seedlings, fertilizers, mechanization, and other value-added services. He urged farmers in the state to maximize their utilization of the Farmers’ Hub and its services, which are intended to facilitate improved seed production and service delivery.

The Farmers’ Hub was established with the goal of resolving access issues, optimizing yields, aggregating grains, and overcoming market challenges. Finally, the hub hopes to improve food security and increase the income of smallholder farmers.

Prof. Mary Yeye, the National Coordinator of AVISA, commended the initiative and emphasized the importance to farmers of taking advantage of the project and making prudent use of its resources as she addressed the participants.

Experts in attendance, that included Prof. Lucky Omoigui, a seed system specialist from the International Institute of Tropical Agriculture (IITA), Prof. SG Gaya, a groundnut breeder from Bayero University Kano (BUK), and Prof, Alhassan Lalihu from the Federal University Lafia, discussed several of the obstacles to high agricultural productivity. These factors include restricted access to improved seeds, expensive fertilizers, and security concerns. The experts lauded the Farmers’ Hub as the final step in delivering resources to smallholder farmers. In addition, they urged all levels of government to intensify efforts to subsidize input costs and improve farmers’ security.

The program manager of the Nasarawa State Agricultural Development Program, Emmanuel Alanama, responded by thanking Syngenta Foundation for selecting Nasarawa State for this significant project. He acknowledged that 75 to 80 percent of the state’s population are farmers and expressed the willingness of the state government to collaborate and support any agricultural initiatives.

Farmers participating in a training session at the farmers hub. (Syngenta Foundation Nigeria)

Rowland Alaku, manager of the Farmers’ Hub, assured farmers that they would have guaranteed access to quality seeds. The farmers in attendance expressed their gratitude for the initiative and promised to utilize the hub fully in order to benefit their own farming endeavors.

Other dignitaries in attendance included Prof. Johnson Onyibe from Ahmadu Bello University (ABU), Zaria; Dr. Teryima Iorlamen from the University of Agriculture, Makurdi; and several village heads. More than 150 farmers, stakeholders, and government officials attended the event, highlighting its importance.

Strengthening farmer resilience through sustainable synergies between crops and livestock

Local farmer showcases her indigenous seed during the seed and livestock fair in Mbire. (Photo: CIMMYT)

Farmers, stakeholders, and partners, including seed companies, Hamara Chicks, PHI Commodities, the International Livestock Research Institute (ILRI), BioHUB Trust (BHT), Kurima Machinery and Technology, and Zimplow Limited, participated in the Seed and Livestock Fair in the Mbire and Murewa districts of Zimbabwe, which showcased indigenous and improved seed varieties and different technologies to strengthen crop and livestock value chain systems.

Initiated by CIMMYT in 2022, as the CGIAR Initiative on Agroecology, these series of fairs have become instrumental in bringing agrodealers closer to farmers and showcasing sustainable technologies and innovations that have the potential to strengthen production systems. It was also an opportunity for the agroecology initiative team to provide feedback to farmers and stakeholders on ongoing activities and technologies that were being tested since the initiative’s inception in Zimbabwe. By adopting a multi-partner approach, these fairs bring local food systems actors together to ensure food and nutrition security and improved income for farmers.

“The agroecology initiative has been collaborating with an array of organizations and institutes that can support our mission towards promoting agroecology and improving farming production, including other CGAIR entities like IWMI and ILRI, Hamara Group, Ecolyfe, and PHI Commodities,” said Dorcas Matangi, research associate at CIMMYT.

This year’s edition of the seed and livestock fair “Fostering Synergies: Diverse Crops, Livestock and Inclusive Communities” advocated for enhancing synergies within the farm to foster sustainable agroecology transitions for resilient food and nutrition outcomes. With over 800 farmers and stakeholders participating, the event provided a vibrant platform for knowledge sharing, exploration of indigenous and improved seed varieties, and sensitization of innovative technologies.

“The seed and livestock fairs hosted by the agroecology initiative bring together farmers and food system actors from all walks of life to foster learning around agroecology, which includes the importance of diversity (crop and livestock) while also appreciating local innovations in the respective area,” said Jesca Mapfinya, a Murewa farmer.

The right seed, assures a good harvest

Various seed companies participated in the fair to showcase different seeds which are well adapted in Murewa and Mbire districts.  Each agroecological region in Zimbabwe is unique, with adaptable seed varieties that are either landrace or improved. Local landraces and many underutilized crop species are adapted to weather and climate variability, climate change, and extreme weather such as drought and heat stress. Farmers indicated that their motivations for growing landraces are related to sustainable farming systems suitable for social, cultural, nutritional, and agronomic traits. Their place in rural communities remains important, providing much-needed functional diversity and social capital. Including improved varieties within the basket of options can further intensify production systems in these communities.

“Primarily, we sell seed varieties and build farmer capacity around appropriate agronomic practices. The seed fairs are a good platform to match seeds and systems and allows a farmer to provide feedback about our seed varieties and how they are performing in the respective areas,” said Onesmous Satenga, SeedCo.

Farmers interact and purchase seed from a local company. (Photo: CIMMYT)

Building crop and livestock synergies

For the first time since the inception of the fairs, livestock such as cattle, sheep, goats, chicken and rabbits were displayed. Partners, including ILRI and the Hamara Chicks, who are into sasso chicken and feed production, reiterated the importance of crop diversity for improved livestock nutrition. ILRI and the Grasslands Research Institute exhibited various local feedstocks and alternative livestock feed grasses and also presented several feed formulations. Farmers also provided feedback on the feeding strategies employed for different livestock.

“We feed cattle with poultry litter, maize grain, maize stover, and groundnut shells in various proportions depending on the availability of these feed sources. Forage legumes such as velvet bean (mucuna pruriens) and lablab (lablab purpureus) have been introduced, and we have started to grow these for feed,” said Samson Tashaya, Murewa farmer.

Local goat breeds showcased by farmers during the seed and livestock fair. (Photo: CIMMYT)

Of keen interest to farmers and stakeholders was the sasso breed of chickens that the Hamara Group was promoting.

