Skip to main content

Sustaining Conservation Agriculture initiatives: lessons from Malawi

Sub-Saharan Africa (SSA) has experienced the worst impacts of climate change on agriculture over the past decades and projections show such effects are going to intensify in the coming years. Diminished agricultural production has been the primary impact channel given the high reliance on rainfed agriculture in the region. Combined with a growing population, food security for millions of people is threatened.

Conservation Agriculture (CA) is a sustainable cropping system that can help reverse soil degradation, augment soil health, increase crop yields, and reduce labor requirements while helping smallholder farmers adapt to climate change. It is built on three core principles of minimum soil disturbance, crop residue retention, and crop diversification.

CA was introduced in southern Africa in the 1990s, but its adoption has been patchy and often associated with commercial farming. A group of researchers, led by Christian Thierfelder, principal cropping systems agronomist at CIMMYT, set out to understand the reasons why smallholder farmers adopt CA, or why they might not or indeed dis-adopt. Their results were published in Renewable Agriculture and Food Systems on March 12, 2024.

Conservation Agriculture plot. (Photo: CIMMYT)

“Conservation Agriculture can cushion farmers from the effects of climate change through its capacity to retain more soil water in response to high water infiltration and increased soil organic carbon. It is therefore a viable option to deal with increased heat and drought stress,” said Thierfelder. However, even with these benefits, adoption of CA has not been as widespread in countries like Malawi.

“There are regions within Malawi where CA has been promoted for a long time, also known as sentinel sites,” said Thierfelder. “In such places, adoption is rising, indicating that farmers are realizing the benefits of CA over time. Examining adoption dynamics in sentinel sites can provide valuable lessons on scaling CA and why some regions experience large rates of non- or dis-adoption.”

Thierfelder and his co-authors, Innocent Pangapanga-Phiri of the Center for Agricultural Research and Development (CARD) of the Lilongwe University of Agriculture and Natural Resources (LUANAR), and Hambulo Ngoma, scientist and agricultural economist at CIMMYT, examined the Nkhotakota district in central Malawi, one of the most promising examples of widespread CA adoption.

Total LandCare (TLC), a regional NGO working in Malawi has been consistently promoting CA in tandem with CIMMYT in the Nkhotakota district since 2005.

Results from both individual farmer interviews and focused group discussions revealed that farmers that implement CA saw higher yields per hectare than those who practiced conventional tillage practices. In addition, farmers using CA indicated greater resilience in times of drought, improved soil fertility, and reduced pest infestation.

Why adopt CA?

The primary factors enhancing CA adoption in the Nkhotakota district were the availability of training, extension and advisory services, and demonstration plots by the host farmers. Host farmers are farmers that have been trained by a TLC extension officer and have their own plot of land to demonstrate CA methods. In addition, host farmers train other farmers and share knowledge and skills through farmer field days and other local agricultural exhibitions.

“Social networks among the farmers serve a vital role in CA adoption,” said Ngoma. “Seeing tangible success carries significant weight for non-adopter farmers or temporal dis-adopters which can persuade them to adopt.”

Maize demonstration plot. (Photo: CIMMYT)

During focus group discussions facilitated by the authors, farmers indicated that demonstration plots also removed fear for the unknown and debunked some myths regarding CA systems, for example, that practitioners show ‘laziness’ if they do not conventionally till their land.

“This suggests that CA uptake could be enhanced with increased, targeted, and long-term promotion efforts that include demonstration plots,” said Ngoma.

Similarly, the longer duration of CA exposure positively influenced farmers’ decisions to adopt CA methods as longer exposure might allow farmers to better understand the benefits of CA practices.

Why not adopt CA?

Farmers reported socioeconomic, financial, and technical constraints to adopt CA. An example is that farmers might not have the labor and time available for weed control, a necessary step in the first few years after the transition to CA.

“Weed control is an important challenge during the early years of CA adoption and can be seen as the ‘Achilles heel’ of CA adoption,” said Thierfelder. CIMMYT scientists therefore focused a lot of research in recent years to find alternative weed control strategies based on integrated weed management (IWM) using chemical, biological, and mechanical control options.

Examining the stover in a maize plot. (Photo: CIMMYT)

In most cases, the benefits of CA adoption are seen only after 2 to 5 years. Having such a long-term view is not always possible for smallholder farmers, who often must make decisions based on current conditions and have immediate family obligations to meet.

As a contrast to adopters of CA, non-adopters reported a lack of knowledge about CA as a whole and a lack of specific technical knowledge needed to transition from more traditional methods to CA.

This scarcity of technical support is often due to the lack of strong agriculture extension support systems. Since CA adoption can be complex, capacity building of both farmers and extension agents can therefore foster adoption and implementation of CA. This reinforces that farmer-to-farmer approaches through host farmers could complement other sources of extension to foster adoption.

Next steps

The authors identified three policy recommendations to accelerate CA adoption. First, there is a need to continue promoting CA using farmer-centric approaches more consistently, e.g., the host farmer approach. Using a farmer-centered approach facilitates experiential learning and can serve as a motivation for peer-to-peer exchange and learning and can reduce misinformation. The host farmer approach can be augmented by mega-demonstrations to showcase CA implementation at scale. In addition, rapid and mass extension delivery can be enhanced by using digital technologies.

Second, CA promotion should allow farmers the time to experiment with different CA options before adoption. What remains unclear at the policy level is the types of incentives and support that can be given to farmers to encourage experimentation without creating economic dependence. NGOs and extension workers could help farmers deal with the weed pressure soon after converting from full to minimum tillage by providing herbicides and training.

Third, there is a need to build and strengthen farmer groups to facilitate easier access to training, to serve as conduits for incentive schemes such as payments for environmental services, and conditional input subsidies for CA farmers. Such market-smart incentives are key to induce initial adoption in the short term and to facilitate sustained adoption.

Digging in the Dirt: Detailed soil maps guide decision-making, from the field to the policy room

When a non-farmer looks upon a field, they might just see it as an expanse of dirt and give no more thought to it. But to a farmer, that dirt is soil, the lifeblood of agriculture. Among other things, soil delivers necessary nutrients to crops, allowing them to grow and flourish.

About 95% of the food consumed around the world grows from soil, which is rapidly deteriorating because of unsustainable human activity. Around 33% of all soils around the world are degraded, meaning they can no longer sustain the same level of agricultural activity. This leads to lower crop yields, which potentially leads farmers to increase their use of fertilizer to overcome the damaged soil. But increased nitrogen fertilizer use has profound climate change effects, as poor fertilizer management, including overuse, can lead to nitrous oxide (a greenhouse gas) leaking into the air and nitrates into groundwater, rivers, and other water systems.

Sampling points in the state of Celaya, Guanajuato Mexico. (Photo: CIMMYT)

An important implement in the effort to preserve soil fertility is the practice of soil mapping, a process which produces detailed physical and chemical soil properties within a region. Things like the amount of nutrients, acidity, water conductivity, and bulk density, help guide decision making from individual farmers all the way to regional and national stakeholders.

The Sustainable Productivity Growth Coalition, a United Nations initiative which aims to accelerate the transition to more sustainable food systems through a holistic approach to productivity growth to optimize agricultural sustainability, featured soil mapping as an innovative, evidence-based approach for accelerating sustainable productivity growth in its 2023 report.

A global soil mapping initiative is underway led by the Food and Agriculture Organization of the United Nations (FAO) and the Global Soil Partnership with important contributions from CIMMYT scientist working in Mexico.

“Soil mapping of an agricultural region for chemical and physical soil properties offers a range of benefits that can significantly improve agricultural practices, land management, and overall productivity,” said Ivan Ortiz Monasterio, CIMMYT principal scientist.

Map for Phosphorus Bray 1. (Photo: CIMMYT)

Soil maps = blueprints

Using up-to-date soil information at the national scale can help to plan agricultural and land planning interventions and policies, by excluding areas with higher carbon content or fertility from urbanization plans, or by planning the implementation of irrigation schemes with high-quality water in salt-affected areas.

For farmers, there are many benefits, including the creation of nutrient management plans, which are perhaps the most important. These plans guide decisions about application rates and timing of inputs like fertilizers, help avoid over-application, and reduce the risk of runoff and pollution. This supports sustainable agriculture while reducing costs and minimizing nutrient pollution.

