Skip to main content

It’s time to scale: Emerging lessons from decades of Conservation Agriculture research in Southern Africa

CA in action at the farmer level. (Photo: Christian Thierfelder/CIMMYT)

For decades, smallholder farmers in Southern Africa have battled the whims of a changing climate—from withered crops to yield reductions and looming food insecurity concerns. And the outlook is not improving. Based on the latest available science, the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) reaffirms the projected negative impacts of climate change on livelihoods in Southern Africa.

Conservation Agriculture (CA) has been considered as an important step to make smallholder farming systems climate smart and resilient. The principles of CA are simple yet potent: minimal soil disturbance, crop cover, and diverse rotations, which tend to have lasting implications on rebuilding soil health, conserving moisture, and nurturing a thriving ecosystem. A strong evidence base from on-farm and on-station trials show that CA has the potential to build the adaptive capacity and resilience of smallholder farming systems to climate stress.

Yet, despite the positive results, significant scaling gaps remain. Key questions arise on what can be done to turn the tide, scale, and encourage uptake. What institutional, policy and economic incentives would enable scaling? Could mechanization be the missing link? The Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA) project responds to these questions. With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA), and CIMMYT, the ACASA project goes beyond the narrow focus on promotion and technology delivery of past and ongoing interventions on CA in Southern Africa.

ACASA was designed to help stakeholders gain deeper understanding of the interactions between the socio-economic, biophysical, and institutional constraints and opportunities for adoption of CA practices. To do this, the project has undertaken extensive surveys aimed at understanding incentives, drivers, and barriers of CA adoption across Zambia, Malawi, and Zimbabwe.

Dialogues for change

Participants from across the region during the reflective meeting. (Photo: CIMMYT)

In December 2023, CIMMYT collaborated with IITA and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development of Zimbabwe to convene a highly engaging, reflective, and learning meeting, with the participation of government representatives, the private sector, and research institutes, among others. The primary objective was to share valuable insights accumulated over years of research and development on conservation agriculture in southern Africa. These insights are a result of collaborative efforts in social science, scaling, and mechanization work by CIMMYT, IITA, and extension and research partners in Malawi, Zambia, and Zimbabwe. Conversations centered on tracing the historical pathway of CA, leveraging mechanization, and identifying key enablers to transform smallholder agriculture.

Tracing the pathway of conservation agriculture

For decades, CIMMYT has been a leading force in promoting Conservation Agriculture. From the early stages in the 1990s, CIMMYT introduced CA principles and practices through on-farm and on-station field days, to undertaking robust research on biophysical impacts and developing adapted technologies in collaboration with national and global partners. As this research progressed and matured, efforts were made to integrate and focus on understanding the social and economic factors influencing CA adoption, while recognizing the significance of enabling environments. To date, linkages with mechanization and other innovations promoting CA-friendly equipment have been strengthened, ensuring inclusivity and empowerment. Questions remain around policy and institutional innovations to nudge and sustain adoption. In a nutshell, there is scope to borrow tools and methods from behavioral and experimental economics to better study and facilitate behavioral change among smallholder farmers. This snapshot highlights global efforts, grounded in scientific evidence, farmer centric approaches, and collaborative partnerships.

Insights from the field

Described as a data and evidence driven process, a notable highlight was the detailed gathering and analytical efforts using a large multi-country household survey involving 305 villages and 4,374 households across Malawi, Zambia, and Zimbabwe. The main thrust was not only to harvest data but listen to farmers and better understand their context while deciphering their decision-making processes concerning CA adoption, across the three countries. A compelling and hopeful story unfolds from the results. The adoption of CA practices such as crop residue retention, minimum tillage, crop rotation, and intercropping is much higher than previously thought, highlighting a crucial need for better targeted surveys. Key enablers to strengthen adoption include access to CA extension, hosting demonstrations, and access to credit. In addition, age, and extension in the case of Zambia were identified as important drivers of the speed and persistence of adoption. Demand for mechanization is rising, which is key to address drudgery associated with CA and to raise production efficiencies. Key recommendations centered on the need for investments in a dense network of farmer-centric learning centers that allow for experiential learning, facilitating equitable access to mechanization, promoting private sector participation, and developing integrated weed management options as weeds remain the Achilles Heel of CA adoption in the region. [1]

Emerging lessons

A deep dive on the findings reveals critical considerations for the widespread adoption of Conservation Agriculture (CA). Firstly, weed-related labor challenges pose a significant obstacle, with around 75% of farmers in three countries citing weeds as the most constraining issue during initial CA adoption. Addressing this weed management challenge is essential, emphasizing the need for environmentally safe, non-chemical solutions as a research priority. Secondly, there is a noticeable gap between scientific research on CA and farmer practices, primarily attributed to limited technical knowledge. Bridging this gap requires innovative approaches to translate scientific information into practical, farmer-centered products. Thirdly, incentivizing CA adoption through complementary input support programs, like payments for environmental services, may encourage farmers, especially when private returns are not immediate.

Fourthly, strengthening extension systems is crucial to facilitate farmer learning and bridge the awareness-to-know-how gap. Lastly, investing in improved machinery value chains can alleviate high labor costs and drudgery associated with CA practices, with economic estimates suggesting farmers’ willingness to pay for machinery hire services. These insights collectively highlight the multifaceted nature of challenges and opportunities for scaling up CA adoption.

Moving forward

ACASA’s research findings are not just numbers — they are seeds of hope. They point towards a future where CA adoption among smallholder farmers can transform the breadbasket of the three African countries, and beyond. CIMMYT and its partners remain committed to continuous learning, refining their approaches, and working hand-in-hand with farmers to nurture the CA revolution.

It will not be a pipe dream to transform agriculture in Southern Africa through CA by cultivating seeds of resilience, one at a time. This is because the experience from the region suggests that with the right political will, it is possible to mainstream CA as a critical adjunct to climate-smart agriculture strategies and resilience building. This broader institutional and political buy-in is important since CA programming cannot succeed without sector-wide approaches to removing systemic constraints to technology adoption.  A classic example is the Government-backed Pfumvudza program in Zimbabwe, which has seen adoption of planting basins conditioned on receipt of input subsidies soar to more than 90%.

[1] CIMMYT/IITA Scientists explore the weed issue in detail in a paper just accepted and forthcoming in Renewable Agriculture and Food Systems – Unanswered questions and unquestioned answers: The challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa.

Heat tolerant maize: a solution for climate change-induced 360◩ water deficits

Seed company partners observe the performance of heat-tolerant hybrids in the dry heat of southern Karnataka, India. (Photo: CIMMYT)

Millions of smallholders in the Global South depend on maize, largely cultivated under rainfed conditions, for their own food security and livelihoods. Climate change mediated weather extremes, such as heat waves and frequent droughts, pose a major challenge to agricultural production, especially for rainfed crops like maize in the tropics.

“With both effects coming together under heat stress conditions, plants are surrounded, with no relief from the soil or the air,” said Pervez H. Zaidi, maize physiologist with CIMMYT’s Global Maize Program in Asia. “Climate change induced drought and heat stress results in a double-sided water deficit: supply-side drought due to depleted moisture in soils, and demand-side drought with decreased moisture in the surface air. “

Extreme weather events

Weather extremes have emerged as the major factor contributing to low productivity of the rainfed system in lowland tropics. South Asia is already experiencing soaring high temperatures (≄40◩C), at least 5◩C above the threshold limit for tropical maize and increased frequency of drought stress.

