Skip to main content

Tackling fall armyworm with sustainable control practices

Typically looking like a small caterpillar growing up to 5 cms in length, the fall armyworm (FAW, Spodoptera frugiperda) is usually green or brown in color with an inverted “Y” marking on the head and a series of black dots along the backs. Thriving in warm and humid conditions, it feeds on a wide range of crops including maize, posing a significant challenge to food security, if left unmanaged. The fall armyworm is an invasive crop pest that continues to wreak havoc in most farming communities across Africa.

A CIMMYT researcher surveys damaged maize plants while holding a fall armyworm, the culprit. (Photo: Jennifer Johnson/CIMMYT)

The first FAW attack in Zimbabwe was recorded around 2016. With a high preference for maize, yield losses for Zimbabwe smallholder farmers are estimated at US$32 million. It has triggered widespread concern among farmers and the global food system as it destroyed large tracts of land with maize crops, which is a key staple and source of farmer livelihood in southern Africa. The speed and extent of the infestation caught farmers and authorities unprepared, leading to significant crop losses and food insecurity.

Exploring the destructive FAW life cycle

It undergoes complete metamorphosis, progressing through four main stages including egg, larva, pupa, and adult. Reproducing rapidly in temperatures ranging from 20 to 38°C, moist soil conditions facilitate the egg-laying process, while mild winters enable its survival in some regions. The larval stage is the most destructive phase, feeding voraciously on plant leaves and can cause severe defoliation. They can migrate in large numbers, devouring entire fields within a short period if left unchecked.

Working towards effective FAW management

A farmer and CIMMYT researcher examine maize plants. (Photo: CIMMYT)

Efficient monitoring, early detection, and appropriate management strategies are crucial for mitigating the impact of FAW infestations and protecting agricultural crops. To combat the menace of this destructive pest, CIMMYT, with support from the United States Agency for International Development (USAID), has been implementing research and extension on cultural control practices in Zimbabwe. One such initiative is the “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe”. Since 2018, this project strives to address research gaps on FAW management and cultural control within sustainable agriculture systems. The focus of the research has been to explore climate-adapted push-pull systems and low-cost control options for smallholder farmers in Zimbabwe who are unable to access and use expensive chemical products.

Environment friendly practices are proving effective to combat FAW risks

To reduce the devastating effects of FAW, the project in Zimbabwe is exploring the integration of legumes into maize-based strip cropping systems as a first line of defense in the Manicaland and Mashonaland east provinces. By planting maize with different, leguminous crops such as cowpea, lablab and mucuna, farmers can disrupt the pests’ feeding patterns and reduce its population. Legumes release volatile compounds that repel FAW, reducing the risk of infestation. Strip cropping also enhances biodiversity, improves soil health and contributes to sustainable agricultural practices. Overall results show that FAW can be effectively managed in such systems and implemented by smallholder farmers. Research results also discovered that natural enemies such as ants are attracted by the legumes further contributing to the biological control of FAW.

Spraying infested maize crop with Fawligen in Nyanyadzi. (Photo: CIMMYT)

Recently, the use of biopesticides such as Fawligen has gained traction as an alternative to fight against fall armyworm. Fawligen is a biocontrol agent that specifically targets the FAW larvae. Its application requires delicate attention – from proper storage to precise mixing and accurate application. Following recommended guidelines is essential to maximize its effectiveness and minimize potential risks to human health and the environment.

Impact in numbers

Since the inception of the project, close to 9,000 farmers participated in trainings and exposure activities and more than 4,007 farmers have adopted the practices on their own field with 1,453 hectares under improved management. Working along with extension officers from the Ministry of Lands, Agriculture, Water, Fisheries & Rural Resettlement, the project has established 15 farmer field schools as hubs of knowledge sharing, promoting several farming interventions including conservation agriculture practices (mulching, minimum tillage through ripping), timely planting, use of improved varieties, maintaining optimum plant population, and use of recommended fertilizers among others.

Addressing FAW requires a multi-faceted approach. The FAW project in Zimbabwe is proactive in tackling infestation by integrating intercropping trials with legumes, harnessing the application of biopesticides, and collaborative research. By adopting sustainable agricultural practices, sharing valuable knowledge, and providing farmers with effective tools and techniques, it is possible to mitigate the impact of FAW and protect agrifood systems.