Map for zinc. (Photo: CIMMYT)

“There are many other benefits,” said Ortiz Monasterio. “From improved irrigation management, to informed crop decisions, to things like climate resilience because more fertile soils are better able to cope with the challenges of climate variation.”

Collaboration across the seed system value chain

Collaboration among diverse seed value chain actors is essential to improving seed systems for dryland crops in Kenya and contributing to food security in an era marked by climate change. This holistic approach is essential at a time when sustainable agricultural practices are increasingly becoming pertinent in semi-arid and high-potential areas, as emphasized by participants attending a multi-stakeholder seed systems meeting in Nairobi.

The Kenya Drylands Crop Seed Systems Workshop in February 2024 brought together various stakeholders from the agricultural sector, including farmers, policymakers, researchers, and the private sector. The main aim of this meeting was to identify practical ways to address critical challenges in the seed system for key dryland crops—pigeon pea, chickpea, groundnut, millets, and sorghum—essential to the livelihoods of millions in Kenya. Organized by CIMMYT and the Kenya Agricultural and Livestock Research Organization (KALRO), this collaborative effort aimed to gather insights and jointly develop a seed systems strategy to strengthen a seed supply system that matches grain demand for these essential grains.

A group photo of the participants in the Kenya Drylands Crop Seed Systems Workshop. (Photo: Maria Monayo/CIMMYT)

While moderating the discussion, Patrick Ketiem, director of agricultural mechanization research at KALRO, highlighted the importance of the situation. “The demand for drought-tolerant dryland crops and varieties is a clarion call for breeders to innovate further,” he explained. This reflects a broader trend across the country, where even high-potential areas are shifting to dryland crops in response to unpredictable weather patterns.

Addressing farmer needs

The workshop allowed participants to delve into the intricacies of seed systems, from varietal preferences to market readiness, highlighting the importance of collaboration among breeders, distributors, and farmers. Moses Siambi, CIMMYT’s regional director for Africa, emphasized the importance of integrating passion with science to make a tangible difference in the lives of farmers. “Our work is not just about developing varieties,” Siambi remarked. “It’s about improving livelihoods and ensuring that the benefits of our research reach the smallholder farmer,” he explained, emphasizing the broader impact of CIMMYT’s efforts to boost agricultural productivity, food security, and livelihoods in the face of climate change.

Moses Siambi, CIMMYT’s regional director for Africa, engages in a conversation with a participant. (Photo: Maria Monayo/CIMMYT)

Chris Ojiewo, partnerships and seed systems lead at CIMMYT, explained the vision for the Dryland Crops program, referencing the journey of the Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project, which was a culmination of a decade of research aimed at introducing new, diverse, and farmer-preferred crop varieties to farming communities through a variety of seed delivery models.

“The essence of our endeavor is to ensure that the genetic gains from our breeding efforts result in real benefits for the farmers,” he said. “Developing seed varieties with the end-user in mind is crucial to ensure that crops not only reach the farmers but also meet their specific needs effectively.”

Chris Ojiewo, partnerships and seed systems lead at CIMMYT, provides insights on the future of the Dryland Crops program, leveraging ten years of research from AVISA. (Photo: Maria Monayo/CIMMYT)

Improving seed systems

The workshop discussions also highlighted the importance of innovation in seed delivery models and the need for increased investment in the dryland crops sector as essential strategies for addressing current challenges and capitalizing on new opportunities. Investment decisions will be guided by granular data on local grain demand, enhancing seed production planning. Additionally, insights from institutions such as the Agriculture and Food Authority (AFA) and the State Department of Agriculture, consolidating per capita consumption data, will aid in determining the requisite seed supply per capita. Moreover, there is need for a mechanism for facilitating knowledge through consolidating data from existing projects that tackle comparable challenges related to food security and seed accessibility.

Lusike Wasilwa, crops systems director at KALRO, who represented the organization’s director general at the event, stressed the importance of seeds in agriculture. “From genes to gains, our focus is on developing climate-smart, nutritious crops that not only enhance soil health but also ensure food security in Kenya,” Wasilwa said. She further highlighted the importance of soil health and market development in achieving sustainable food production in arid and semi-arid lands, promoting biodiversity, and sustainable land management practices.

Lusike Wasilwa, the crops systems director at KALRO, who represents the organization’s director general at the event, emphasizes the importance of seeds in agriculture. (Photo: Maria Monayo/CIMMYT)

Cross-cutting issues

The workshop also addressed regulatory and control measures in seed production with Stellamaris Mulika, principal seed inspector from the Kenya Plant Health Inspectorate Service (KEPHIS), highlighting the importance of stringent quality control measures to ensure the dissemination of quality seed of superior crop varieties.

The importance of gender inclusivity and youth engagement in agriculture was also acknowledged, reflecting women and youth’s critical role in legume and cereal variety selection, diversifying seed sources, and meaningfully contributing to the seed value chain. Veneza Kendi, a student at Jomo Kenyatta University of Agriculture and Technology (JKUAT), proposed several interventions to increase investment capacity for farmers and aggregators, mainly from the assurance of high yields from certified seeds to farmers, serving as a motivation.

Gloria Mutheu, a seed merchant at Dryland Seed Company, highlighted the need for government support in investing in the grain sector, citing the school feeding program as an initiative to pull seed demand. Mutheu urged the government to expand the crop types in legumes and cereals, such as chickpeas, included in these school feeding programs to increase demand. This, she argued, would gradually establish an inclusive seed system for increasing uptake of these underutilized but opportunity nutrient-dense crops.

Gloria Mutheu, a seed merchant at Dryland Seed Company, and Veneza Kendi, a student at Jomo Kenyatta University of Agriculture and Technology (JKUAT), discuss the vital role of youth in the seed systems value chain. (Photo: Maria Monayo/CIMMYT)

The consensus was clear: to enhance the seed systems for dryland crops, there must be collaboration across the entire value chain—from breeders to farmers, from policymakers to the private sector. This integrated approach is critical for Kenya’s climate change adaptation, food security, and promotion of sustainable agricultural practices.

Spearheaded by CIMMYT with financial support from the Bill and Melinda Gates Foundation and the United States Agency for International Development (USAID), the AVISA project seeks to improve breeding and seed systems of dryland crops, as well as the livelihoods of small-scale producers and consumers in sub-Saharan Africa. CIMMYT is leveraging this opportunity to advance research and expand its influence through its 2030 strategy that shapes the future of agriculture as a driver of food and nutrition security, and climate resilient, sustainable, and inclusive agricultural development.

Sow, grow, and thrive: a pathway to improve cassava farming in Zambia

For decades, women farmers like Maureen Bwalya from the Musa camp in Kasama district of northern Zambia, have upheld the tradition of cultivating cassava on ridges. These small piles of soil created by hand hoes, 30-50 cm tall and 50 cm wide are intended to reduce water logging and facilitate cassava growth. But forming row after row takes a significant amount of physical labor. Establishing ridges follows a traditional practice known as chitemene, a Bemba word which means “place where branches have been cut for a garden.”

Chitemene, a slash and burn technique once common in Zambia, involves cutting down standing trees in the Miombo woodlands, stacking the logs, and then burning them to create a thick layer of ash believed to enhance soil fertility. The ashen fields are initially cultivated with pearl millet and followed by crops like cassava. As years progressed, this method has been associated with adverse environmental impacts disrupting the ecosystem balance due to increasingly shortened fallow and recovery periods. However, with the ever-changing climate, Bwalya and other farmers recognize the need for sustainable practices that require less labor.

Alternatives to the traditional methods

Since childhood, Maureen Bwalya, a mother of seven from Musa Camp in the Kasama District of northern Zambia, has dedicated her life to cassava farming. Thriving under very low fertility and acidic soils, cassava has offered a lifeline amid the challenges of rural agriculture. When the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project was introduced in the northern province, where cassava is a strategic crop, Bwalya saw a valuable opportunity for change to cultivate better practices that not only improve cassava yields but also replenish soil fertility in her fields.

“When I started these trials, it was a tough transition,” said Bwalya, reflecting on her journey. “Shifting from ridge planting to flat land cultivation posed its challenges as this practice was new to me. But with time, I have learned the advantages of intercropping: increased yields, less labor, and enhanced productivity, all of which enrich my farming practices.”