A woman agricultural officer discusses the performance of heat tolerant hybrids at farmers’ field in Raichur districts of Karnataka, India. (Photo: CIMMYT)

“In today’s warmer and drier climate, unless farmers have copious amounts of water (which might not be a sustainable choice for smallholders in the tropics) to not only meet the increased transpiration needs of the plants but also for increased evaporation to maintain necessary levels of humidity in the air, the climate change mediated weather extremes, such as heat and drought pose a major challenge to agricultural production, especially for rainfed crops like maize in lowland tropics,” said Zaidi.

To deal with emerging trends of unpredictable weather patterns with an increased number of warmer and drier days, new maize cultivars must combine high yield potential with tolerance to heat stress.

Maize designed to thrive in extreme weather conditions

CIMMYT’s Global Maize Program in South Asia, in partnership with public sector maize research institutes and private sector seed companies in the region, is implementing an intensive initiative for developing and deploying heat tolerant maize that combines high yield potential with resilience to heat and drought.

By integrating novel breeding and precision phenotyping tools and methods, new maize germplasm with enhanced levels of heat stress tolerance is being developed for lowland tropics. Over a decade of concerted efforts have resulted in over 50 elite heat stress tolerant, CIMMYT-derived maize hybrids licensed to public and private sector partners for varietal release, improved seed deployment, and scale-up.

Popular normal hybrids (left) & CAH153, a heat tolerant hybrid (right) under heat stress. (Photo: CIMMYT)

As of 2023, a total of 22 such high-yielding climate-adaptive maize (CAM) hybrids have been released by partners throughout South Asia. Through public-private partnerships, eight hybrids are being already deployed and scaled-up to over 100,000 hectares in Bangladesh, Bhutan, India, Nepal, and Pakistan. Also, the heat tolerant lines developed by CIMMYT in Asia were used by maize programs in sub-Saharan Africa for developing heat tolerant maize hybrids by crossing these as trait donors with their elite maize lines.

Studies on the new CAM hybrids show that while their yield is like existing normal maize hybrids under favorable conditions, the CAM hybrids outperform normal hybrids significantly under unfavorable weather conditions.

“The unique selling point of the new CAM hybrids is that they guarantee a minimum yield of at least 1.0 tons per hectare to smallholder farmers under unfavorable weather when most of the existing normal hybrids end-up with very poor yield,” said Subhas Raj Upadhyay, from the Lumbini Seed Company Ltd. in Nepal.

Given the superior performance of CAM seeds in stress conditions, Nepali farmers have expressed willingness to pay a premium price: an average of 71% more with government subsidy, or at least 19% extra without a subsidy for CAM seed. Similarly, the farmers in hot-dry areas of the Karnataka state of India are ready to pay 37% premium price for CAM seed compared to normal hybrid seed. These reports strongly validate the demand of CAM seed and therefore a targeted initiative is needed to accelerate deployment and scaling these seeds in climate-vulnerable marginal agroecologies in tropics.

With courage, they are an example of innovation in the field

Women and the milpa in Chiapas, Mexico. (Illustration: FMG/OpenAI, 2024)

With its transversal focus on gender and social inclusion, CGIAR’s Latin American regional initiative AgriLac Resiliente shows how, through sustainable agriculture, women in the Latin American countryside are a fundamental piece to building resilient and inclusive food systems.

One of the most inspiring examples comes from the Tzotzil women’s group of TzabalĂł, in LarrĂĄinzar, Chiapas, Mexico. These women have found in the Chiapas Hub a platform that has allowed them to contribute significantly to the development of their households and environments.

“We are a group of women who have worked in pig and chicken farming for some years now. In 2022, we started working with CIMMYT and DAI (Desarrollo Alternativo e InvestigaciĂłn AC). We liked it a lot because we see that they are interested in women. They give us the opportunity to learn which awakens our interest in working in the field because we want to help our husbands, but with knowledge,” they said.

According to their testimonies, the opportunity to train in sustainable agriculture has been transformative. Previously, their participation in agricultural activities was limited. Now, with new knowledge acquired, they are producing healthy and nutritious food.

“If we just stay at home, we don’t do much, but when we go out to the countryside, we feel free, we clear ourselves of so many tasks around the house, and we bring tender beans and fresh vegetables. Now we can produce our food free of toxins and store our maize in airtight containers without chemicals,” they pointed out.

The experience has given them not only autonomy in making decisions about their food but also a sense of freedom and purpose when working in the field where the power of group work has also been a major factor in their success.

“It is always better to work in a group than individually, but it is necessary to find a good manager or leader to guide you and teach you how to work. As a group, we have obtained knowledge that we share among ourselves, we learned to prune fruit trees, we no longer burn stubble to recycle nutrients, there is more production and the product is bigger, and we also expect good fruit production.”

Plot in Chiapas where sustainable practices have been implemented. (Photo: GarcĂ­a, RamĂ­rez and Meentzen/CIMMYT)

However, the path has not been without challenges. The community faces a sociopolitical context that makes collaboration between groups difficult, although these women persist and demonstrate with their achievements that female participation in agriculture is fundamental for community development.

“What we do, people see it badly and ask us why we go to the countryside to learn something that is not for us, that we leave because we don’t have chores at home, but we don’t get discouraged. When they see the results of the work, they ask us how we did it, and we tell them what we learned by not staying alone at home, and we invite them to join the group,” they mentioned, emphasizing that if you are in the group, it does not matter what political group you belong to because the only thing that matters is knowledge and the desire to improve oneself.

Their courage and determination have not only transformed their own lives but is also inspiring other women to join and follow this path of empowerment through sustainable agriculture.

These success stories are proof of the positive impact that the inclusion of women in the field can have. Their voice and experience are fundamental to building more resilient and sustainable food systems, where gender equity and the active participation of all actors are pillars for a prosperous future in rural areas of Latin America.

Regional network to scale impact of dryland crops in sub-Saharan Africa

The Dryland Crops Program (DCP), in collaboration with National Agricultural Research and Extension Systems (NARES) partners, IITA, Alliance Bioversity & CIAT, and other African institutions, has established the African Dryland Crop Improvement Network (ADCIN). Aiming to strengthen partnerships and collaboration among partner institutions, the network focuses on improving dryland crops through crop enhancement. The ADCIN will have regional governance bodies in West and Central Africa (WCA) and Eastern and Southern Africa (ESA).

Consultative approach to establish ADCIN and governance structure

In 2021, CIMMYT was asked to lead a CGIAR varietal improvement and seed delivery project for dryland crops with an initial focus in Africa and funding from the Bill & Melinda Gates Foundation, the United States Agency for International Development (USAID), and the CGIAR Accelerated Breeding Initiative. This aligns with CIMMYT’s 2030 strategic objectives, which will contribute to shaping the future of agriculture to drive climate resilience, sustainable and inclusive agricultural development, and food and nutrition security.

As CIMMYT embarked on its work to further strengthen the work on dryland crops, it held a series of consultation meetings with several NARES in the region. A joint consultation workshop with NARES and CGIAR colleagues was held in Senegal in February 2022. This was followed by the broader network members and stakeholders meeting in Ghana in January 2023. These events brought together experts and representatives from the WCA and ESA regions and various partner institutions to discuss the best approaches to improve the impact of our work on dryland crops through crop improvement. Experts discussed within and across disciplines defining breeding targets using socio-economic and gender information, developing modern breeding processes and approaches, seed systems, data-science, and forging new models of partnerships.