“We have recently joined as partners with CIMMYT and are promoting hybrid chicken production, especially sasso, here in Murewa ward 27 and 4. This is our first time coming to this seed fair, and it was a learning opportunity. The interactions with farmers were really good,” said Alan Norton, team leader at Hamara Chicks.

Modernizing smallholder production systems

Mechanization experts from Kurima Machinery and Zimplow shared their recommendations at the fair. They acknowledged that farmers rely heavily on scarcely available labor and production activities that are backbreaking. They advocated for modern production systems to produce more food and support economic transformation. Experts from Kurima Machinery and Zimplow demonstrated several machines that could aid farmers in various on-farm activities.

“This fair has come at the right time as I begin land preparation for my pfumvudza (conservation agriculture plots). I have seen how the basin digger works, and I am keen to purchase an instrument to make my work much easier,” said Chief Chisunga, Mbire.

“This crop season’s outlook is still unclear, but weather experts have warned of an intense El Nino event likely to happen in the second half of the season. Technologies such as conservation agriculture can ensure good moisture retention in crop fields, and it needs to be paired with good agronomic practices,” said Tafadzwanashe Mabhaudhi, climate and food systems expert.

Live demonstration by Kurima of machinery equipment to local farmers (Photo: CIMMYT)

Nepal maize farmers share vision of a more profitable future with visiting agriculture officials

In a visit to 5 model sites for maize marketing in midwestern Nepal, 30 federal, provincial and local agricultural authorities were impressed with the coordination and capacity development among market actors, improved supply chain management and leveraging of government support, all of which are benefiting farmers and grain buyers.

Following visits to commercial maize fields and hearing stakeholders’ perceptions of progress and key lessons, the authorities proposed additional funding for irrigation, machinery, grain grading and crop insurance, among other support, and promised to help expand activities of the model sites, which were established as part of the Nepal Seed and Fertilizer (NSAF) project.

Led by CIMMYT with funding from the United States Agency for International Development (USAID) and in its second-last year of operation, the project is working to raise crop productivity, incomes and household food and nutrition security across 20 districts of Nepal, including 5 that were severely affected by the catastrophic 2015 earthquake and aftershocks which killed nearly 9,000 and left hundreds of thousands homeless.

Participants at Sarswoti Khadya Trader, Kohalpur, Banke. (Photo: CIMMYT)

The visitors included officials and experts from the Ministry of Agriculture and Livestock Development (MoALD); the Department of Agriculture (DoA); the Ministry of Land Management, Agriculture and Cooperatives (MoLMAC); the Agriculture Development Directorates (ADD) for Lumbini and Sudurpaschim provinces; the Agriculture Knowledge Centres (AKC) of Banke, Kailali, Kanchanpur, Dang, and Kapilvastu districts; the Prime Minister Agriculture Modernization Project (PMAMP) offices of Dang and Bardiya; and the National Maize Research Program; the Department of Livestock Services; along with NSAF project team members.

The participants interacted with farmers, cooperative leaders, traders, rural municipality officials and elected representatives, and feed mill representatives. Sharing their experiences of behavioral change in maize production, farmers emphasized the benefits of their strengthened relationships with grain buyers and their dreams to expand spring maize cultivation.

Shanta Karki, deputy director the General of Department of the DoA lauded CIMMYT efforts for agriculture growth, improved soil fertility and sustainable agriculture development through NSAF.

Madan Singh Dhami, secretary, MoLMAC in Sudurpaschim Province, emphasized the importance of irrigation, building farmers’ capacities and interactions with buyers, and applying digital innovations to catalyze extension.

CIMMYT scientists have been based in CIMMYT’s office in Nepal and worked with Nepali colleagues for more than three decades to boost the productivity, profitability and ecological efficiency of maize- and wheat-based cropping systems and thus improve rural communities’ food security and livelihoods.

Empowering local mechanics for sustainable machinery maintenance

Smallholder mechanization out scaling depends upon the availability of skilled mechanics who are fully oriented with machinery operation. However, this crucial skillset is often identified as a missing link. In many instances, lack of care or regular checks and the absence of readily available mechanics has led to the failure of mechanization projects in sub-Saharan Africa, with frequent machine breakdowns and equipment left sitting idle long after a project intervention. Across smallholder farming communities, this phenomenon can be seen through the presence of obsolete and abandoned machinery often serving as breeding grounds for birds.

The Feed the Future Zimbabwe Mechanization and Extension Activity, funded by the United States Agency for International Development (USAID), aims to break this vicious cycle by improving the skillset of local mechanics and helping them stay in tune with evolving innovations in farm machinery. Implemented by CIMMYT, this activity targets existing mechanics across ten districts in Zimbabwe, offering specialized maintenance services to providers who own machinery. Through investing in their training, local capacity to troubleshoot, service and repair machinery will increase.

For most mechanics, the training workshop presents a first-hand experience of handling small machinery. (Photo: Shiela Chikulo/CIMMYT)

Gaining practical experience

 The program approaches training through full immersion and a deep dive into the individual components of key equipment. Workstations are set up to include a diesel engine—which forms the core of most of the machinery—a two-wheel tractor and post-harvest machines such as the multi-crop thresher, feed-chopper grinder and peanut butter machine.  For most of the participants, the workshop presents them with first-hand experience of handling such machinery.

 Andy Chagudhuma and Tendai Machonesa—from Bikita and Chiredzi, respectively—were among the first ten mechanics to participate in the five-day training. “I learned about all the machines here,” says Chagudhuma, “breaking them apart and fixing them. We worked through different scenarios while perfecting our knowledge on the operation of all the machinery.” With new skills gained, they eagerly await the opportunity to offer their expertise to service providers in their local areas, and a newfound confidence fuels their commitment to providing support through repair and maintenance work.

 However, one remaining challenge is the notable absence of female participants in the training. While the field of mechanics is often male-dominated, the Mechanization Activity seeks to promote a gender-inclusive environment for local mechanics and service providers through awareness meetings and skills training. In the future, more machinery and technical trainings will be targeted specifically towards women as a way to redress this imbalance.

Overall, the benefits of the training echo far beyond the workshop itself. Through the skills acquired, opportunities for additional income generation increase, and the participation of rural youths in mechanization-oriented businesses and a thriving local economy are possible. By empowering local mechanics, the Mechanization Activity not only breathes life into their communities and the machinery sector but also paves the way for one of the project’s key objectives—the establishment of successful and entrepreneurial service providers.