Maureen Bwalya gazes through her plot. (Photo: CIMMYT)

Implemented over the last five years by CIMMYT, in collaboration with FAO and the Ministry of Agriculture, SIFAZ aims to advance the intensification of farming practices and catalyze widespread adoption among farmers in Zambia. In the Musa camp, key partners took on the challenge of advancing better farming techniques with cassava. Their collective objective was clear: to identify methods that minimized labor intensity while maximizing yields. Through rigorous trials, including comparing flat land planting against traditional ridge systems and experimenting with intercropping cassava with common beans and groundnuts, promising results have been seen.

The outcomes yielded thus far have been nothing short of inspiring across farmers. It has become clear to farmers and researchers that cassava planted on flat land, particularly within a Conservation Agriculture (CA) framework, was not only feasible in high rainfall areas but also yielded significantly higher returns. Despite observing fewer root structures, the roots themselves proved to be robust and weighty, ultimately translating to increased productivity for smallholder farmers. Furthermore, farmers have confirmed that cassava from the CA plots tastes better than the one from the ridged portions.

“As a cassava trial implementer,” Bwalya said, “I undertook various trials exploring intercropping cassava with beans and groundnuts, across both flat and ridge systems.”

Thriving and innovating

Her six-hectare plot has become a hub of experimentation, with 0.3 hectares dedicated to the ongoing trials. Encouraged by the successes and promising yields witnessed on flat land, Maureen extended these sustainable practices to the remaining expanse, intercropping maize with cassava. Her results have been noticed, drawing the interest of over fifty neighboring farmers, inspired by her flourishing plot.

As the harvesting season approaches, Bwalya faces no shortage of opportunities to market her produce. From cassava cuttings to nutrient-rich leaves and tubers, she never runs short of eager buyers in local markets, ensuring a steady income for her family.

Navigating through the different trials across the Kasama district, pockets of adoption in some farmers’ fields are noticeable. Through collaborative partnerships and community engagement, SIFAZ strives to empower farmers with the knowledge and tools stemming from the trials to become more food secure in the face of evolving climatic challenges.

A tale of two worlds: contrasting realities in southern and northern Zambia during El Niño

From the densely lush landscape of Zambia’s northern province to the arid terrain of the south, a stark reality unfolds, intensified by El Niño. Zambia’s agriculture faces contrasting realities yet potential lies in adaptive strategies, a diversified crop basket, and collaborative initiatives which prioritize farmers. Despite persistent challenges with climate variability and uneven resource distribution, the country navigates unpredictable weather patterns, emphasizing the intricate interplay between environmental factors and adaptation strategies.

A healthy maize and groundnut stand in the northern Province (left) and a wilting maize crop in the southern Province (right). These photos were taken two days apart. (Photo: Blessing Mhlanga/CIMMYT)

Unpacking El Niño’s impact in Zambia

El Niño presents a common challenge to both southern and northern Zambia, albeit with varying degrees of intensity and duration. The 2022/2023 season had above normal rainfall amounts, with extreme weather events, from episodes of flash floods and flooding to prolonged dry spells, especially over areas in the south. In the 2023/2024 season, the southern region has already experienced irregular weather patterns, including prolonged droughts and extreme temperatures, leading to water scarcity, crop failures, and significant agricultural losses. Although the growing season is nearing its end, the region has only received less than one-third of the annual average rainfall (just about 250 mm). Dry spells of more than 30 days have been experienced and, in most cases, coincide with the critical growth stages of flowering and grain-filling. A glance at farmers’ fields paints a gloomy picture of the anticipated yield, but all hope is not lost.

In contrast, the northern province stands out receiving above-average rainfalls beyond 2,000 mm, providing a different set of challenges for crop production. In this region, incidences of waterlogging are prominent although the effects are not as detrimental as the drought in the southern province. In general, crops in the northern province promise a considerable harvest as compared to the ones in the southern province.

Maize stover and its competing use

The scarcity of resources in southern Zambia extends beyond water availability, with the competition for maize stover, a valuable byproduct used for animal feed which can also be retained on the soil surface for fertility improvement and soil moisture conservation. With limited access to alternative fodder sources, farmers face challenges in meeting the nutritional needs of their livestock while maintaining soil fertility and conserving moisture. The struggle to balance the competing demands for maize stover underscores the complex dynamics of resource management in the region. This is further worsened by the low maize stover yield expected due to the dry conditions.

Implementing fodder trials, which include cultivating fodder crops like mucuna and lablab, intercropped or rotated with maize, offers a lifeline to farmers. While maize crops may wilt under the stress of El Niño-induced droughts, leguminous crops such as mucuna, lablab, cowpea, and groundnuts exhibit resilience, thriving in adverse conditions and providing a crucial source of food, feed, soil cover, and income for farmers. The ability of legumes to withstand environmental stressors highlights the importance of crop diversification in building resilience to climate change and ensuring food security in vulnerable regions.

Conversely, in northern Zambia, the abundance of agricultural resources allows for a more sustainable utilization of maize stover. Farmers have greater access to fodder alternatives and can implement integrated farming practices to optimize the use of crop residues. This enables them to mitigate the adverse effects of soil degradation and enhance livestock productivity, contributing to the resilience of their agricultural systems.

Use of more climate-smart crops

Drought-tolerant cassava grown in the northern province. (Photo: CIMMYT)

In southern Zambia, maize stands as the main crop, often supplemented with the integration of some leguminous crops integrated to some extent, to diversify the agricultural landscape. However, the relentless and longevity grip of El Niño has taken a negative toll on maize production, despite efforts to cultivate drought-tolerant varieties. As the dry spell persists, maize plants at the critical tasseling and silking stage face an uphill battle, as the dry and hot air has adversely impacted pollen and silk development.

The dissimilarity with the northern province, where cassava thrives from abundant water, is striking. This resilient crop, known for its drought tolerance, presents a promising alternative for farmers in the southern province grappling with erratic rainfall patterns. As climate change continues to challenge traditional agricultural practices, exploring resilient crops like cassava may offer a lifeline for communities striving to adapt and thrive amidst adversity.

In response to these radically different realities, the Sustainable Intensification of Farming Systems (SIFAZ) project, a collaborative effort of CIMMYT with FAO, the Ministry of Agriculture in Zambia, and the CGIAR Initiative on Diversification in East and Southern Africa, also known as Ukama Ustawi, have jointly promoted sustainable intensification practices to enhance the resilience of smallholder farmers.

The SIFAZ project is designed around the idea that strip crops and intercrops can add nutritional and economic value to Conservation Agriculture (CA) systems for smallholder farmers in Zambia. While traditional yield metrics provide some insight across the several intercropping treatments being tested on-farm, the true benefits of these cropping systems extend beyond mere output. SIFAZ recognizes the diversification synergy, emphasizing that “two crops are better than one.”

However, the outcomes of the SIFAZ project and the CGIAR Initiative on Diversification in East and Southern Africa have varied over the years between the two regions, reflecting the discrepancy in their agricultural landscapes.

Notably, regional differences in the adoption and success of these cropping systems have become apparent. In the northern province, crop-centric approaches prevail, leading to a higher concentration of successful crop farmers. Meanwhile, in the southern province, mixed systems that incorporate mixed crop-livestock systems achieve desirable effects. These findings highlight the importance of tailoring agricultural interventions to suit the specific needs and conditions of diverse farming communities.

Navigating the complex challenges of climate change requires a multifaceted approach that acknowledges the unique realities of different regions. By embracing adaptive strategies, harnessing indigenous knowledge, and fostering collaborative partnerships, Zambia can forge a path towards a more resilient and sustainable agricultural future, where farmers thrive despite the uncertainties of a changing climate.

Network develops optimized breeding pipelines for accelerated genetic gains in dryland crops

Participants from the breeding pipelines optimization meeting at the Safari Park Hotel, Nairobi, Kenya. (Photo: CIMMYT)

Partners from the Africa Dryland Crop Improvement Network (ADCIN) from 16 institutes in Africa came together for a four-day workshop in Nairobi, Kenya, during 19-22 September 2023, to critically review and optimize breeding pipelines for newly formed breeding programs. The meeting provided an opportunity for multidisciplinary scientists to better understand each other’s significant roles and contributions in achieving optimized breeding pipelines.