Stakeholders from CGIAR and NARES convene in Ghana for a meeting. Experts, partner institutions, and representatives from the WCA and ESA regions, engage in comprehensive discussions to advance dryland crop improvement strategies. (Photo: Eagle Eye Projects)

One significant outcome of these meetings was the recommendation to establish a formal regional dryland crop improvement network to strengthen and enhance the current partnership among NARES and CGIAR partner institution and scientists. Establishing a governance structure for this network for effective coordination and monitoring of the network partnerships was also recommended. It was agreed that this network will have two regional bodies, one each in ESA and WCA, with their own steering committees.

Later in 2023, two initial regional steering committees were formed following consultations with CGIAR and NARES partners. The goal of the committees is to improve crop varieties in the region while ensuring equitable resource allocation and promoting collaboration among network partners. Each committee is expected to provide regional governance and oversight for the diverse dryland crop networks that operate in each region. Specific roles and responsibilities include prioritizing capacity development activities for network members, approving and allocating budgets for development plans, reviewing infrastructure needs, budgeting and accounting for investments, mobilizing resources from donors, coordinating collaboration among partners, monitoring and evaluating performance, supporting policy issues, and resolving disputes among members.

The African Dryland Crops Improvement Network (ADCIN) structure.

Critical role of steering committees for sustainability of ADCIN

The WCA steering committee comprises 14 members: 11 from NARES and three from CGIAR, met in Saly, Senegal in August 2023. The ESA committee comprises 12 members: nine from NARES and three from CGIAR, met in Nairobi, Kenya. Both committees explored their roles and responsibilities.

The ESA and WCA committees proposed, represented, and discussed several strategic areas. They developed and implemented strategies to enhance capacity and infrastructure, promote effective budget management, establish regional learning mechanisms, and lead resource mobilization to ensure sustained support for the DCP initiatives.

Members of the WCA Steering Committee meet in Senegal for a strategic meeting. (Photo: CIMMYT)

AlliThe committees also discussed the network’s vision, terms of reference, committees’ governance (by-laws), and a review of the network agreement. They also defined the network’s aspirations and aligned its resources to regional and national infrastructure needs and priorities.

A significant outcome from the meetings was CIMMYT’s allocation of US $1 million to the committees to facilitate personnel and infrastructure development. This budget allocation was decided upon after careful deliberation on how to best use the available resources to meet the network’s needs. Both committees then agreed to call for proposals in various capacity development areas.

They also elected the leadership for the committees. The WCA committee elected four officials: the chairperson, vice-chairperson, secretary, and financial secretary. The ESA committee elected three officials, including the chairperson, vice-chairperson, and secretary.

Subcommittees were also formed to oversee the operations of the steering committees and ensure a comprehensive approach to achieving the network’s goal. “These subcommittees are focused on capacity development, finance and monitoring, evaluation and learning and networks sustainability,” said Happy Daudi, the ESA steering committee secretary.

Kevin Pixley, director of CIMMYT’s Dryland Crops Program, highlighted the importance of regional steering committees in promoting agricultural progress, food security, nutritional stability, resources, and partnerships.

“The creation of the ADCIN marks a pivotal moment in our collective journey towards sustainable agricultural development,” said Pixley. “By bringing together the expertise and resources of CGIAR and NARES partners, ADCIN embodies our shared commitment to turning the challenges of dryland agriculture into opportunities for growth, resilience, and prosperity for the farmers and the communities we serve.”

The meetings also provided an opportunity for the committees to initiate the selection of a unified name for the network. The African Dryland Crop Improvement Network (ADCIN) was decided through a consensus-driven naming process among network members.

The ADCIN also establishes a critical support network for Africa-NARES and breeding programs through the ESA and WCA regional networks, allowing them to co-design and co-implement projects, leverage regional resources and capacity, and sustain dryland crop improvement activities through alignment of investment with priorities, capacity building, and connect the network to other initiatives.

Accelerating progress: from governance to brand identity

Subsequently, the two committees met in December 2023 to discuss and finalize previously discussed key areas. Significant progress had been made in reviewing and confirming the terms of reference and bylaws, which are required for smooth operations and a clear understanding of the governance structure among all the network members.

Following a thorough review and deliberation, the committees agreed on a set of criteria and a template for the call for proposals. The call was made public in December 2023, with submissions due by January 30, 2024. The ESA and WCA steering committees reviewed the applications and communicated the results to the successful applicants. Out of nearly 100 applications submitted, 19 successful candidates are from WCA and 13 from ESA.

Recognizing the importance of a strong and consistent identity, the steering committees established guidelines for the branding and marking process. Part of this process includes creating a logo, which will be shared with the steering committees and the network for a final selection and approval. This step is crucial in developing a visual identity that reflects the network’s values and objectives.

Reinventing collaborative efforts for the future with a unique model

The network and the steering committees operate on an inclusive model in which CGIAR, NARES, and regional stakeholders collaborate to allocate resources for regional projects. This approach not only addresses each region’s unique needs but also ensures tailored development of infrastructure, human capacity, and coordination, increasing the impact on dryland crop cultivation.

“This is a one-of-a-kind collaborative model that was meticulously developed within the region by both CGIAR and NARES, who jointly decided on strategic priorities for regional projects and allocated a budget to support their region,” said Harish Gandhi, associate program director. “The ‘fit principle’ is critical for infrastructure and human capacity development, as well as improving regional coordination.”

This collaboration is about more than just pooling resources; it’s also about leveraging unique strengths, knowledge, and perspectives to create synergies that will help address complex regional challenges effectively. The network can respond to the specific needs of each region and places the onus of responsibility on the steering committees, allowing them to make critical regional decisions. By ensuring that projects are designed with a thorough understanding of regional needs, ADCIN aims to achieve more long-term and significant results.

Mexico, a lab from which solutions are generated to address global challenges

Directors from Excellence in Agronomy visit modules and platforms at CIMMYT’s South Pacific Hub in Oaxaca, Mexico (Photo: CIMMYT)

“It was a stunning experience for me to understand the operation of a hub and see farmers interact directly with field technicians, applying the principles of Conservation Agriculture. I remember a lady from Oaxaca telling us how productive she has become using la matraca, a simple, manual seeder and fertilizer,” says Mandla Nkomo during his recent visit to the Mixteca oaxaqueña in southern Mexico.

Mandla is the chief growth officer for the Excellence in Agronomy Initiative (EiA) which, “gathers more than 10 CGIAR Research Centers whose goal is to create solutions to problems that farmers face globally. EiA works on a foundation that is driven by demand to understand the challenges farmers are dealing with, and bring forth a development system for innovation that is capable of coping with those challenges and finding solutions that can be tested, validated, and scaled,” he mentions.

His searching for a system that triggers and diffuses innovation for farmers motivated Mandla to visit the hubs in Oaxaca, Mexico. “We are here because we wanted to study all the hubs and the projects based on the methods CIMMYT and its collaborators have developed in Mexico. One of the things we consider at EiA is the successful and sustainable transition from individual use to working within a partner network.”

“What we have seen here is the work of our colleagues from CIMMYT. For the last decade, they have come up with these hubs or innovation centers situated across different agroecological regions in Mexico. What is unique about the hubs is the ecosystem they are creating, which in my opinion, is what brings excellence in agronomy,” says Mandla.