Extension capacity-building leverages Nepal soil, seed and science for rice farming

Workshop participants. (Photo: CIMMYT)

Staff of the Nepal Seed and Fertilizer (NSAF) project conducted a three-day “training of trainers” workshop on integrated soil fertility management and related practices for commercial rice farming, for 50 agricultural technicians from 50 farm cooperatives in districts of mountainous midwestern Nepal and its lowland Terai Region.

Held in Nepalgunj, midwestern Nepal, the workshop focused on the “4Rs” for soil fertilization—right source, right rate, right time, and right place—along with other best farming and soil nutrient stewardship practices for rice-based farming systems.

“Subject matter was comprehensive, covering variety selection, transplanting, weeding, management of nursery beds, fertilizer, irrigation, controlling pests and diseases and proper handling of rice grain after harvest,” said Dyutiman Choudhary, NSAF project coordinator and scientist at CIMMYT. “Topics relating to the integrated management of soil fertility included judicious application of organic and inorganic fertilizer, composting and the cultivation of green manure crops such as mungbean and dhaincha, a leguminous shrub, were also included.”

Support to sustainably boost Nepal’s crop yields

With funding from the United States Agency for International Development (USAID), the NSAF project promotes the use of improved seeds and integrated soil fertility management technologies, along with effective extension, including the use of digital and information and communication technologies.

Agriculture provides livelihoods for two-thirds of Nepal’s predominantly rural population, largely at a subsistence-level. Rice is the nation’s staple food, but yields are relatively low, requiring annual imports worth some $300 million, to satisfy domestic demand.

Workshop participants attended sessions on digital agri-advisories using the Geokrishi and PlantSat platforms and received orientation regarding gender and social inclusion concerns and approaches—crucial in a nation where 70% of smallholder farmers are women and exclusion of specific social groups remains prevalent.

“Topics in that area included beneficiary selection, identifying training and farmer field day participants, and support for access to and selection of improved seed and small-scale farm equipment,” explained Choudhary. “The participants will now go back to their cooperatives and train farmers, local governments and agrovets on improved rice production.”

Nepal scientists and national research programs have partnered with CIMMYT for more than three decades to breed and spread improved varieties of maize and wheat and test and promote more productive, resource-conserving cropping systems, including rotations involving rice.

Bringing mechanization to farmers’ doorsteps

It is a winter morning in Ward 12 of Mutare Rural district in Zimbabwe. Farmers brave the cold weather to gather around several tents lined with a range of new agricultural machinery. The number of farmers increases, and the excited chatter gets louder as they attempt to identify the different machines on display. “That is a tractor, but it just has two wheels,” says one farmer. With enthusiasm, another identifies a multi-crop thresher and peanut butter machine and asks for the prices.

The scene typifies one of several settings for an awareness meeting conducted under the Feed the Future Zimbabwe Mechanization and Extension (Mechanization) Activity, funded by the United States Agency for International Development (USAID). The project operates in Zimbabwe’s Manicaland and Masvingo provinces and addresses the pressing need to improve farm power and machinery access for smallholder farmers in ten districts: Buhera, Chimanimani, Chipinge, Mutare rural, Bikita, Chiredzi, Chivi, Masvingo rural, Mwenezi and Zaka.

Awareness meetings provide community members the opportunity to interact with the Mechanization Activity Team and learn more about the machinery suitable for their farm operations. (Photo: CIMMYT)

In recent years, farmers in the region have faced a decline in cattle populations due to tick-borne diseases—the devastating ‘January disease’ (Theileriosis) hitting hardest—causing significant draft power losses. In addition, on-farm and off-farm activities have notoriously been identified as labor-intensive, time consuming and back-breaking due to the level of effort required to execute certain tasks. Activities such as post-harvest processing have also been traditionally carried out by women, who are thus disproportionally affected by drudgery. Collectively, these challenges have affected not only food production and the quality of farm yields, but also drastically impacted farming families’ potential to realize sufficient household food and income security.

“Finding the best model of extension of appropriate machinery and developing financing mechanisms for smallholder farmers has been the work of previous projects on appropriate-scale mechanization,” says Christian Thierfelder, research director for the Mechanization Activity. “In this activity, we are implementing a service provider model in Zimbabwe and are aiming to reach 150 service providers and 22,500 users of these machines in the next two years.”

Despite previous successes under initiatives such as FACASI and R4/ZAMBUKO, there remains a huge demand for affordable machines that improve farm labor and generate income for smallholder farmers. “We already see hundreds of farmers demanding to mechanize agricultural activities in our intervention areas,” explains Leon Jamann, chief of party for the project. “That is why our activity aims to collaborate with banks and microfinance institutions to bank these farmers at fair rates so that they can buy the machinery that they need and want.”

A launchpad for success

The awareness meetings have served as launchpads to acquaint farmers with appropriate machinery right at the ‘farm gate’ while affording them a chance to explore the full range on offer. Since its inception, the Mechanization Activity has showcased through live demonstrations the operation and performance of machinery including the two-wheel tractor and trailer, ripper, basin digger, boom sprayer, multi-crop thresher, feed chopper-grinder, groundnut sheller and peanut butter machine. Each machine harmonizes with on-farm and off-farm activities, easing the labor burden and improving efficiency in land preparation, harvesting and post-harvest tasks. The aim is to create demand for and trigger business interest in the machinery through a service provision model.

The model centers on the service provider, typically an individual who owns machinery and extends their services to others for a fee. In some cases, organized Internal Savings and Lending (ISAL) and Production, Productivity Lending and Savings (PPL) groups have expressed, through the awareness meetings, interest in procuring a machine for use within the group. This symbiotic relationship empowers service providers economically, while granting communities access to crucial services that improve their land and labor productivity.

In the next step, service providers are then linked with banks to finance their machinery. This ensures a sustainable approach, as the mechanization solutions are locally produced, financed and used. Enhancing these local capacities and linkages is at the core of the activity and ensures impact beyond the project life cycle.