Nine female and 28 male scientists working across 14 countries made up the group of experts at the workshop, which included crop breeders, quantitative geneticists, crop protection scientists, genomics experts, and data analysts. Together, they collaboratively developed, assessed, and refined the various stages and processes of breeding pipelines. Most participants were crop breeding leads from the national agricultural research and extension systems (NARES) and CGIAR Research Centers, as well as members of the Breeding Informatics Working Group A, the first of its kind as a strategic leadership group of crop breeding experts.

The workshop sponsored by CIMMYT focused on improving genetic gains across six crops: chickpea, pigeon pea, finger millet, pearl millet, groundnut, and sorghum. The workshop was organized by CIMMYT experts, Abhishek Rathore, breeding data and informatics expert, Keith Gardner, quantitative geneticist, and Roma Rani Das, biometrician, and quantitative geneticist experts from the CGIAR Accelerated Breeding Initiative, Dorcus Gemenet and Christian Werner.

Multidisciplinary expertise in action

Under the guidance of the Associate Program Director and the Breeding Lead for Dryland Crops, Harish Gandhi, participants engaged in an array of advanced genetic approaches, statistical techniques, and quantitative concepts presented by the participating experts from CIMMYT and CGIAR Accelerated Breeding.

Each breeding program schema was reviewed from detailed quantitative genetic aspects and agreed project criteria, including choosing parents, the optimum number of parents, crossing designs, the number of generations, methodologies, testing strategies, and analytical frameworks. The group deliberated on the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines to enhance the programs’ efficiency.

Agreements were reached on the number of founder parents, the number of crosses and progenies in various generations, line development method, evaluation and testing strategy, time until parental selection (cycle time), marker assisted selection (MAS), genomic selection (GS) strategy, making routine use of molecular markers for QA/QC. The team also finalized the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines aimed at higher genetic gains.

In coordination with crop breeders from CIMMYT, the NARES dryland crop breeding leads presented the current schematics of breeding pipelines for both line and hybrid breeding, highlighting the market segment, Target Product Profile (TPP) and Target Product Environment (TPE).

The breeding informatics team also showcased the upcoming Dryland Crops Trial Information System dashboard, a one stop shops to capture, host, and provide information on the trials organized by the network’s NARES breeders across Africa.

Collaboration for genetic gains

Crop breeding experts discuss strategies for breeding pipeline optimization. (Photo: CIMMYT)

The value of partnership working was frequently highlighted by the speakers. Michael Quinn, lead of the CGIAR Accelerated Breeding Initiative, gave an overview of the initiative’s objectives and high-level goals in 2023, emphasizing the need to foster dialogue and alignment across breeding teams. He also underlined the importance of such hand-in-hand meetings for fostering cross-regional and cross-institute learning.

“Plant breeding has always been at the center stage of crop improvement, but it has become more and more important lately, and there is a need to bring more collaborative efforts across disciplines to realize higher genetic gains in our breeding programs,” said Kevin Pixley, Dryland Crops program director and Wheat program director during his virtual presentation.

“Interaction with the breeding leads from CIMMYT and the NARES in East and Southern Africa (ESA) and West and Central Africa (WCA) and other experts helped in cross learning from the advanced breeding programs,” said Maryam Dawud, plant breeder at the Lake Chad Research Institute in Nigeria. Such workshops are needed for developing optimized breeding pipelines, and we will need more such in-person workshops on advanced data analysis.”

Next steps for dryland crops

During the workshop, network partners came up with an optimized breeding pipeline incorporating advanced quantitative genetic and statistical principles aligned with the latest scientific advancements and market demands. The group further developed a six-month actionable plan split by region to address common bottlenecks across the crops, such as capacity building in data analysis, modernizing digital infrastructure, training and enhancing human capacity in the use of equipment, and managing staff turnover.

All these deliberations provided the network partners with better insights and hands-on-experience to design their breeding pipeline, outlining specific steps, responsibilities, and timelines for implementing the identified optimizations. This preparatory work will ensure there is a targeted and coordinated effort toward pipeline enhancement and accelerated genetic gain for dryland crops in the region.

Happy Daudi, head, Groundnut Research Program at Tanzania Agricultural Research Institute (TARI), who participated in the workshop, stated, “Bringing in multidisciplinary experts provided a great opportunity to integrate various concepts of population improvement, product development, and deploying advanced statistical approaches for optimizing our breeding pipeline for achieving higher genetic gains, and accelerated variety turn over.”

Thank you to the Bill and Melinda Gates Foundation, the United States Agency for International Development (USAID), and CGIAR, for their generous funding which made this workshop possible.

No Stones, No Grit! A game-changing technology to process small grain introduced in Zimbabwe

Farmers thresh wheat at an irrigation scheme. (Photo: CIMMYT)

In Zimbabwe, the traditional, laborious, and time-consuming small grain processing may soon belong to the past, thanks to a game-changing technology: a multi-crop thresher. This scale-appropriate machine offers a smarter and less strenuous way to produce high-quality small-grain meals, including in drought-prone regions, without being contaminated with sand or stone particles.

“One of the main impediments to large-scale adoption of sorghum and millet in drought-prone areas is the laborious task of threshing. This has been solved by introducing multi-crop threshers, which form a central part in the business of mechanization service providers in rural Zimbabwe”, says Christian Thierfelder, principal scientist and project lead for the Mechanization and Extension Activity.

The introduction of the multi-crop thresher not only alleviates the physical strain of manual threshing but also enhances the overall quality of small-grain products. This innovation is a crucial step forward in promoting the production and consumption of small grains in Zimbabwe, contributing to food security and improved livelihoods for farmers.

This innovation was introduced by the Feed the Future Mechanization and Extension Activity, implemented by CIMMYT and funded by the United States Agency for International Development (USAID), to address the challenges of traditional small grain processing and offer new market opportunities to farmers.

Multi-crop thresher. (Photo: CIMMYT)

Small grain production and consumption has traditionally been a household favorite in Zimbabwe due to its rich nutritional content. However, the sand content and gritty texture, often associated with sorghum or millet meals, have led to a decline in consumers’ interest in it. The main culprit? The traditional method of manual threshing on the soil, a strenuous and time-consuming process that incorporates sand and gravel particles into the threshed grains (and then into flours), resulting in an unpleasant eating experience.

In Zimbabwe and across the region, small grain processing has been characterized by the arduous task of manual threshing using sticks. Women, often at the forefront of this task, repeatedly beat the heads of small grains on hard surfaces, such as granite or hard clay, to separate the grains. Despite efforts to minimize contamination by threshing them into sacks or on plastic sheets, the gritty taste persists. The subsequent winnowing, roasting, and milling do little to eliminate tiny soil and stone particles from the final product (flour) as physical separation is technically challenging.

The multi-crop thresher for smooth results

“Powered by an 8 HP diesel engine, the multi-crop thresher is a perfect machine to process sorghum, millets, maize (husked or un-husked), wheat, cowpea, sugar beans, and soybean,” says Abdul Matin, mechanization specialist and technical lead of the Mechanization and Extension Activity. “It is locally made in Zimbabwe and designed to promote mechanization as a business as it can easily be transported. It has high threshing efficiency, is fuel-efficient, easy to operate, and women friendly.”

The operator simply feeds the crop into the inlet hopper, and as it passes through the threshing drum, the machine efficiently separates the grain from the chaff, releasing clean grain through the outlet chute. “The thresher will help reduce decline of small grain production in the country and complement government efforts to expand its cultivation in Natural Regions IV and V in Zimbabwe,” Matin added. When operating the machine efficiently, one can thresh up to 0.5 tons per hour for small grains.

The multi-crop thresher, a vital component of climate-resilient agriculture

The multi-crop thresher is an efficient post-harvest machine that can process various grains. (Photo: CIMMYT)

CIMMYT organized awareness meetings, including the 2023 Seed and Mechanization Fairs, for farmers to witness the speed and quality performance of the multi-crop thresher. They could also assess the quality of pearl millet processed using the thresher and others threshing wheat in an irrigation scheme showcasing the efficiency of the process and improved grain quality.

“In our region, harvesting small grains was always laborious,” explains Paidamoyo Kaseke from Ward 4 in Chimanimani district, Manicaland province. “But thanks to the multi-crop thresher, it’s now much easier. It operates quickly and efficiently, delivering clean grains that we can promptly take to the mill. This technology has revolutionized our harvesting process, significantly reducing the time and effort required.”