The hubs are a management approach for innovation that was developed in Mexico based on initiatives like MasAgro-Cultivos para MĂ©xico. Due to its big impact, it’s being replicated in Asia, Africa, and in other Latin America countries. In addition, it lies in the heart of CGIAR initiatives.

About this methodology, Mandla says those who participate in it, are trying to understand the challenges that farmers truly face. Then a platform is developed to do proper research that responds to farmers’ needs. Subsequently, they test it in modules which provides proof of the impact these solutions are having as compared to conventional farming. Finally, these solutions are transferred to areas called extension, from which large-scale innovations are implemented.

During his visit to the research platform in Santo Domingo Yanhuitlan and to modules for innovation, extension areas, seed warehouses, post-harvest modules and machinery locations at different towns in Oaxaca, Mandla Nkomo and other visitors from EiA had the opportunity of learning not only how the South Pacific Hub operates but also witnessed how this management approach for innovation is socially and culturally relevant to one of the most diverse regions in the country.

“These days have been truly amazing. They have been very useful in refining the picture of what’s possible to do and scale. Mexico is a megadiverse country with varied agroecology. Our approach can be replicated in many parts of the world. I’m very excited with what we have seen. The country that gave us corn is now providing the world with solutions that will have major impacts on global food security. So, it is now our task (me and the whole EiA team) to find ways to pass this on to other latitudes”.

Translating strategy into scientific action

Participants at the SAS Africa implementation roadmap retreat. (Photo: Maria Monayo/CIMMYT)

Stronger partnerships, innovation, and agile science for impact were resounding themes when CIMMYT researchers from the Sustainable Agrifood Systems (SAS) program in Africa gathered in Nairobi to develop the program’s implementation roadmap in alignment with the CIMMYT 2030 Strategy.

The three-day retreat from 25-28 March, attended by research teams from the eastern, western, southern, and Horn regions of Africa, provided a platform to share insights and chart a course towards sustainable agricultural development for the continent.

Routes to amplifying research impact

In her opening remarks, SAS Program Director, Sieglinde Snapp, emphasized the importance of grounding the CIMMYT 2030 Strategy in the African context and the urgent need for actionable plans to address pressing challenges in agrifood systems. Snapp drew attention to the significance of collaboration with public, private, and civil society stakeholders, highlighting how inclusive partnerships are essential for driving meaningful change. She urged the team to focus on turning strategic vision into tangible plans, with clear milestones to track progress.

“Humanity pulled together and got to the moon in the 60s. Conventional science and engineering got us there,” said Snapp. “However, when we have high uncertainty and high-value conflicts, we need to have all stakeholders at the table. We need to do action science and think of what the actual science looks like.”

Christian Witt, senior program officer at the Bill & Melinda Gates Foundation, delivered a keynote address focusing on the importance of advancing agronomy globally and exploring opportunities at the national level. He advocated for a balanced approach to tackling macroeconomic challenges while fostering grassroots innovation that augments impact. He also underscored the CIMMYT 2030 Strategy’s critical role across CGIAR, calling for a pivot in funder influence towards a unified, demand-driven research methodology.

Bill & Melinda Gates Foundation Senior Program Officer, Christian Witt, gives a keynote speech on advancing global agronomy. (Photo: Maria Monayo/CIMMYT)

Deep diving into the strategy

The retreat also featured a panel discussion on the CIMMYT 2030 Strategy. From the value of strategic partnerships to the need for excellence in research and delivery, the panel highlighted the key pillars of CIMMYT’s strategy and underscored the importance of aligning efforts with global priorities and challenges.

Participants discussed the role of data systems for agile agronomy, noting the need for innovative methodologies to harness the vast amount of data available. They placed key focus on empowering farmers, particularly through initiatives like the BACKFEED Farmer Agency. This inclusive feedback system enables knowledge co-creation via mobile phones, fostering networking among farmers of diverse backgrounds. Regular and spontaneous interactions facilitate data collection, addressing social exclusion in agricultural information channels faced by those with multiple vulnerabilities.

Paswel Marenya, SAS associate program director for Africa, shared thought-provoking insights on the Pathways to Impact​. He demonstrated how complementarity and bundled approaches, impact orientation, evidence-supported scaling, subsidiarity, localization, and training of farmers and communities, and inclusive seed systems, can transform food systems.

During an analysis of the strategy in the African context, central inquiry focused on identifying areas where SAS could deliver the greatest value. Discussions revealed a consensus on several key priorities: the need of developing and implementing policies from the ground up, addressing the specific needs of smallholder farmers, enhancing capacity for sustainable development, ensuring inclusivity for youth and women, expanding innovative solutions, and encouraging regional collaboration. These common themes highlight a united drive towards comprehensive and impactful agricultural advancement across Africa’s diverse landscapes.

On implementing the strategy, attendees discussed a range of plans and proposals:

  • Diversify from maize to alternative crops, such as pigeon peas.
  • Engage stakeholders in agile agronomy discussions to identify impact pathways.
  • Train the private and public sectors for climate-smart agriculture.
  • Address concerns regarding prevailing inefficiencies within the formal seed system and the lack of business models for non-hybrid seeds like groundnut or wheat.
  • Identify opportunities for financial inclusion through aggregator and off-taker models.
  • Consider the importance of mechanization policies, markets, and extension services.
  • Engage strategically in the humanitarian-development-peace nexus, as the majority of food insecurity is found in conflict areas.
  • Improve nutrition education and meet local demand for nutritious crops like pigeon pea and groundnut.
  • Consider the role of data and analytics in humanitarian-development-peace pathways, policy engagement for building value chains, and the significance of impact pathways.
  • Promote the importance of open science, data sharing, and addressing gaps between product enhancement and production.
Participants discuss how SAS can further contribute to CIMMYT’s 2030 Strategy. (Photo: Maria Monayo/CIMMYT)

Eyes on the future

In reflections at the end of the retreat, Snapp reiterated the importance of investing in soil resilience through agile agronomy and participatory research to foster collaboration and inclusivity in decision-making processes. She focused on the significance of foresight targeting and market intelligence, particularly in regions grappling with soil degradation and the impact of the climate crisis. Her presentation highlighted key priorities for driving impactful agricultural development, including effective data management, climate adaptation, and alignment of existing solutions with climate goals. The interconnectedness of foresight targeting, seed systems, and agile agronomy was underscored, emphasizing the importance of collaboration and addressing essential topics like nitrogen and climate change. Additionally, Snapp reiterated the crucial role of collaborative efforts between different teams and organizations in effectively advancing agricultural research and development initiatives.

To cap off three days of intense discussions and strategy-building, participants took part in fun team-building activities that echo CIMMYT’s core values of excellence, integrity, and teamwork.

Opinion: Aid competes with long-term solutions to Sudan’s hunger crisis

This terrible season of global conflict just hit a particularly grim milestone in Sudan with the one-year anniversary of the violent civil war last month. One consequence of the conflict is that Sudanese families are beginning to starve — and while emergency food aid is needed, so is investment in longer-term food production.

Political, economic, and social upheaval in the country has displaced over 8 million people and left nearly 25 million people in need of urgent food assistance, including more than 14 million children. The anniversary saw major donors mark the day with more than $2 billion in new aid pledges.