From awareness to demand

So far, a total of 32 awareness meetings have been held across three operational hubs in Masvingo and Manicaland provinces reaching 1,637 farmers—843 females and 794 males. The impact is evident, with 475 service providers identified across 20 implementation wards.

232 participants are keen to acquire a two-wheel tractor, with a further 191 opting for trailers, 63 for rippers, 125 for multi-crop threshers, 166 for chopper grinders, 178 for peanut butter machines and 31 for groundnut shellers. Among the prospective service providers are those opting to purchase a single unit while others are choosing two, three or more units from the machinery on offer.

Beyond the numbers, the Mechanization and Extension Activity continues to appeal to women and youth through sustainable and climate-smart intensification of crop production using conservation agriculture practices, opportunities for employment creation and enhancing profitability.

Graduate intern Titos Chibi demonstrates the two-wheel tractor during an awareness meeting in Ward 10 in Bikita. (Photo: CIMMYT)

“I enjoyed learning about the service provider approach and learning about the machinery on display,” reflected Nyarai Mutsetse, a female farmer from Ward 12. “Other women even got the chance to try out the two-wheel tractor. From now on, we are going to save money in our groups and purchase some of these machines.”

Echoing the same sentiments, Patience Chadambuka was fascinated by the two-wheel tractor demonstration, and impressed that it could serve multiple purposes. “I can use it for different tasks—ferrying wood, land preparation and it can also help us raise money to take our children to school through service provision,” she said. “We are beginning to save the money, together with my husband because we would like to purchase the tractor and use it for our business.”

The Mechanization Activity awareness meetings paint a vivid picture of collaboration with other Feed the Future Zimbabwe Activities such as the Fostering Agribusiness for Resilient Markets (FARM), Resilience Anchors and Farmer to Farmer, among others. The activity harmonizes smallholder farmers with private sector enterprises, including machinery manufacturers, local mechanics, financial institutions and the Government of Zimbabwe. This collective cooperation is pivotal in helping smallholder farmers realize their mechanization business goals.

Empowering women smallholder farmers in Africa with climate-resilient and nutritious maize varieties

In the vast landscapes of sub-Saharan Africa, where agriculture is the backbone of many communities, the quest for improved maize varieties is a vital step for ensuring food security in the face of climate change. Women, who represent approximately half the clients of maize breeding programs, have been essential in the realm of agricultural research. While significant gender-based differences in trait preferences exist in many African-staple crops, these appear less drastic in maize. However, there are gendered differences in management practices and productivity in maize-based systems.

After decades of work on maize improvement projects, CIMMYT has made a bigger commitment to researching, supporting and delivering drought and heat tolerant maize to smallholders in Zimbabwe. (Photo: CIMMYT)

Recognizing the need to bridge this gap, the CIMMYT-NARES (National Agricultural Research and Extension Systems) regional maize breeding networks in eastern and southern Africa have embarked on a transformative journey to empower farmers, especially women, through their innovative approach to maize breeding. The breeding networks are focused on ensuring smallholder farmers have access to a steady stream of climate-resilient and nutritionally enriched maize varieties that thrive in today’s stress-prone environments. To ensure these new maize varieties meet the needs of diverse users, including women, the breeding networks continue to adapt approaches to increase gender-responsiveness.

Linking science with the realities on the ground

Testing the performance of potential new maize hybrids coming from the breeding pipelines within farmers’ realities is critical to the ultimate success of these new varieties. In collaboration with over 400 farmers in southern Africa, the CIMMYT-NARES maize breeding network conducts extensive on-farm trials to evaluate the performance of these new maize varieties. A similar approach is adopted in eastern Africa. What sets these trials apart is the fact that over 40% of these trials are led by female plot managers. Farmers evaluate these varieties within the context of their own realities, including their own management practices, and provide valuable feedback to the breeding teams on the potential of new varieties.

By involving women in decision-making processes, CIMMYT-NARES networks ensure that their preferences and needs are considered when selecting the most promising hybrids for product advancement, announcement to partners, varietal releases and ultimately commercialization. This inclusive approach not only empowers women but also harnesses the collective knowledge and experience of the farming community. CIMMYT’s research recently showed that there is a relatively high degree of joint management within maize plots, and since 2022, the on-farm trials included a target of approximately 30% jointly managed plots.

Gender is only one axis of social difference that impacts agricultural production, variety selection, and end uses. Social differences including marital status, age, education level, ethnicity, wealth, access to capital, market access and livelihood orientation do play a role in the adoption of new varieties and farm productivity. By embracing the diversity within farming communities, CIMMYT-NARES networks are actively working towards understanding different farm types, while ensuring that the improved maize varieties are tailored to meet the diverse demands of the regions.

As the CIMMYT-NARES maize breeding networks continue to make innovative strides in breeding climate-resilient and nutritionally enriched maize varieties, they are not only transforming agriculture but also empowering individuals and communities. Through collaborative efforts, with the woman farmer at the heart of the approach, they are paving the way for a future where farming communities can thrive and contribute to food and nutritional security.

Bridging the communication gap in genetic improvement tools in agriculture

The Africa Biennial Biosciences Communication (ABBC 2023) Symposium, held in Nairobi, Kenya, provided a platform for experts, scientists, policymakers and stakeholders to discuss the evolution of genetic improvement tools in agriculture and the critical role that communication plays in ensuring these advancements are aligned with societal needs. The theme of the symposium, “Evolution of Genetic Improvement Tools in Agriculture: Is Communication Matching Up?” sparked insightful discussions and revelations regarding the intersections of technology, communication and sustainability.

Biotechnology underpins sustainable agriculture by providing potential solutions that enable agricultural systems to better address underlying health, livelihood and nutrition challenges. The quest for innovative and tech-enabled options for sustainable agriculture offers valuable lessons contributing to long-term food security. For example, through the applications of genome editing technologies, nutritional enhancements and reduced reliance on agrochemicals are both possible.

A case study presentation by Kevin Pixley, director of the Dryland Crops Program (DCP) and interim director of the Global Wheat Program, “How will communication about new breeding tools impact the development of sustainable food systems and one health-focus on crop science,” detailed how communication plays a vital role in informing consumers and society at large about the positive impacts that new breeding tools can have by contributing to sustainable food systems.