“Not only do we promote new and effective technologies such as the multi-crop thresher in the project, but we also seek solutions for farmers without high incomes to be able to afford the thresher. That is why we are partnering with two Zimbabwean banks to make small-scale loans accessible to farmers at affordable rates and tenure times. This way, we can effectively scale the access to scale-appropriate mechanization solutions.” says Leon Jamann, chief of party for the Mechanization and Extension Activity.

As the 2023-2024 farming season has been dry with erratic rainfall, rainfed dependent farmers already face drought in large areas of Zimbabwe. However, the promotion of more climate-resilient small grains in 2023—declared by the United Nations the International Year of Millets—emphasizes their adaptability to climate change and their high nutritional value. The multi-crop thresher, a vital component of this initiative, ensures that farmers can efficiently process small grains despite the challenging climate conditions.

Empowering communities through sustainable agriculture

Miriam Torres conducts field activities in eastern Honduras. (Photo: Mirian Torres)

In the eastern region of Honduras, Mirian Lizeth Torres, an agroindustrial engineer who graduated from the National Autonomous University of Honduras, is making a difference. Her commitment to agricultural sustainability and the empowerment of local communities through sustainable agriculture is evident in her work with the Eastern Regional Farmers Association (ARSAGRO, for its acronym in Spanish) and with her participation in the InnovaHub Oriente, set within the framework of the AgriLAC Resiliente initiative.

“In 2023, I volunteered at ARSAGRO, addressing crucial issues with producers, from events and extension to projects with CIAT that focused on the assessment of plots, water, soil, forest, pests and diseases, bean nutrition, grain quality, among others,” said Mirian, highlighting the breadth of her experience.

Her participation in the InnovaHub Oriente has been key to integrating theory and practice in the field. “I am a student of the conservation agriculture course, where I have explored agronomic practices that improve the sustainability of crops, creating more resilient systems,” she highlights. “These practices are shared with producers through innovation modules, which are plots where conservation agriculture innovations are implemented and compared, side by side, with conventional methods.”

Mirian knows the importance of communicating this knowledge to communities. “At events held on these plots, we shared practices and knowledge, reaching producers who were not familiar with these technologies,” she explains. “Thanks to AgriLAC, in 2023 we contributed significantly to the empowerment of producers and organized groups in eastern Honduras.”

Additionally, Mirian is proud of her role as an inspiration for the inclusion of youth and women in agriculture. “At every event we organize, we see increasing participation of young people and women,” she states. “The empowerment of women in agricultural activities has been notable, with many resuming activities in the field through the transfer of knowledge.”

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field; it is that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

In a world where sustainable agriculture is essential, Mirian Lizeth Torres has assumed solid leadership from the field, helping her community move towards a more sustainable and equitable agricultural future.

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field, but rather that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

Women farmers turn the tide on soybean production

Juliana Moises tends her soybean plot. (Photo: CIMMYT)

From the rich plateau landscapes of Angonia district in the Tete province of Mozambique emerges a tale of determination and hard work. Juliana Nicolau Moises, a mother of four, has been a devoted soybean farmer for more than a decade, tending to a crop whose pods carry the potential for value-added products, including milk and porridge for her children. But one wonders, what motivates smallholder farmers like Juliana to invest their efforts in soybean production.

“I have never looked back on producing soybeans,” reflects Moises. “This legume crop has allowed me to feed my family and meet my household needs, let alone the cash income from sales of the surplus crop. It has taken a lot of hard work and resilience to navigate through the complexities of soybean production.”

Entering her second season of implementing the Chinyanja Soy Use Case trials with CGIAR’s Initiative on Excellence in Agronomy, delivered in partnership with CIMMYT and the International Institute of Tropical Agriculture (IITA), Moises eagerly anticipates a bumper harvest in the early planted fields. She has been avidly implementing trials on planting dates to establish the implications of early, mid, and late planting on soybean yield. Let alone the required attention to detail, she exudes a deep understanding of the significance of the trials by carrying out key agronomic practices to ensure a good harvest. This will not only nourish the health and wellbeing of her family but also symbolizes the fruits of her dedication.

Moises’s commitment extends beyond the trial she hosts as she implements her learning from the project to other fields, using innovative approaches like the double-row planting method. In soybean farming, this involves planting two rows of seeds on a wider ridge established on the traditional spacing that farmers use on maize. Traditionally, farmers in Angonia have been planting single rows of soybean on ridges spaced at 90 cm used for maize, thereby resulting in low soy plant populations and ultimately low yields. This different technique optimizes the plant population and land use efficiency, improving yields, and facilitating easier weeding.

Moises’s soybean plot in Angonia, Mozambique. (Photo: CIMMYT)

Despite the promise of enhanced production, challenges persist. Southern Africa continues to face a growing demand for soybeans, with annual productivity of 861,000 metric tons (mT) falling short of the 2-million-ton demand. In Mozambique, vibrant soybean farms blanket the landscape, yet smallholder farmers like Moises grapple with underdeveloped markets and climate-related adversities, such as droughts and floods currently worsened by the El Niño phenomenon.

“As a devoted soybean farmer, I have met my own fair share of challenges. One of our biggest challenges is the labor requirement across the production season,” shared Moises as she navigates through her fields. “We need machinery for planting, weeding, and harvesting in order to reduce the labor and drudgery associated with soybean production. In addition, markets remain a challenge.” Her unwavering commitment inspires neighboring farmers, creating a ripple effect of hope and determination in the community.

Sharing the same sentiments is Veronica Ernesto Gama, who teams up with her husband every year to tend to her soybean field. Having started in 2007, their yields have sustained the food basket of her family while meeting nutritional needs. “In the past, I used to just scatter around soybean seeds in one place, but after these trials, I have learned the significance of applying the agronomically recommended spacing and the need for quality improved seeds to ensure a bumper harvest,” said Gama.

The power of collaboration

Addressing these challenges head-on is CGIAR’s Excellence in Agronomy Chinyanja Triangle Soy Use Case, a collaborative effort aimed at strengthening the soybean industry primarily by empowering farmers with improved agronomic practices and decision support. Solidaridad, an international non-government organization (NGO) pursuing digital platforms for scaling agronomy, serves as the demand partner of the Excellence in Agronomy Chinyanja Triangle Soy Use Case, while CGIAR provides technical support. Solidaridad’s role is vital in catalyzing demand for the product or service in question. Research outputs drawn from the trials will be used to develop a mobile phone application on the Kvuno, a social enterprise borne out of Solidaridad. The platform will support farmers with onsite advisories on planting dates, site-specific fertilizer recommendations, variety selection, and crop configurations.

To date, the initiative has drawn the willingness of 70 farmers in the Angonia district of Tete province, who are implementing different suites of trials, including nutrient omission, planting date, plant configuration, and fertilizer usage. Excellence in Agronomy has come at an opportune time for smallholders’ journeys in soybean production, emphasizing the importance of optimized spacing and improved agronomic practices.

As the story unfolds in Mozambique, women like Moises and Gama are the unsung heroes driving soybean production. Their dedication, coupled with initiatives like Excellence in Agronomy, paint a picture of progress and potential. Their commitment inspires many surrounding farmers who draw inspiration on the trials in their fields. As the sun continues to rise over the dusty soils of Angonia, it showcases not just Moises’s fields, but the bright future of soybean production in the hands of resilient women farmers.

Product Design Teams (PDTs): A client-oriented approach to defining market segments and target product profiles

Participants from the Kenya PDT meeting held in Nairobi. (Photo: CIMMYT)

Product design teams (PDTs) are a CGIAR Accelerated Breeding Initiative innovation created to address the aforementioned challenges under the CGIAR-NARES partnership through coordinating SPMS and related TPPs. Each seed product market segment, which in the case of CGIAR is defined at sub-regional level, represents a unique set of requirements. Attached to the segment is a TPP which describes the ideal product to meet the requirements. Taken together, the framework provides a starting point for discussions by breeding teams on investment opportunities.