While these pledges are important, the international community also needs to rethink some of its aid strategies. Emergency food assistance for those at immediate risk of starvation is understandably a high priority now, but restoring food production within the country is just as important — otherwise donors risk racing from crisis to crisis and always falling short. It is time to break away from an aid-dependency model and invest directly in farmers.

In fact, challenges to Sudan’s agriculture were likely a contributing factor to the current conflict. The livelihoods of most people in Sudan depend on the agri-food sector, which has been under pressure in recent years. Economic stagnation, weather shocks, land conflicts, high inflation, and health crises made 9.8 million Sudanese severely food-insecure by 2021.

Sudan’s already low-yielding cropping system has been hit by global tightening in fertilizer supplies. The livestock sector represents 60% of Sudan’s agricultural GDP, and has been suffering from diminished rangelands, water shortages, flood events, and lack of animal health services.

Sudan is not alone, and it’s important that the donor community understand how. Eight out of 10 of the world’s worst food crises are driven by war, persecution, and conflict, in places such as Sudan, Yemen, the Palestinian territories, Myanmar, and the Democratic Republic of Congo. The confluence of conflict, state fragility, climate change, and poverty is already overwhelming the international community’s ability to respond to escalating humanitarian needs. The international community has to put more emphasis on anticipatory action, because reaction is just not going to be enough anymore.

The need to get ahead of the growing scale of humanitarian disasters has provoked new thinking and partnerships among research, development, and humanitarian organizations, such as ours.

We are investing in better risk assessment, preparation for future food crises, and accelerated learning about how climate change is affecting agricultural productivity and production. The significant resources and expertise of the international research-for-development community can make humanitarian responses in fragile and conflict-affected states more effective and optimal.

Sudan will hopefully show how this kind of intervention can work. Our organizations are part of an international effort to partner with Sudan’s farmers to improve livelihoods in the country. We had started operating across six Sudanese states just before the outbreak of the current conflict, training farmers on how to manage their crops, livestock, and natural resources, and supporting them to access drought-tolerant seeds, with a specific focus on last-mile delivery to women and youth. When the civil war started last year, we quickly pivoted to supporting farmers in safer locations and focusing on the needs of internally displaced people in new areas.

Make no mistake: Implementing these interventions in the current conditions is a heavy lift. Roadblocks, skyrocketing fuel costs, denied travel permits, and breakdowns in telephone service all impede communication with farmers and the delivery of seeds, tools, and training. The threat of emergent violence is driving displacement and staff turnover.

Nonetheless, our coalition has continued to operate. Local partners, including cooperatives, microfinance institutions, and private sector players have shown themselves to be especially effective as the conflict has escalated. These cooperatives, strengthened by farmer training, enable farmers to improve their production and incomes by pooling their resources.

For example, the 72-member Al Etihad women-led farmer cooperative in South Kordofan has initiated multiple enterprises, guided by a structured business plan that steers them toward a more empowered role in local food value chains.

Through the program, last-mile seed retailers have helped nearly 6,000 farmers access agronomic advisories and seeds at a subsidized price. This has empowered farmers like Fatna Mohammed, a 48-year-old widow and mother of three, to build a better livelihood from her small-scale groundnut and vegetable production. She reports that an increased harvest of 18 sacks of groundnut, up from five sacks, enabled her to invest in her farm and better feed her family.

This unique last-mile delivery network, carefully tailored to local realities and drivers, is helping Sudanese communities to survive the current crisis and it can be activated for the rebuilding period — which cannot come soon enough.

Sudan, as with many war-affected nations, is caught in a doom loop of insecurity: Any restoration of political stability requires economic activity, but any economic activity requires political stability. Both depend on physical security, which is hard to achieve without political stability and economic activity.

While a cessation of violence and the restoration of civil order is ultimately up to the parties to the conflict, a direct, international investment in farmers is a way to potentially break the cycle, simultaneously addressing the growing hunger crisis and helping build the preconditions for peace.

Read the original piece on Devex

How improved seeds empower women farmers in South Kordofan

Fanta Mohamed, a 48-year-old widow with three children, lives in Aldagag village in South Kordofan. For years, Fanta has worked on her small farm to feed her children. Fanta used local seeds, and her agricultural yield was very poor. It made her wonder where she was going wrong. Fanta, like thousands of women farmers in remote and hard-to-reach areas of South Kordofan in central Sudan, has limited access to quality inputs and agricultural extension services.

In South Kordofan, Mercy Corps, aided by USAID-funded Sustainable Agrifood Systems Approach for Sudan (SASAS), trained 15 local farmers and producers in the Farmer Field School methodology and climate-smart agriculture with the support of officials from the State Ministry of Agriculture.

“At SASAS, we work to empower women farmers, especially those who live in remote areas such as South Kordofan. We help them with agricultural inputs such as improved seeds, new agricultural skills, and techniques to increase their production and help enhance food security amid the looming food crisis in Sudan,” said Abdelrahman Kheir, SASAS chief of party.

Women farmers apply new agricultural techniques in South Kordofan. (Photo: CIMMYT)

To address the challenges of poor seed quality, Mercy Corps contracted local supplier Alzahra Seed for Trade to sell improved seeds at a subsidized price and expand access by establishing last-mile seed retail networks. Alzahra Seed for Trade would also deliver agronomic extension training to farmers in remote villages such as Aldagag.

Fanta recalls how she and other women farmers came to know about the improved seeds. “We were at a coffee gathering at my neighbor’s house, when one of the women told us that Alzahra Seed for Trade’s retail agent had brought improved seeds from Dilling town for sale. We were not even aware of the existence of improved seeds,” she said.

With accessible and affordable improved seeds in Aldagag, Fanta was one of the smallholder farmers who bought seeds from a retailer in her village. She bought groundnut and vegetable seeds and received basic agronomic extension training from the retailer who offered it as an embedded service. In addition to getting access to improved seeds, Fanta was visited by an extension officer from Alzahra Seed for Trade.

Women farmers participate in an agronomic extension training. (Photo: CIMMYT)

Fanta recalls how she managed her farm before she was introduced to improved seeds. “In the seasons before I got the training, my farm looked disorganized. Like other farmers in my area, I didn’t care about the distances between the plants. Local seeds yielded about four or five sacks of groundnut per one feddan (unit of area in Sudan),” she shared. Post training, Fanta planted two feddans of groundnut using the improved seeds and followed the agronomic guidance. “I harvested 18 sacks from the two feddans–much higher than before.”

Increased income provides women farmers with greater financial resources, and many of them feel empowered. “Women famers in my area who have used improved seeds and followed new agricultural techniques have become stronger and feel confident enough to have a voice within our community,” said Fanta.

A sustainable agrifood systems approach in conflict-ridden Sudan

Sudan, the third largest country in Africa, has long been an epicenter of food production, due to its fertile lands and rich history of agricultural cultivation. But modern Sudan faces chronic food insecurity rooted in social and geopolitical challenges. A situation that has been exacerbated by the outbreak of war on April 15, 2023. The armed conflict has caused a sudden, further decline in agricultural productivity, displacing large populations and pushing millions of Sudanese into high levels of malnutrition and food insecurity.

In response to this crisis, CIMMYT, through the USAID-funded Sustainable Agrifood Systems Approach for Sudan (SASAS), is supporting agricultural development by creating robust and sustainable food production systems. SASAS adapts a modular and multi-crop approach to implement an integrated agrifood system that underpins food security, employment, and equity.