Kevin Pixley speaks during the panel discussion at the ABBC 2023 symposium in Nairobi. (Photo: Marion Aluoch/CIMMYT)

Transparent communication builds trust and impacts consumers’ ability to make informed decisions regarding genome-edited or other products. “In order to communicate effectively, we need to be transparent and provide information that consumers are seeking,” Pixley said. “Understanding their questions and concerns is the first step.” He gave examples of communication challenges, discussed various levels of transparency and urged for proactive approaches to communicate the benefits of genetic improvement technologies. Pixley further pointed out that the credibility of the communicator plays a crucial role in shaping public perception and emphasized the importance of tailoring communication to different cultural contexts and audiences.

During the panel discussion, “Systems thinking toward sustainable food/feed supply and one health. What is the role of communication?” experts from various fields, discussed the interconnectedness of food systems, human and animal health, the environment and communication. Acknowledging the complexity of the interconnected food production and consumption cycle, Pixley suggested that a holistic approach is necessary and called for a paradigm shift towards a thriving agricultural ecosystem.

The discussions delved into the role of communication in promoting economic, social and environmental sustainability solutions. The dialogue revealed the importance of involving farmers, policymakers and development partners to ensure holistic solutions.

Miscommunication and misinformation were also addressed, with the speakers recognizing the need to address perceived risks and demonstrate the safety and benefits of genetic advancements. Also discussed was the importance of simplicity and tailored messaging for various stakeholders, including policymakers, farmers and consumers.

In conclusion, the panelists agreed that effective communication is essential to realize the potential benefits offered by biotechnologies.

Mithika Linturi, cabinet secretary for Agriculture and Livestock Development, engages with the DCP team at CIMMYT’s exhibition stand. (Photo: Marion Aluoch/CIMMYT)

At the sorghum festival, Pixley and the DCP team showcased CIMMYT’s efforts in sorghum breeding and genetic improvement. They underscored the collaborative work with NARES partners and emphasized the importance of co-designing, co-developing and co-implementing projects to ensure sustainability and shared ownership. “A successful program requires collaboration, sharing resources and building sustainable networks,” said Pixley. “Our efforts are driven by the collaboration of various stakeholders.” The symposium also witnessed CIMMYT showcasing millet and sorghum at the exhibition, where the DCP team engaged with many participants.

All these discussions demonstrated the critical role that communication plays in shaping the trajectory of genetic improvement tools in modern agriculture. Transparent, culturally sensitive and proactive communications are essential to achieve social license for novel technologies, such as genome editing, to contribute to sustainable food systems, improved farmers’ livelihoods and food security for farmers and consumers.

Exploring alternative solutions: the case for synthetic mulch in a changing world

Food security remains elusive for most smallholder farmers reliant on rainfed crop production, given the erratic rainfall patterns induced by climate change in Southern Africa. Among others, conservation agriculture (CA) is a concept often considered to be effective to adapt to these erratic rainfall patterns, enabling farmers to cope better with the prolonged dry spells that are characteristic of the semi-arid regions in Zimbabwe.

Conservation agriculture essentially involves three key pillars, namely, reduced soil disturbance, the use of crop rotations or intercrop associations, and the provision of permanent soil cover. The soil-cover component often requires the use of previous crop residues or other organic materials as a surface mulch. However, local farmers consider this task to be the most laborious aspect of implementing CA, which poses a significant challenge to its widespread uptake.

Collecting insights on influence of synthetic mulch. (Photo: CIMMYT)

Traditionally, farmers are advised to use organic mulch, such as maize residues, for soil cover. However, in most communal areas, there is a growing scarcity of organic mulches as they are predominantly used as livestock feed in mixed crop-livestock farming systems. Ironically, semi-arid regions that benefit from the use of crop residues as soil cover are also regions where the residues are the scarcest due to competing uses as livestock feed or as firewood. These competing interests pose a dilemma, as it is essential to cover the soil while also necessary to feed the animals. In neighboring countries like Malawi, maize residues are also used as fuel for firewood, further increasing the demand. It is clearly important, therefore, to develop alternative solutions to address this pressing issue.

“Since I embarked on my journey in conservation agriculture back in 1998, the matter of residues has been a topic of discussion. It is imperative that we walk the talk and develop practical solutions to meet the needs of farmers who rely on residues to feed their animals. One potential solution we are exploring is the use of synthetic mulches to cover the soil. By employing this method, we can cover the soil, apply fertilizer, and hopefully witness a positive impact. We certainly must develop synthetic materials that can be used sustainably as surface mulches in the semi-arid environments where organics are most scarce yet most needed,” stated Isaiah Nyagumbo, regional cropping systems agronomist.

To test such innovations, some water-conservation experiments were established in Buhera and Mutoko, Zimbabwe, during the last two seasons, and the results have been encouraging.

“I am grateful to work with the CIMMYT team on these water conservation trials, and I hope they continue. Before the trials, we were using organic mulch, but after using the synthetic approach and comparing it with organic mulches and none at all, we are seeing so many positive results. But there are challenges we can’t escape, including affordability. But I have seen higher yield returns this year as I harvested close to 15 by 50kgs of maize,” said Nyawasha, a farmer from Mutoko, Zimbabwe, ward 16.

Further detailed studies to understand these systems have also been established in the current dry season at the CIMMYT campus in Harare, to test the effectiveness of these synthetic mulches under conditions of severe moisture stress. The different treatments include clear synthetic mulch, black synthetic mulch, organic mulch and no mulch. So far, for the maize crop now at flowering stage, the growth and yield are strikingly better in plots under the synthetic mulches compared with the organic and no mulch plots. This clearly shows the importance of finding viable alternatives. The crop with synthetic mulches also developed much faster, all the way from crop emergence.

Exploring the tied-ridging system

In these trials, mulching treatments are being tested in conventionally tilled plots, CA basins (pfumvudza basins) and under the tied-ridging system. Tied ridging has been developed in Zimbabwe for use by smallholder farmers since the 1980s and is well known for its effectiveness in reducing sheet erosion and water run-off. This system employs ridges 15–20 cm high, with crossties in the furrows at 1–2 m intervals that trap rainwater and prevent runoff and soil erosion. However, in a typical rainfed system, poor germination challenges can arise when planting on top of these ridges due to excessive drying of moisture from the raised ridges. Furthermore, during prolonged dry spells, the exposed ridges tend to cause crops to wilt more than flat-planted conventional crops. To address these issues, scientists at CIMMYT in Zimbabwe are also exploring innovative ways to improve the tied-ridging system through ways that minimize water loss through direct soil evaporation.