Discussions on market segments and TPPs need to develop over time as new insights are gained. Some requirements might be overlooked, and others may be emerging due to client requirements and changes in the context. There is a need for a greater understanding of the evolving requirements of the seed companies, farmers, processors, and consumers in the market segments that CGIAR serves. It must be recognized that not all requirements of farmers or consumers are amenable to breeding or efficient to incorporate in breeding pipelines – for example, some post-harvest losses or weed management can be best addressed by appropriate storage mechanisms and improved agronomic practices, respectively.

Product design teams (PDTs) were created to address the aforementioned challenges under the CGIAR-NARES partnership by and coordinating SPMS and related TPPs. A PDT is a group of crop breeding and seed systems stakeholders for a particular crop, who work together to design or redefine TPPs. PDTs have been envisioned to be cross-functional teams that meet annually with the following aims:

  • Review the market segments at subregional and national levels, addressing critical questions, such as:
    • Do the subregional segments capture country-level requirements?
    • What is the opportunity for impact from breeding investments across market segments?
    • Are there important market segments that have not been captured?
    • What are the potential future segments that the team needs to consider?
  • Review and update TPPs for each segment, addressing questions such as:
    • Are any important traits missing?
    • Are country-specific trait values factored?
    • Are country-specific market-dominant varieties included in the market segment?
  • Discuss the needs for market intelligence for the PDT:
    • Unknowns regarding client requirements.
    • Gaps regarding product design parameters.

Director of the Global Maize program at CIMMYT, B.M. Prasanna, said, “PDT meetings serve as an important platform to understand the perspectives of diverse and relevant stakeholders. These discussions enable us to reach a common understanding of the current market requirements and redefine TPPs to reflect needs across value streams through co-creation and shared responsibility.”

The impact of PDTs

Pieter Rutsaert, seed systems specialist at CIMMYT and the CGIAR Market Intelligence Initiative, participated in several PDTs on maize and other crops, such as groundnut. “PDTs are a useful format to understand the unknowns in terms of farmer, processor, and consumer requirements and generate questions that guide future work in market intelligence,” said Rutsaert.

Product Design Team (PDT) meetings bring together breeding and seed systems stakeholders to improve understanding of country and regional needs for a specific crop. (Photo: CIMMYT)

“PDTs will help in routine review of the product requirement for a specific country and will help to remove breeder bias and ensure that all stakeholders’ views are heard and considered”, said Aparna Das, technical program manager for the Global Maize program at CIMMYT.

The main requirements for constituting PDTs for a specific country are:

  • A multidisciplinary team with 7 to 15 members, ensuring diversity of experience and providing reasonable time for decision-making.
  • Must consist of a range of stakeholders, such as: breeders from NARES (often the PDT convener/lead) and CGIAR; representatives of farmers’ groups, seed companies, and food processors; gender specialists; and market intelligence specialists.
  • 30% of members should be female.
  • Should include a member from another crop breeding network, to bring a different perspective.

Bish Das, NARS coordinator, Dragan Milic, breeding specialist, and Lennin Musundire, breeding optimization specialist, from the CGIAR Accelerated Breeding Initiative team said, “Ultimately, the client-led approach to priority setting that CIMMYT’s Global Maize program is implementing in southern and eastern Africa ensures strong alignment with partners’ priorities and client requirements and better targeting of CGIAR regional maize breeding efforts.”

Case study: maize seed systems

CIMMYT’s Global Maize program has refined variety development to meet market needs across the value chain including farmers, processors, and consumers, thus enhancing variety adoption, which is the end goal of breeding pipelines. This has been implemented through the regional CGIAR-NARES-SMEs collaborative breeding networks and having ‘a bottom-up’ approach towards developing market segments and TPPs. This refers to building an understanding of end-users’ needs through inclusive in-country and regional stakeholder PDT meetings. PDTs also ensure that there are CGIAR-NARES-SME defined roles: a national mandate for NARES partners focusing on niche markets, the consolidated national mandate for CGIAR/NARES/SMEs, and a regional mandate for CGIAR Research Centers like CIMMYT.

In 2023, maize PDT teams were established and held meetings for five countries in eastern and southern Africa: Zambia, Ethiopia, Kenya, Zimbabwe, and Uganda. These meetings brought together stakeholders from different fields who play an important role in product development and seed systems (national partners and seed companies), varietal release (representatives from regulatory agencies) and end-product users (for example, millers).

The advantages of TDPs are emphasized by Godfrey Asea, director of Research and Daniel Bomet Kwemoi, maize breeder at the National Agricultural Research Organization (NARO) in Uganda. They highlighted that the NARO maize program has now begun a systematic journey toward modernizing its breeding program. The PDT team validated the country’s market segments and aligned five product profiles with two major target production environments (TPEs), with the mid-altitude regions taking 85% of the maize seed market and the highlands accounting for 15%. “These TPPs will be reviewed annually by the PDT since market segments tend to be dynamic. The breeding program has reclassified and aligned breeding the germplasm to TPPs, which will guide effective resource allocation based on the market shares,” said Asea.

Feedback on PDT meetings so far suggests positive experiences from stakeholders. Wendy Madzura, head of agronomy at SeedCo in Zimbabwe, said, “The unique PDT meeting held at CIMMYT in Zimbabwe provided a conducive environment for public and private stakeholders to have meaningful and honest discussions on the current market segments and TPPs.” Plans for continuous improvement are embedded in the PDT model. “As a follow-up to the PDT meeting, there is a need for further involvement of various stakeholders at the village, ward, and district levels to enable deeper insights and reach because the client needs are constantly changing,” said Madzura.

Advancing wheat breeding through rapid marker-selectable trait introgression

The experimental research station in Toluca, Mexico. (Photo: S. Herrera/CIMMYT)

In the ever-evolving field of agriculture, AGG-WHEAT is leading a transformative approach through rapid marker-selectable trait introgression in wheat breeding programs. This method aims to streamline the process of integrating desirable traits into various genetic backgrounds.

At the core of AGG-WHEAT’s strategy is the establishment of a centralized marker-selectable trait introgression pipeline. This initiative seeks to facilitate the transfer of specific genes from a centralized source into various genetic backgrounds within plant breeding programs. Molecular markers play a crucial role in efficiently identifying and selecting target traits.

The merits of a centralized trait introgression pipeline extend beyond convenience. This approach ensures a more uniform and controlled transfer of genetic material, enhancing the precision of trait introgressions across diverse breeding lines. Molecular markers streamline the selection process, improving the accuracy of desired trait incorporation into wheat varieties.

Speed breeding facilities in Toluca, Mexico

AGG-WHEAT’s marker-selectable trait introgression pipelines are implemented at the speed breeding facilities located at the CIMMYT research station in Toluca, Mexico. These facilities serve as the incubators for innovation, where new selection candidates are evaluated based on various criteria. The decision-making process involves an expert panel comprising geneticists, trait specialists, and breeders. This panel annually determines the selection candidates, considering factors such as trait demand, genetic diversity, evidence of Quantitative Trait Loci (QTL) effects, selection efficiency, and available funding.

The decision-making process involves a multifaceted evaluation of potential selection candidates. Documented trait pipelines and product profiles guide decision-making to ensure alignment with the overarching goals of wheat breeding programs. Considerations include the need for phenotypic variation and the existence of limited genetic diversity for the trait under consideration.

The decision-making process also explores existing in-house or external evidence of QTL effects and the underlying gene mechanisms. Selection efficiency, contingent on the availability of accurate molecular markers and a known purified donor parent, further refines the pool of potential candidates. Established phenotypic protocols for product testing and the crucial element of available funding complete the decision-making criteria.

Achievements

In a significant step towards innovation, the products of the first marker-selectable trait introgression pipelines entered yield trials in 2023. This marks a transition from conceptualization to tangible impact, reflecting the efficacy of AGG-WHEAT’s approach. A total of 97 F5-lines, cultivated through the marker-assisted backcross (MABC) scheme, now grace the fields.

These lines carry novel genes associated with fusarium head blight and rust resistance, derived from wheat genetic resources and wild relatives. The choice of these traits underscores AGG-WHEAT’s commitment to addressing challenges faced by wheat crops, ensuring improved resilience and sustainability in the face of evolving environmental conditions.

The success of these initial trait introgression pipelines represents more than a scientific achievement; it marks a pivotal moment in the trajectory of wheat breeding. The 97 F5-lines, standing as testaments to enhanced resistance traits, are poised to make a transition into mainstream breeding pipelines. This marks the commencement of a broader dissemination strategy, where these lines will be distributed for testing at National Agricultural Research and Extension Services (NARES).