As the planting season of 2024 approaches, the project strives to strengthen food production to support the people of Sudan during these challenging times.

Experts speak: SASAS focuses on five key areas

Abdelrahman Kheir, SASAS chief of party, highlights how the agricultural innovations of the project are impacting multiple regions in Sudan. The focus of the project is on five broad intervention areas: promoting agricultural production for smallholder farmers, improving value chains and business development, supporting community management of natural resources, and providing horticultural and livestock services such as vaccination campaigns.

Further in the video, Murtada Khalid, country coordinator for Sudan, explains how the SASAS Food Security Initiative (SFSI) will provide 30,000+ farmers with a diversified package of four inputs: fertilizer, seeds, land preparation, and agricultural advisory services, to prepare for the upcoming 2024 sorghum and groundnut planting season. SFSI is a critical element of SASAS that uniquely provides agricultural development aid during a time of conflict to directly improve the food security situation in Sudan.

How women farmers benefit from SASAS

SASAS works directly with women farmers and pastoralists to ensure an equitable approach to food security in the country. Hear farmers from the women-led El-Harram Agricultural Cooperative in Kassala, Sudan, explain how SASAS has positively impacted their lives and families.

Ali Atta Allah, a farmer in Kassala expresses her gratitude for SASAS support. “They provided us with seeds including jute, mallow, okra, and sweet pepper. We planted them, and they thrived.” Ali highlighted the financial gains—a bundle of jute mallow sells for 500 Sudanese Pound (SDG). The income from the entire area amounts to 200,000 to 300,000 SDG. “The seeds provided by SASAS are of superior quality,” she affirmed.

Aziza Haroun from El-Ghadambaliya village, shares her story of how improved seeds provided by SASAS activities helped double her yields compared to previous years. “We used to farm in the same land and the yield was poor. Mercy Corps, a SASAS partner, introduced us to a new method of planting legumes as natural fertilizer. Now our yield has increased significantly,” she said.

Gridded crop modeling to simulate impacts of climate change and adaptation benefits in ACASA

Global temperatures are projected to warm between 1.5-2 degrees Celsius by the year 2050, and 2-4 degrees Celsius by 2100. This is likely to change precipitation patterns, which will impact crop yields, water availability, food security, and agricultural resilience.

To prepare for these challenges, Atlas of Climate Adaptation in South Asian Agriculture (ACASA) uses process-based simulation models that can predict crop growth, development, and yield in order to understand the response of crops to climate change. Models such as Decision Support System for Agrotechnology Transfer (DSSAT), InfoCrop, and Agricultural Production Systems Simulator (APSIM) facilitate the field scale study of the biophysical and biochemical processes of crops under various environmental conditions, revealing how they are affected by changing weather patterns.

The ACASA team, along with experts from Columbia University and the University of Florida, met for a three-day workshop in January 2024 to boost the work on spatial crop modeling. The aim was to design a modeling protocol through a hands-on demonstration on high-performance computers. When scientifically executed, gridded spatial crop modeling–even though complex and data-intensive–can be a great way to frame adaptation and mitigation strategies for improving food security, which is one of ACASA’s goals.

ACASA’s Spatial Crop Modelling Group meets in Colombo, Sri Lanka, January 2024. (Photo: CIMMYT)

Decisions on data

The group decided to use DSSAT, APSIM, and InfoCrop for simulating the impact of climatic risks on crops such as rice, wheat, maize, sorghum, millet, pigeon pea, chickpea, groundnut, soybean, mustard, potato, cotton, and more. They chose harmonized protocols across all three models with standard inputs, such as conducting simulations at 0.05 degrees. The model input data about weather, soil, crop varietal coefficients, and crop management are being collected and processed for model input formats at 5 kilometer (km) spatial resolution.

A Python version called DSSAT-Pythia is now available to accelerate spatial and gridded applications. The programming for implementing InfoCrop on the Pythia platform is in progress. InfoCrop has been proven in India for past yield estimations, climate change spatial impact, and adaptation assessments for 12 crops.

For other crucial modeling components, a work plan was created including developing regional crop masks, crop zones based on mega-commodity environments as defined by CGIAR, production systems, crop calendars, and irrigated areas by crop. Genetic coefficients will then be calculated from measured past values and recent benchmark data of varietal units.

With this information, several adaptation options will be simulated, including changes in planting dates, stress-tolerant varieties, irrigation, and nitrogen fertilizer (quantity, methods, and technology), residue/mulching, and conservation tillage. The team will evaluate impact and adaptation benefits on yields, water, and nitrogen-use efficiency based on the reported percentage change from the baseline data.

As the project progresses, this work will make strides towards realizing food security for the planet and increasing the resilience of smallholder farming practices.

Blog written by Anooja Thomas, University of Florida; Apurbo K Chaki, BARI, Bangladesh; Gerrit Hoogenboom, University of Florida; S Naresh Kumar, ICAR-IARI, India

Harnessing econometric and statistical tools to support climate-resilient agriculture

Globally, climate extremes are adversely affecting agricultural productivity and farmer welfare. Farmers’ lack of knowledge about adaptation options may further exacerbate the situation. In the context of South Asia, which is home to rural farm-based economies with smallholder populations, tailored adaptation options are crucial to safeguarding the region’s agriculture in response to current and future climate challenges. These resilience strategies encompass a range of risk reducing practices such as changing the planting date, Conservation Agriculture, irrigation, stress-tolerant varieties, crop diversification, and risk transfer mechanisms, e.g., crop insurance. Practices such as enterprise diversification and community water conservation are also potential sector-specific interventions.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) aims to identify hazard-linked adaptation options and prioritize them at a granular geographical scale. While doing so, it is paramount to consider the suitability of adaptation options from a socioeconomic lens which varies across spatial and temporal dimensions. Further, calculation of scalability parameters such as economic, environmental benefit, and gender inclusivity for prioritized adaptation are important to aid climatic risk management and developmental planning in the subcontinent. Given the credibility of econometric and statistical methods, the key tenets of the approach that are being applied in ACASA are worth highlighting.

Evaluating the profitability of adaptation options

Profitability is among the foremost indicators for the feasible adoption of any technology. The popular metric of profitability evaluation is benefit-to-cost ratio. This is a simple measure based on additional costs and benefits because of adopting new technology. A benefit-to-cost ratio of more than one is considered essential for financial viability. Large-scale surveys such as cost of cultivation and other household surveys can provide cost estimates for limited adaptation options. Given the geographical and commodity spread, ACASA must resort to the meta-analysis of published literature or field trials for adaptation options. For example, a recent paper by International Food Policy Research Institute (IFPRI) based on meta-analysis shows that not all interventions result in a win-win situation with improvements in both tradable and non-tradable outcomes. While no-till wheat, legumes, and integrated nutrient management result in an advantageous outcome, there are trade-offs between the tradable and non-tradable ecosystem services in the cases of directed seed rice, organic manure, and agroforestry2.