“This has been one of the shortcomings of the tied-ridging system, and we need ways to overcome this excessive moisture evaporation. Once the water has gone into the soil, it should only leave through plant uptake and not be wasted through direct soil evaporation,” said Nyagumbo.

Integrating synthetic mulch into the tied-ridge system. (Photo: CIMMYT)

One approach being considered is incorporating mulch into the system to reduce evaporation and ensure that captured water is retained. The results are evident in the vibrant greenery of the plants with mulch compared with those without. Observing the number of plants with tassels and silk, it is clear that the plots with clear synthetic material have faster growth and reach maturity sooner compared with the plots with black synthetic mulch.

“My outlook on the use of synthetic mulch on ridges is that they are much more effective, as it makes the soil very loose for good aeration to the plant and encourages high growth rate. I noticed that plants germinated in three days and the little water provided will directly benefit the plant without escaping. I am encouraged to continue doing this tied ridge approach using synthetic material,” said Nyekete, a farmer in Buhera, Zimbabwe, ward 7.

While exploring various options, it has also been important to prioritize and focus on one aspect at a time. The initial focus has been on maize residue, as it is a valuable resource for both soil cover and livestock feed. However, the scarcity of maize residue poses a significant challenge for many farmers, especially in regions like Buhera, Mberengwa and Shurugwi, where animals consume all available resources. Placing maize residues in open fields is not a very viable solution, as freely roaming livestock will just consume it. Fencing or creating structures to protect the residues from livestock also requires substantial effort and resources, thereby making this mulching a daunting task for farmers.

Food for thought

While the challenges faced in providing mulch for conservation agriculture are multifaceted, there is a growing need to develop innovative solutions that address the scarcity of organic mulch and explore alternative methods such as synthetic coverings. By continuously adapting and refining our practices, we can ensure the sustainability of agriculture in this region and improve the livelihoods of farmers.

Global Conference on Sustainable Agricultural Mechanization: efficiency, inclusiveness, and resilience

CIMMYT participated in the inaugural Global Conference on Sustainable Agricultural Mechanization, organized by the Food and Agriculture Organization of the United Nations (FAO) from September 27-29, 2023. The gathering provided space for focused dialogues to prioritize actions and strengthen technical networks for sustainable development of agricultural mechanization.

Bram Govaerts, CIMMYT director general, presented a keynote address on September 27 regarding climate change and mechanization. As a global thought leader and change agent for climate resilient, sustainable and inclusive agricultural development, CIMMYT has many specific initiatives centered on mechanization for facilitating machine innovations and scaling-up improved farming practices for sustainability and farmer competitiveness.

Bram Govaerts delivered a keynote address. (Photo: CIMMYT)

Collaboration is a hallmark of CIMMYT’s endeavors in mechanization, including a strong partnership with local governments across Latin America, Africa and Asia, and international cooperation agencies, supporting the Green Innovations Centers installed by GIZ-BMZ and working on accelerated delivery models together with USAID, in Malawi, Zimbabwe and Bangladesh, to name only a few. Further, local value chain actor engagement is crucial and necessary in this work to connect farmers with viable solutions.

CIMMYT has a long history of leading projects aimed at mechanizing the agricultural efforts of smallholder farmers, including the successful MasAgro Productor in Mexico and FACASI (farm mechanization and conservation agriculture for sustainable intensification) in East and South Africa. At present, the Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project is working towards to improve access to mechanization and reduce labor drudgery while stimulating the adoption of climate-smart/sustainable intensification technologies. The project engages deeply with the private sector in Zimbabwe and South Africa to ensure long-term efficacy.

The Scaling Out Small Mechanization in the Ethiopian Highlands project was active from 2017 to 2022 and increased access for smallholder farmers to planting and harvesting machines. Farmers using two-wheel tractors furnished by the project reduced the time needed to establish a wheat crop from 100 hours per hectare to fewer than 10 hours. CIMMYT’s work was in partnership with the Africa-RISING program led by the International Livestock Research Institute (ILRI) in Ethiopia.

“At CIMMYT, we work knowing that mechanization is a system, not only a technology,” said Govaerts. “Sustainable mechanization efforts require infrastructure like delivery networks, spare parts and capacity development. Working with local partners is the best way to ensure that any mechanization effort reaches the right people with the right support.”

Read these stories about CIMMYT’s efforts to support equal access to agricultural mechanization and scaling up within local contexts.

One-minute science: Mechanization for agriculture

Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYT’s mechanization work is context specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.

New generation of farmers adopts mechanization, making farming more productive and profitable

Working with the Cereal Systems Initiative for South Asia (CSISA), CIMMYT is leading mechanization efforts in Northern India. Combined with sustainable agriculture, the next generation of farmers now have access to tractors, seeders and other tools that are increasing yield and reducing back-breaking labor.

Gangesh Pathak with his father at the custom hiring center which provides custom hiring services to smallholder farmers in the region. (Photo: Vijay K. Srivastava/CIMMYT)

A promising partnership

The delivery of row seeders from India to Benin demonstrates a new path to sustainable South-South business relationships. Developed in India in an iterative design process with farmers, portable row seeders have been a great success. Working with GIC, CIMMYT facilitated a technology and materiel transfer of the portable row seeders to Benin.

A farmer pulls a row seeder in Benin, West Africa. (Photo: CIMMYT)

Solar powered dryers boost peanut production in Togo

Peanuts thrive as a crop in Togo and other West Africa countries, but post-harvest is threatened by aflatoxins, so the entire crop needs to dry. Traditionally, farmers, often women, have dried the peanuts in the open air, subject to weather and other pests. However, CIMMYT, working with GIC, has introduced solar-powered dryers, which speeds up the drying process by a factor of four.

Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

A business model for mechanization is providing hope in Burkina Faso

Working with partners in Burkina Faso, CIMMYT is facilitating smallholder mechanization with a model of cascading effects: one farmer mechanizing can then use their skills and eqBMZuipment to help their neighbors, leading to community-wide benefits.

Pinnot Karwizi fills a mechanized sheller with dried maize cobs. (Photo: Matthew O’Leary/CIMMYT)

Visit our mechanization page to read stories about ongoing mechanization initiatives.

The world must act to avert a climate-induced food shortage, cautions Cary Fowler. CIMMYT has a strategy to strengthen agrifood systems.

Erratic climate patterns, global and regional conflicts, biodiversity degradation, and insufficient funding for agricultural research pose a serious risk to meeting global food production goals by mid-century, according to Cary Fowler, the U.S. special envoy for food security. 

The world must produce 50-60% more food by 2050 to nourish a growing population. Yet global crop yields are projected to drop between 3-12% over the same period. Wheat yields in Africa and South Asia, two regions with the fastest growing and youngest populations, are expected to decline by 15% due to global warming. Food systems have also been disrupted by the Russia-Ukraine conflict and the COVID-19 pandemic, raising food and fertilizer prices, and exacerbating regional instability.   

Maize vendor at village market in Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Fowler cites inadequate government funding for plant breeding programs as a contributor to an ineffective response to introducing improved climate-adaptable staple crops. “With the state of current affairs, we are on our way to failing to feed the world by century’s end,” said Fowler.  

Science and Innovation for a Food and Nutrition Secure World: CIMMYT’s 2030 Strategy 

Global peace and development efforts will demand a cross-sector and coordinated response. Through its 2030 Strategy, CIMMYT has laid out a robust series of investments in crop systems innovation, partnership, and sustainable development, to advance more resilient food systems. The 2030 Strategy consolidates CIMMYT’s target areas through three pillars: Discovery, SystemDev, and Inc. These pillars focus on research and innovation, systems approach, and strong partnerships and advocacy efforts with the private and government sectors to address an emerging food crisis. 

“Our 2030 Strategy places research, innovation and partnership at the center of facing the challenges of the 21st century to solve tomorrow’s problems today—for greater food security and the prosperity of smallholder farmers. As we implement work plans, CIMMYT is proud of the achievements it has seen through projects in sub-Saharan Africa, our contribution to influential policy reports, and continued praise for our agri-development initiatives in Latin America. All these feats will help us deliver on and expand our efforts to reach our 2030 vision,” said Bram Govaerts, CIMMYT director general.  

CIMMYT remains prominent in developing sustainable solutions for farmers and policy actors  

CIMMYT has achieved important progress in Eastern and Southern Africa. Projects such as the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub have brought together regional seed partners, government agencies, and CGIAR Research Centers, to reduce fertilizer prices, boost resilience to drought and pests, and facilitate market access for smallholders.  

In the recent SPG Coalition report, CIMMYT featured prominently as a leading organization in climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management. This report informs researchers, non-governmental organizations and private sector partners in agrifood and climate policy development.  

A CIMMYT staff member gives a farmer training session in Boiragee, Bangladesh. (Photo: S. Mojumder Drik/CIMMYT)

MasAgro, a research-for-development initiative, has received praise by international organizations and governments as an exemplary program for sustainable development in Latin America. Over 500,000 farmers in Mexico have adopted hardy maize or wheat varieties and resource-conserving agricultural practices. To maximize on the experience of MasAgro, CIMMYT has partnered with a CGIAR initiative: AgriLAC Resiliente. This initiative aims to bolster the competitiveness and sustainability of agrifood systems to respond to forced migrations in Central and South America which are worsened by regional food insecurity and conflict.  

Science and innovation powered by partnership can deliver a food secure world  

Climate change undoubtedly threatens global peace and agrifood systems. With over 130 countries depending on food imports, today’s hyper-connected world demands collaborative partnership across all sectors to build up shockproof food systems. Through a grassroots approach to research and innovation, the CIMMYT 2030 Strategy is built upon decades of applied science which has impacted communities around the world, to continue influencing policy, pioneering innovations, and advocating for the development of a food secure future.  

Steering towards success

The inaugural Rwanda National Seed Congress, which took place in Kigali on July 31 and August 1, 2023, marked a significant milestone for the country’s seed industry. Themed “Private Sector Strategic Roadmap for the Seed Industry 2030”, the event brought together key stakeholders from the government, public, and private sectors to address challenges and opportunities in the national seed value chain.

Discussions centered around pertinent issues concerning the seed sector in general, with a particular focus on the Rwandan National Seed Strategic Roadmap. This document, which was developed through consultations with various stakeholders, provides a comprehensive plan to steer the industry towards success and sustainable growth.

“Enhancing and managing the seed system is a complex endeavor that requires the collaboration of various stakeholders,” said Chris Ojiewo, CGIAR Seed Equal Initiative lead. “This is where public-private partnerships come in as a valuable tool for nurturing the growth and expansion of the seed industry.”

Chris Ojiewo, CGIAR Seed Equal Initiative lead, presented at the inaugural National Seed Congress in Rwanda. (Photo: NSAR Congress)

During a presentation entitled Public-private Partnership: A Tool for Development and Strengthening of the Seed Sector, Ojiewo highlighted the growing importance of collaboration and partnerships in the current seed system. He emphasized that the processes and elements that shape the seed sector are complex and extensive, making it too much for any one organization—whether public or private—to handle alone.

The way forward

During the congress, several key recommendations were proposed  to increase the potential of the seed industry. The government was encouraged to seek accreditation with major seed industry quality organizations, such as the International Seed Testing Association (ISTA) and Organization for Economic Co-operation and Development (OECD) certification schemes, while adopting International Union for the Protection of New Varieties of Plants (UPOV) to establish an improved regulatory environment conducive to industry growth.

The empowerment of the National Seed Association of Rwanda (NSAR) as an advocate and facilitator for the seed industry was also highlighted as an essential measure. The government’s support in enabling the seed association to become increasingly self-regulatory is seen as crucial to the industry’s growth over the next seven years, with private seed industry players developing internal systems to ensure compliance with rules and regulations.