The journey from the experimental fields to mainstream adoption involves a meticulous process. These lines, having undergone rigorous evaluation and selection, now hold the potential to catalyze changes in commercial wheat varieties. The lessons learned from their cultivation will shape future breeding strategies and contribute to the resilience of wheat crops in diverse agricultural landscapes.

Rapid marker table. (Photo: CIMMYT)

AGG-WHEAT’s lasting impact

AGG-WHEAT’s marker-selectable trait introgression stands as an innovative approach in wheat breeding. The centralized approach, the strategic use of molecular markers, and the meticulous decision-making process exemplify the commitment to excellence and precision. The journey from concept to reality—marked by the entry of 97 F5-lines into yield trials—signals a new era in wheat breeding.

As these lines traverse from experimental fields to mainstream adoption, they carry the promise of transforming the landscape of commercial wheat varieties. AGG-WHEAT’s lasting impact goes beyond the scientific realm; it extends to the fields where farmers strive for sustainable and resilient wheat crops. In the tapestry of agricultural progress, AGG-WHEAT has woven a thread of innovation that holds the potential to redefine the future of wheat cultivation.

East African wheat breeding pipeline and E&SSA network

Healthy wheat and wheat affected by Ug99 stem rust in farmer’s field, Kenya. (Photo: CIMMYT)

The East African wheat breeding pipeline aims to improve wheat varieties and contribute to regional food security by ensuring a stable and resilient wheat supply. In 2022, CIMMYT, in partnership with the Kenya Agriculture and Livestock Research Organization (KALRO) established a Joint Breeding Program in Njoro, a town southwest of the Rift Valley in Kenya. This was one of the first integrated breeding pipelines between CGIAR and National Agricultural Research and Extension Systems (NARES) partners.

Over the last three decades, genetic trials of over 77 varieties have been conducted in several regions. In East Africa, an expanded testing network that spans over multiple research institutes in Kenya and Ethiopia has been established for Stage 1 and Stage 2 trials in network countries. This makes the pipeline a powerful driver of positive impacts, rapidly enhancing both farm productivity and production in target regions. In Kenya specifically, a genetic gain trial was conducted at two sites in 2023 with the Stage 1 trials evaluated across eight locations. These are being distributed to NARES partners to establish correlations between the breeding site in Kenya and the Target Population of Environments (TPEs) in the E&SSA regions. This breeding pipeline demarcates the population improvement from product development. Other areas in the trials include the enhancement of genetic diversity to build resilience, adaptability, and quality enhancement to meet market and consumer demands.

The trial will continue in 2024 and 2025 to establish a baseline for genetic gains and to enable the assessment of the breeding pipeline’s progress in the coming years. The first cohort of pipeline materials (250 crosses) has been advanced to F2 generation and will be ready for distribution to E&SSA partners in 2025.

Accelerated breeding

The anticipation is that accelerated breeding techniques will be implemented in Kenya by incorporating a three-year rapid generation bulk advancement (RGBA) scheme aimed at diminishing the time necessary for variety development and release. This collaborative effort encompasses various activities, including joint crossing block, generation advancement, yield testing, and population improvement. The three-year RGBA scheme, coupled with data-driven selection utilizing advanced data analytics (GEBV, SI) and genomic selection approaches, is expected to play a pivotal role in facilitating informed breeding decisions in the East African region.

3-year RGBA scheme. (Photo: Sridhar Bhavani)

Varietal improvement

The project aims to develop and release improved wheat varieties that are well adapted to the East African agroecological conditions. The Kenyan environment closely mirrors wheat-growing conditions in Ethiopia, Tanzania, Uganda, Rwanda, and Burundi, and spillover impacts to sub-Saharan countries such as Zambia and Zimbabwe. This strategic alignment with local conditions and close cooperation with NARES partner organizations has proven to be very effective in addressing critical gaps, including high-yield potential, disease resistance, and climate resilience, and aligns with CIMMYT’s overall wheat strategy for Africa.

Enhanced disease resistance

Kenya stands out as a hotspot for rust diseases, showcasing notable diversity in stem rust variants (ug99) and yellow rust. The virulence spectrums of these diseases differ from those found in Mexico, posing challenges to effective breeding strategies. It is expected that the breeding pipeline will effectively tackle these challenges as well as those associated with fusarium, Septoria, and wheat blast, which are on the rise in African environments.

Climate adaptation

The East African wheat breeding pipeline is committed to breeding wheat varieties that can thrive in changing climatic conditions, including heat and drought tolerance, and expanding testing in marginal rainfed environments experiencing heat and drought stress.

Through the support of our partners and funders from the Bill and Melinda Gates Foundation, Foundation for Food and Agriculture Research (FFAR), and Foreign, Commonwealth and Development Office FCDO, the following achievements can be reported:

Regional collaboration and cooperation

For over four decades, the enduring collaboration with KALRO has yielded significant successes including the operation of the largest phenotyping platform for stem rust and various diseases. The Mexico-Kenya shuttle breeding program, incorporating Ug99 resistance, has successfully countered the threat of stem rust by releasing over 200 varieties in targeted regions and advancing the East African wheat breeding pipeline. The plan is to replicate these accomplishments in other target regions through the E&SSA network. To address limitations in KALRO’s breeding program and to conduct standardized trials, a strategic partnership with a private seed company Agventure Cereal Growers Association has been established. This collaboration will facilitate yield testing at multiple sites in Kenya to identify lines with superior performance for the East African region. So far, lines exhibiting high yield potential of up to 8 tons/ha, even under rain-fed environments, have been identified. The collaborative efforts are already making a noticeable impact, as evidenced by reports indicating increased adoption of zero-tillage practices among farmers. This shift has proven beneficial, especially during years marked by heat and drought challenges, resulting in higher returns for these farmers.

Increased capacity of national programs

From 1-13 October 2023, the AGGMW project held a training program on “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines”. The course which brought together 33 participants from over 13 countries was held at the KALRO station in Njoro- Kenya. The comprehensive program covered a wide range of crucial subjects in the field of wheat breeding and research. Topics included breeding methodologies, experimental design, data collection, statistical analysis, and advanced techniques such as genomic selection. Participants also engaged in practical hands-on data analysis, explored rust pathology, and delved into early warning systems. Moreover, they had the opportunity for direct evaluation and selection of breeding materials. The course aimed to equip participants with a diverse skill set and knowledge base to enhance their contributions to the field of wheat breeding and research.

Other initiatives supporting the breeding pipeline include CGIAR programs, Accelerated Breeding and Crops to End Hunger. This multi-faceted approach within the breeding pipeline underpins the importance of fostering regional collaboration, knowledge sharing, and strategic investments in enhancing wheat production and addressing critical challenges in the region.

Enhancing wheat breeding efficiency in South Asia through early germplasm access

Wheat field. (Photo: CGIAR)

In the dynamic landscape of wheat breeding, early access to germplasm emerges as a strategic catalyst for accelerating variety turnover and meeting the evolving challenges faced by farmers in South Asia. Since its inception, the Accelerating Genetic Gains in Maize and Wheat (AGG) project has pioneered new tools to optimize the wheat breeding process. One such tool, the efficient and low-cost 3-year breeding cycle, has been fine-tuned in Mexico, using the Toluca screenhouse and field advancement in ObregĂłn, laying the groundwork for faster variety turnover.

The inaugural set of lines generated through this enhanced breeding cycle is already undergoing Stage 1 trials in the ObregĂłn 2023-24 season. However, the innovation doesn’t stop there; to expedite the variety release process and garner robust data from the Target Population of Environments (TPE), Stage 2 lines are being rigorously tested at over 20 sites in South Asia through collaboration with National Agricultural Research and Extension Services (NARES) partners. In the seasons spanning 2021-2024, a total of 918 Stage 2 lines underwent rigorous trials, aiming to provide early access to improved wheat lines for testing and release by NARES and establish a genetic correlation matrix between ObregĂłn selection environments and diverse sites across South Asia.