Quantification of adaptation options to mitigate hazards

Past studies demonstrate the usefulness of econometric methods when analyzing the effectiveness of adaptation options such as irrigation, shift in planting time, and crop diversification against drought and heat stress in South Asia. Compared to a simple cost-benefit approach, the adaptation benefits of a particular technology under climatic stress conditions can be ascertained by comparing it with normal weather conditions. The popular methods in climate economics literature are panel data regression and treatment-based models. Subject to data availability, modern methods of causal estimation, and machine learning can be used to ascertain the robust benefits of adaptation options. Such studies, though available in literature, have compared limited adaptation options. A study by the Indian Council of Agricultural Research-National Institute of Agricultural Economics and Policy Research (ICAR-NIAP), based on ‘Situation Assessment Survey of Agricultural Households’ of National Sample Survey Office (NSSO), concluded that though crop insurance and irrigation effectively improve farm income and reduce farmers’ exposure to downside risk, irrigation is more effective than crop insurance1.

Statistical models for spatial interpolation of econometric estimates

Since ACASA focuses on gridded analysis, an active area of statistical application is the spatial interpolation or downscaling of results to a more granular scale. Many indicators used for risk characterization are available at coarser geographical units or points from surveys. Kriging is a spatial interpolation method where there is no observed data. Apart from spatial interpolation of observed indicators, advanced Kriging methods can be potentially used to interpolate or predict the estimates of the econometric model.

ACASA’s approach involves prioritizing adaptation options based on suitability, scalability, and gender inclusivity. Econometric and statistical methods play a crucial role in evaluating the profitability and effectiveness of various adaptation strategies from real world datasets. Despite challenges such as limited observational data and integration of econometric and statistical methods, ACASA can facilitate informed decision-making in climate risk management and safeguard agricultural productivity in the face of climatic hazards.


1 Birthal PS, Hazrana J, Negi DS and Mishra A. 2022. Assessing benefits of crop insurance vis-a-vis irrigation in Indian agriculture. Food Policy 112:102348. https://doi.org/10.1016/j.foodpol.2022.102348

2 Kiran Kumara T M, Birthal PS, Chand D and Kumar A. 2024. Economic Valuation of Ecosystem Services of Selected Interventions in Agriculture in India. IFPRI Discussion Paper 02250, IFPRI-South Asia Regional Office, New Delhi.

Blog written by Prem Chand, ICAR-NIAP, India and Kaushik Bora, BISA-CIMMYT, India

Unlocking insights from literature: exploring adaptation options in ACASA

To address the vulnerability of increased climate risks which impact agriculture, it is imperative to identify location-specific adaptation options. Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is working on identifying commodity specific hazards at different geographical regions and the key adaptation options aligned with geography and hazards. This has been done for major cereal crops (rice, wheat, and maize), coarse grains (millets), oilseeds (coconut, mustard), legumes and vegetable crops (chickpea, potato), livestock, and fisheries. In ACASA, Systematic Literature Review (SLR) serves as a fundamental tool to identify key climate adaptation options and assess their effectiveness, considering agroecological factors.

Literature reviews are a customary approach for researchers to grasp existing knowledge and findings. The SLR methodically establishes clear research objectives, employs structured search queries to identify relevant literature, applies defined exclusion criteria, and extracts data for scientific analysis. This structured approach facilitates mapping the literature, validating findings, identifying gaps, and refining methodologies thereby minimizing biases, and ensuring comprehensive coverage of evidence.

Commodity-specific research questions, aligned with the problem/population, intervention, comparison/consequences, outcome, and time PICO(T) framework, have been used to guide the search process. By utilizing keywords specific to these questions, ACASA sourced literature from reputable databases such as Web of Science, Scopus, Google Scholar, and local databases of South Asian countries: Bangladesh, India, Nepal, and Sri Lanka. Local databases and gray literature further bolstered the understanding of local conditions and broadened the coverage of studied literature.

Systematic Literature Review (SLR)

The searched literature was then filtered using the well-established Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) framework. PRISMA provides a minimum set of evidence-based literature to be used for further analysis. Let us look at maize as an example of a commodity under analysis in ACASA. For maize, a total of 1,282 papers were identified and based on four exclusion criteria pertaining to adaptation options, quantitative assessment, hazard, and risk only of which 72 papers were shortlisted. The PRISMA framework supported in getting a manageable dataset for in-depth analysis while ensuring transparency in the overall filtering process.

After filtering through PRISMA, a bibliometric analysis was conducted which contained research trend analysis, regional distribution patterns, adaptation option categorizations, and a co-occurrence analysis. Useful patterns in popularity of studied adaptation options, hazards, and their linkages were observed through this analysis. For instance, drought was the most studied hazard, while pest diseases and economics were major hazard impacts studied for the maize literature. In terms of adaptation options, stress tolerant varieties were the most popular adaptation option. Further, co-occurrence analysis provided linkages between adaptation options and hazards, and demonstrated that researchers have also studied bundled technologies.

SLR helped understand the effectiveness of certain adaptation options. Going ahead, this step will be fully realized through a “meta-analysis” which will be pivotal in quantifying the evidence and prioritizing adaptation options for different agroecologies. SLR has proven to be an effective research method to build a comprehensive database that can be used across different thematic areas of ACASA. Adaptation options enlisted through SLR can be further substantiated through expert elicitations via heurism, crop modelling, cost-benefit analysis, and other important pillars of ACASA to identify efficient and cost-effective options.

SLR also provided the ACASA team with the opportunity to identify certain literature gaps such as uneven geographical coverage and excessive emphasis on certain adaptation options versus the rest. Conceptualization of systematically reviewing climate adaptation options in the South Asian context by integrating bibliometric and meta-analysis adds novelty to the current efforts of ACASA.

Blog written by Aniket Deo, BISA-CIMMYT India; Niveta Jain, ICAR-IARI India; Roshan B Ojha, NARC Nepal; and Sayla Khandoker, BARI Bangladesh

Greater successes through NARS partnerships

Map: BISA works with National Agricultural Research Systems (NARS) of South Asia to develop ACASA.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is different from many projects supported by our team. I would love to dive into the promising features of the ACASA platform and the exciting technical advances being made, but I want to focus here on how the Borlaug Institute for South Asia (BISA) has organized this program for greater and longer-term impact.

BISA is a strong regional partner and is the lead institution for the ACASA program. In fact, we could have simply asked BISA to build the ACASA platform and known they would make a great technical product. However, our goal is not just to have great technical products, but also to improve the lives of small-scale producers. For any great technical product to deliver impact, it must be used.

From day one, the ACASA program has not just kept the users’ needs in mind, indeed they have kept the users themselves engaged on the project. By establishing strong, financially supported partnerships with the National Agricultural Research Systems (NARS) in Bangladesh, India, Nepal, and Sri Lanka, they are achieving four key outcomes, among many others:

  1. Benefit from local expertise regarding national agricultural practices, climate risks, and solutions
  2. Leverage NARS connections to national and subnational decision makers to inform product requirements
  3. Establish national ownership with a partner mandated to support users of the product
  4. Strengthen climate adaptation analytics across South Asia through peer-to-peer learning.

These outcomes lead to more accurate and appropriate products, user trust, and the long-term capacity to maintain and update the ACASA platform. The latter being essential given the constantly improving nature of our understanding of and predictions around climate and agriculture.

If this model of working has such advantages over “if you build it, they will come”, you might wonder why we do not use it in all cases. This approach requires divergence from business-as-usual for most researchers and is not without a cost. The BISA team are not only putting deep emphasis on the technical development of this product, but they are also spending considerable time, effort, and budget to create a program structure where the NARS are catalytic partners. The NARS teams are empowered on the project to contribute to methodologies used beyond their national boundaries, they have the task of making the best data available and validating the outputs, the responsibility of understanding and representing stakeholder requirements, and the ownership of their national platform for long-term use. BISA has developed a structure of accountability, provided funding, facilitated team-wide and theme-specific workshops, and shared decision-making power, which all presents additional work.