Another key recommendation for increasing sustainable improved seed use in Rwanda was the use of Public-Private Partnerships (PPPs), which will play a critical role in promoting the country as a seed production and trade investment destination.

Ojiewo emphasized the importance of such partnerships, noting that “PPPs have the potential to transform the seed industry by leveraging the strengths of different organizations.” He further highlighted that in addressing the challenges of global food security and sustainable development, the way forward becomes clear through collaboration, innovation, and a shared commitment to advancing agricultural progress through collaborative efforts.

The congress also focused on attracting affordable financing to scale up investments throughout the seed value chain. It was considered essential to involve industry financial players in the development of optimal financing structures to support the expansion of the industry.

As a result of the successful event, plans have already been made for the second National Seed Congress in 2024. Scheduled to take place in Kigali on July 29 and 30, 2024, the next event aims to build on the achievements of the first congress and further drive the growth of Rwanda’s seed industry.

CGIAR’s Seed Equal Initiative helps farmers by providing them with better seeds that are nutritious, preferred in the market, and that can withstand climate change. These varieties have been carefully developed to exhibit significant genetic advancements, ultimately benefiting farmers. It also makes sure that women and other marginalized groups have fair access to these seeds.

Catalyzing smallholder farming in Mexico

Scientists from CIMMYT, founded in Mexico in 1966, have pursued decades of participatory research with Mexico’s smallholder maize farmers to improve their local varieties for traits like yield and insect resistance, while preserving their special grain quality, as well as testing and promoting zero-tillage and other resource-conserving farming practices.

Farmer Maria Luisa Gordillo Mendoza harvests a plot of maize grown with conservation agriculture techniques in her field in Nuevo México, Chiapas. (Photo: Peter Lowe/CIMMYT)

Smallholder farm operations account for more than 80% of all farms worldwide and produce roughly 35% of the world’s food, according to FAO census data and follow-up studies.

An estimated two-thirds of the Mexico’s farmers are smallholders, typically working challenging agroecologies scattered across the country’s mountainous terrain and applying generations-old subsistence practices to grow low-yielding local maize varieties.

Ancient milpa multicropping systems can lift up the present and future

The milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — has a millennial history in the Americas and can furnish a vital supply of food and nutrients for marginalized, resource-poor communities.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to a CIMMYT-led study in the western highlands of Guatemala, an isolated and impoverished region, reported in Nature Scientific Reports in 2021.

But milpas are typically grown on much smaller areas than a hectare, so households cannot depend on this intercrop alone to satisfy their needs. A solution? Customized milpas that merge farmers’ age-old wisdom and practices with science-based innovation.

An example is planting fruit trees — guava, avocado, mango, peaches, or lime among others — among milpa crops in lines perpendicular to hill slopes. The practice was tested and promoted in the Los Tuxtlas region of the state of Veracruz by Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) and the Colegio de Postgraduados (ColPos) and has been refined by farmers in other areas through CIMMYT-led innovation networks.

Planted milpa crops in lines perpendicular to the slope on a steep hillside in Chiapas, Mexico. (Photo: Peter Lowe/CIMMYT)

In Los Tuxtlas the practice provided added income and nutrition, dramatically reduced erosion, improved land and water-use efficiency by around 50%, and boosted soil health and fertility.

In the state of Puebla and other parts of South and southwestern Mexico, milpa-fruit tree intercrops have worked well on steep hillsides. In the state of Oaxaca, for example, versions of the practice have notably improved farming by indigenous communities in the Mixe and Mazateca regions, supported by outreach of the Mexican Agency for the Sustainable Development of Hillsides (AMDSL), a partner in a CIMMYT research hub in the region.

Research by AMDSL and CIMMYT on smallholder plots in two Oaxaca municipalities where farmers have been combining milpas with peach and avocado production and conservation agriculture practices for more than a decade found that cropping diversification, together with use of zero tillage and keeping crop residues on the soil rather than removing or burning them, raised total yearly crop outputs by as much as 1.7 tons per hectare and reduced farmers’ risk of catastrophic crop losses due to droughts or other climate extremes.

Blue maize pleases diners and delivers profits

Farmers’ local maize varieties yield less than hybrids but are still grown because they provide ideal grain quality for traditional foods, as well as marketable stalks and leaves to feed farm animals and maize husks for wrapping tamales, to name a few products.

Building on longstanding partnerships with INIFAP and the Autonomous University of Chapingo (UACh) to improve local varieties and preserve maize genetic diversity in Mexico, CIMMYT breeders have recently developed improved blue maize hybrids and open-pollinated varieties.

Sought by restauranteurs worldwide for its flavor and beauty, blue maize grain normally comes from native varieties grown by smallholder farmers on small plots with low yields and variable quality.

The new CIMMYT varieties are derived from traditional Guatemalan, Mexican, and Peruvian landraces and feature higher yields, more consistent grain quality, and enhanced resistance to common maize diseases, offering smallholders and other Mexican farmers a profitable product for the country’s booming restaurant industry and for export chains.

Selection of corn varieties for the state of Morelos, Mexico. (Photo: ACCIMMYT)

Parental inbred lines of the new hybrids have been distributed to private and public partners, who are developing their own hybrids and OPVs in Mexico. CIMMYT continues to test the new hybrids under various farming systems to ensure they produce stable yields when grown in farmers’ fields.

Data driven extension

Using cutting-edge data systems, CIMMYT has leveraged information from nearly 200,000 plots representing more than 26,000 hectares across diverse agroecologies to offer Mexican farmers — including smallholders — site-specific recommendations that make their farming systems more productive, resilient, and sustainable. The initiative was supported by MasAgro, an integrated development partnership of Mexico and CIMMYT during 2010-21 and funded by Mexico’s Secretariat of Agriculture and Rural Development (SADER).

Smallholder Mexican farmers adopt resource-conserving innovations: slowly and in bits

Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.

Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.

“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”

Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)

Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.

They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.

“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”

Advancing more sustainable farming in Mexico

Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.

CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El Batán, Mexico. (Photo credit: CIMMYT)

CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.

  • Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. “We’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
  • With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil beds…. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
  • Farmers in the Milpa Sustentable project in the Yucatán Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of Yucatán. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
  • CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer María Martínez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
  • With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario Guzmán Manuel of San Francisco Chindúa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”