These extensive trials serve a dual purpose. Firstly, they facilitate early access to improved wheat lines for testing and release by NARES, bolstering the agricultural landscape with resilient and high-yielding varieties. Secondly, they contribute to the establishment of a genetic correlation matrix between the selection environments in ObregĂłn and the diverse sites across South Asia. This matrix becomes a guiding compass, aiding in selecting the most promising lines for broader TPEs in South Asia and beyond.

Transformative impact on wheat varieties in South Asia

Through the support of our partners and funders from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), the UK Foreign, Commonwealth & Development Office (FCDO), and the US Agency for International Development (USAID), great achievements have been recorded throughout the region. India, a prominent player in wheat cultivation, stands as a testament to the transformative impact of early access to advanced lines. The top three varieties, namely DBW187, DBW303, and DBW 222, covering over 6 million hectares, trace their roots to CIMMYT varieties. Adopting a fast-track approach through early-stage testing of these advanced lines at BISA sites in India, supported by the Delivering Genetic Gain in Wheat (DGGW) project, facilitated the release of these varieties two years ahead of the regular testing process. This expedited varietal release was complemented by the innovative early seed multiplication and dissemination approach introduced by the Indian Council of Agricultural Research (ICAR). Recent additions to this accelerated channel include varieties such as DBW 327, DBW 332, DBW 370, and 371, promising further advancements in wheat cultivation.

Pakistan

In Pakistan, the early access to advanced lines has been a catalyst for releasing high-yielding, climate-resilient, and nutritious wheat varieties. In 2023 alone, 12 new varieties were released, with the renowned ‘Akbar-19,’ introduced in 2019, covering a substantial 42% of cultivated land in Punjab. Data released by the Ayub Agricultural Research Institute (AARI), shows that this variety, known for its high yield potential, disease resistance, and enriched zinc content, has significantly contributed to increased wheat production in the region.

Nepal

Guided by policy interventions in the national varietal testing process, Nepal has experienced the fast-track commercialization of high-yielding and climate-resilient wheat varieties. Allowing multilocation testing of CIMMYT nurseries and advanced elite lines, Nepal released six biofortified zinc wheat varieties in 2020. The expeditious seed multiplication of these released and pre-release varieties has facilitated the rapid spread of new and improved wheat varieties.

The strategic utilization of early access to wheat germplasm in South Asia holds promise in accelerating variety turnover, offering farmers resilient and high-performing wheat varieties. Collaborative efforts between research institutions, government bodies, and international organizations exemplify the power of innovation in transforming agriculture. With an ongoing dedication to refining breeding cycles, expanding testing initiatives, and fostering collaboration, the AGG project contributes to building a sustainable and resilient agricultural future in South Asia. Early access to wheat germplasm emerges as a practical approach in this scientific endeavor, laying the foundation for a climate-resilient and food-secure region. The successes witnessed in India, Pakistan, and Nepal underscore the transformative potential of this approach, offering tangible benefits for agricultural communities in South Asia and beyond. In navigating the complexities of a changing climate and growing food demand, early access to wheat germplasm remains a pragmatic ally, propelling agricultural innovation and resilience to new heights.

Reaching farmers in Zambia

Farmers are guided on how to use Atubandike and VIAMO. (Photo: CIMMYT)

It is challenging to disseminate information across far-flung areas of rural Zambia as extension officers must travel vast distances to reach farmers. The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub, managed by CIMMYT and funded by the United States Agency for International Development (USAID) helps alleviate these issues by engaging with existing mobile phone networks to reach farmers with agronomic information, weather data, and soil information.

To introduce farmers to these specific tools: Atubandike and VIAMO, AID-I conducted a community sensitization and engagement exercise in Zambia. Atubandike emphasizes farmer learning and feedback using mobile phones for disseminating knowledge about the new generation of drought-tolerant varieties, sustainable intensification practices, and collecting farmer feedback to enable demand-driven delivery under AID-I. VIAMO, accessible via a basic mobile phone, provides agronomic information for every farmer in a specific area. The platform comes in different languages and farmers access information on various crops such as maize, beans, and groundnuts in their native language, provide feedback on information content, and connect with other farmers.

An AID-staff facilitates a training session. (Photo: Nancy Malama/CIMMYT)

In Choma District, Morgan Katema, who provides extension services to farmers, explained that going digital is one way of reaching farmers through technology to ensure that all farmers have access to extension services. “In this case, lessons will be available through mobile phones and farmers will ask agriculture-related questions and get a response. This is a good initiative because farmers can access information on the spot instead of waiting for an extension officer to reach them, and information can be accessed after working hours, and the VIAMO initiative will help us overcome the challenge of long distances between farmers as we will no longer need to travel long distances,” Katema said.

Judith Simuliye, a farmer who grows maize and groundnuts, said, “I was told about this meeting by the camp officer, and I am happy to learn about this project. I have learned how to manage my crop by using the right seed varieties and how to space the crops.”

During the meeting, two community facilitators were selected through a voting process, after farmers nominated community members who are literate, trustworthy, energetic, and able to use a smart phone. Facilitators register farmers on the VIAMO platform, assist them in accessing the information they require, and support them in their learning journey.

Namasumo Rithay, a farmer in the village of Kalalasa, said, “Mobile phone access to extension services has come at the right time. We have faced a lot of challenges with the poor rain patterns and pests. Through this meeting organized by AID-I, we have learned how we can obtain information to mitigate these challenges through our mobile phones.”

A participant casts her vote. (Photo: Nancy Malama/CIMMYT)

An additional community meeting was held in the village of Namuswa and was attended by 150 farmers. AID-I and Atubandike Research Associate, Brian Mpande, informed farmers that AID-I, with the assistance from VIAMO, will help them overcome the challenges of climate change by delivering timely and useful information via their phones. 

Advancing conservation agriculture

A practical demonstration at Jabalpur. (Photo: CIMMYT)

Agriculture feeds the world. Yet traditional cycles of ploughing, planting, and harvesting crop and biomass products is inefficient of labor and other scarce resources and depletes soil health while emitting greenhouse gases that contribute to climate change.

One effort to ameliorate the negative effects of farming is a set of practices referred to as conservation agriculture (CA), based on the principles of minimal mechanical soil disturbance, permanent soil cover with plant material, and crop diversification.

To deliver advanced, high-level instruction on current innovative science around important aspects of cropping and farming system management to scientists from India, Bangladesh, Egypt, and Morocco, the 12th Advanced Conservation Agriculture Course hosted by the Indian Council of Agricultural Research (ICAR), CIMMYT, and the Borlaug Institute for South Asia (BISA) took place in India from December 10 to 24, 2023.

SK Chaudhari, deputy director general for Natural Resource Management, ICAR; HS Jat, director of the Indian Council of Agricultural Research-Indian Institute of Maize Research (ICAR-IIMR); Arun Joshi, country representative for India and BISA managing director, CIMMYT-India; Mahesh K. Gathala, senior systems agronomist and science lead, CIMMYT-Bangladesh; and Alison Laing, agroecologist, CIMMYT-Bangladesh, all attended the opening ceremony at the National Agricultural Science Complex in New Delhi, India.

This CA course integrated scientific advancements and multidisciplinary techniques to sustainably develop agricultural systems, restore natural resources, and improve climate resilience in agriculture throughout Asia and North Africa. It was held at leading research centers throughout India.

SK Chaudhari welcomed delegates to the course and stressed its practical character and efficacy in promoting CA management innovations, as evidenced by the significant achievements and international reputations of many former attendees and resource personnel.

“As climatic variability and change increase, the need to manage agronomic risks grows, and CA is an effective tool for farmers and scientists in both irrigated and rainfed systems,” said Chaudhari.

Twenty rising scientists from such fields as agronomy, soil science, plant protection, agricultural engineering, plant breeding, and extension, took part in the workshop where they gained a better understanding of all aspects of conservation agricultural methods in rainfed and irrigated ecosystems, as well as exposure to wide networks with prominent international scientists. Organizers prioritized the inclusion of female scientists, who made up 40% of attendees.

The workshop empowered participants to act as conservation agriculture ambassadors and champions of modern, novel agronomic methods when they return to their home institutions.

Rajbir Singh, ICAR assistant director general for Natural Resource Management, and ML Jat, global research program director of Resilient Farm and Food Systems, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) provided keynote addresses at the closing ceremony, held at the ICAR-Central Soil Salinity Research Institute in Karnal, Haryana, India.