In the end, we encouraged this approach because we see too many decision support tools and platforms developed by international researchers who merely consult with users a few times during a project. These efforts may result in building captivating products, meeting all the needs brainstormed by the research team, but their future is sitting in a dusty (and unfortunately crowded) corner of the internet. While this approach seems fast and efficient, the efficiency is zero if there is no value gained from the output. So, we look for other ways to operate and engage with partners, to work within existing systems, and to move beyond theoretically useful products to ones that are used to address needs and can be evolved as those needs change. BISA has been an exemplary partner in building and supporting a strong ACASA team, and we are eager to see how each NARS partner leverages the ACASA product to generate impact for small-scale producers.

Tess Russo is a senior program officer at the Bill & Melinda Gates Foundation, based in Seattle, United States.  

Women farmers enhance agricultural production in conflict-torn Sudan

Women farmers show their harvested vegetables, Kassala, East Sudan. (Photo: CIMMYT)

The ongoing conflict in Sudan continues to contribute to a food crisis threatening the lives of over 18 million people. Farmers, especially smallholders and vulnerable women, are facing extraordinary challenges in obtaining needed agricultural inputs, and access to markets is diminishing.

In Kassala State, East Sudan, which hosts hundreds of thousands of people displaced by ongoing armed conflict including Ethiopian and Eritrean refugees, the USAID-funded Sustainable Agrifood Systems Approach for Sudan (SASAS) is working with women farmers to prepare and safeguard the upcoming growing season. This work is critical to help meet the unprecedented demand for vegetables in the region and achieve sustainable development goals.

“At SASAS, we are working to empower women farmers, especially those who lost their traditional livelihood resources, and help them to acquire skills and techniques to increase their agricultural production to help improve food security,” said Abdelrahman Kheir, SASAS chief of party in Sudan.

Women farmers participate in a training on vegetable growing, Kassala, East Sudan. (Photo: CIMMYT)

SASAS works with the El-Haram Agricultural Cooperative, a women-led farmers group, based in Kassala, to help increase vegetable production. SASAS trains El-Haram Agricultural Cooperative members on modern agricultural techniques, irrigation techniques, pest control, and organic fertilizers to increase crop yields.

“SASAS trained us on new ploughing and land preparation techniques, which we never used before and then provided us with improved seeds of okra, tomato, chili, and mallow, and encouraged us to use legumes as organic fertilizers,” said Imtithal Atta, a farmer from the Alsawagi neighborhood in Kassala. “In the past, I used to buy vegetable seeds from the local market, but they grow poorly. The improved seeds given by SASAS are germinating extremely well. My income has doubled; I almost made $250 from my first harvest of vegetables.”

The ongoing conflict has interrupted traditional livelihood activities in many regions. In some areas, farmers missed the harvest, leading to a dramatic reduction in agricultural production and debilitating price increases for cereals and vegetables. SASAS is helping to restore agricultural production in key growing regions by ensuring farmers have timely access to necessary production inputs, including fertilizer and climate-adapted seeds.

SASAS staff examine the germination of vegetables in women-led farms, Kassala, East Sudan. (Photo: CIMMYT)

“For years, I have worked tirelessly on my family’s farm, season after season, without earning a good income, and I was not sure what was wrong. Luckily, this cultivation season, SASAS trained us on new ploughing techniques to better prepare the land for cultivation, using organic fertilizers to enrich the soil and offering us improved vegetable seeds,” said Fatima Ahmed, a woman farmer and a mother of three children from the El-Haram Agricultural Cooperative.

“Thanks to SASAS, both the quality and the quantity of my agricultural products have greatly improved. I am so happy that I got some good money from my vegetables. I feel empowered and now I can have a strong voice within my community. I am more confident and gained the courage to participate in important decision-making processes within my family and express my opinions without fear,” said Ahmed.

A critical part of SASAS are efforts to diversify food production in Kassala, where malnutrition among children under 5 years old, and breastfeeding, lactating, and pregnant women, are prevalent.

Women farmers process their onions, Kassala, East Sudan. (Photo: CIMMYT)

“I used to go to the main market in town to get my daily needs from vegetables, but now I buy what I need from women farmers closer to my home. They are selling me fresh vegetables at a good price. The taste of the vegetables is quite fresh and healthy, this is something I have been missing for a long time,” said Hanan, a resident of Alswagi.

“The vegetables produced by members of the El-Haram Agricultural Cooperative has led to an increased supply in the local market. I buy vegetables from women farmers and sell them here in the neighborhood market. This has cut my transportation cost as I used to buy vegetables from markets a long distance away,” said Osman, vegetables trader, also in Alswagi.

Flowers, learning, and a gender-based approach

Gender and social inclusion are fundamental themes for the Latin American regional initiative AgriLac Resiliente, which is why numerous regions bordering Guatemala and Honduras have been selected to implement priority actions with a gender approach.

In order to integrate a guideline that clears up why gender and social inclusiveness are relevant matters and incorporate it in all InnovaHubs activities in Guatemala and Honduras, social inclusion and gender experts from AgriLac have implemented a participatory process in the South Pacific and Chiapas Hubs to gather information and document research results to facilitate the Hub model for replication, developed by CIMMYT in Mexico and other countries.

In this way, Alejandrina Garcia in Oaxaca, Alejandro Ramirez in Chiapas, and Angela Meentzan, head of the AgriLac Gender and Social Inclusion Team, conducted individual and group interviews to learn how the different actors involved in the hubs perceived their own participation: farmers, workers, managers, and staff of the hubs, as well as partners who participated in this participatory process.

There are numerous and successful cases of rural women’s participation in the centers of Oaxaca and Chiapas that have been collected in this process. “It is expected that these case studies will become part of an annex to the guideline, just to illustrate why the participation of rural women is essential in their own vision,” said Meentzen, who highlights the case of Juanita, a Tzeltal woman from La Providencia in Ocosingo, Chiapas, Mexico.

“About five years ago, I started working alongside CIMMYT. Before we knew them, we were only planting maize and beans, but then we couldn’t produce any more. The plants stopped growing, and we had a lot of problems with pests, so we used to burn all the stubble. When the engineers came, they invited us to join them. At first, we weren’t that interested, but we let them teach us. They taught us how to grow other crops like sunflowers, peanuts, vegetables, and fruit trees like lemon and soursop,” said Juanita.

“Now we don’t burn all the stubble and we have crops all year round. We also grow other types of plants and use a lot of organic products that they taught us how to prepare. Our production has increased, and we sell more and more at the market. My daughter and I take care of the sale of the crops: beans, corn, vegetables, squash, corn, and flowers; the latter have given us such good results that we have earned some extra money,” said Juanita.

“The benefits we got from our land allowed us to give our children a future. Some of them have graduated from college and have jobs; others are about to graduate, but they have all learned to work the land. It feels a little harder, but I have been able to take care of both: my family and the land. I don’t know how I did it, but I did it,” said Juanita proudly, noting that the scientific knowledge gained from the research platform and Hub modules has had a real and positive impact on her and her family.

Photo: Juanita, a Tzeltal woman from La Providencia in Ocosingo, Chiapas, stands in her field. (Garcia, Ramirez and Meentzen/CIMMYT)Â