Examining how insects spread toxic fungi

Maize grain heavily damaged by the larger grain borer and maize weevil. (Photo: Jessica González/CIMMYT)

According to the World Health Organization (WHO), 10% of the global population suffers from food poisoning each year. Aflatoxins, the main contributor to food poisoning around the world, contaminate cereals and nuts and humans, especially vulnerable groups like the young, elderly, or immune-compromised, and animals are susceptible to their toxic and potentially carcinogenic effects.

Fungi contamination occurs all along the production cycle, during and after harvest, so the mitigation of the mycotoxins challenge requires the use of an integrated approach, including the selection of farmer-preferred tolerant varieties, implementing good agricultural practices such as crop rotation or nitrogen management, reducing crop stress, managing pests and diseases, biological control of mycotoxigenic strains, and good post-harvest practices.

Monitoring of mycotoxins in food crops is important to identify places and sources of infestations as well as implementing effective agricultural practices and other corrective measures that can prevent outbreaks.

A bug problem

Insects can directly or indirectly contribute to the spread of fungi and the subsequent production of mycotoxins. Many insects associated with maize plants before and after harvest act as a vector by carrying fungal spores from one location to another.

International collaboration is key to managing the risks associated with the spread of invasive pests and preventing crop damage caused by the newly introduced pests. CIMMYT, through CGIAR’s Plant Health initiative, partners with the Center for Grain and Animal Health Research of the US Department of Agriculture (USDA) and Kansas State University are investigating the microbes associated with the maize weevil and the larger grain borer.

The experiment consisted of trapping insects in three different habitats, a prairie near CIMMYT facilities in El Batán, Texcoco, Mexico, a maize field, and a maize store at CIMMYT’s experimental station at El Batán, using Lindgren funnel traps and pheromones lures.

Hanging of the Lindgren funnel traps in a prairie near El Bátan, Texcoco, Mexico. (Photo: Jessica González/CIMMYT)

Preliminary results of this study were presented by Hannah Quellhorst from the Department of Entomology at Kansas State University during an online seminar hosted by CIMMYT.

The collected insect samples were cultured in agar to identify the microbial community associated with them. Two invasive pests, the larger grain bore and the maize weevil, a potent carcinogenic mycotoxin was identified and associated with the larger grain borer and the maize weevil.

The larger grain borer is an invasive pest, which can cause extensive damage and even bore through packaging materials, including plastics. It is native to Mexico and Central America but was introduced in Africa and has spread to tropical and subtropical regions around the world. Together with the maize weevil, post-harvest losses of up to 60% have been recorded in Mexico from these pests.

“With climate change and global warming, there are risks of these pests shifting their habitats to areas where they are not currently present like sub-Saharan Africa and North Africa,” said Quelhorst. “However, the monitoring of the movement of these pests at an international level is lacking and the microbial communities moving with these post-harvest insects are not well investigated.”

Afriseed: How improved legume seed can help transform Zambia’s agrifood systems

Certified soyabean seed from Afriseed. (Photo: AFRI archives)

In Zambia, smallholder farmers obtain their seed from a variety of sources. Over 75 percent of farmers in Zambia have adopted certified maize seed and about 30 percent in southern Africa, overall. The private sector has been instrumental in creating demand for certified and timely delivery of seed to remote areas, and the Government of Zambia’s Farmer Input Support Programme (FISP) has largely contributed to better accessibility to certified seed for farmers. In 2022–2023, of the three million registered smallholder farmers in Zambia, more than one million accessed certified seed through FISP.

Afriseed is a seed company in Zambia that has been gaining ground in local seed markets. It has emerged as a catalyst for helping smallholder farmers transition to new, high-yielding legume varieties. Afriseed provides solutions to help smallholders increase their agricultural productivity with improved seed varieties of cereals and legumes and assist them with technology transfer. The company aims to increase the food security and incomes of Zambia’s smallholder farming community, which accounts for 90 percent of agricultural output in the country. During the 2022–2023 farming season, a critical turning point was reached when Afriseed became a partner in the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, a two-year project under CIMMYT, with the aim of scaling-up production of certified seed varieties of soybean and common bean.

Under the partnership, Afriseed promotes the cultivation of improved legume seed through a smallholder farmer seed multiplication approach. By engaging with practicing smallholder farmers and signing grower contracts, basic seeds are multiplied into certified seed for soybean and common bean. Certified seed is a known variety produced under strict seed certification standards to support varietal purity. In collaboration with the Seed Control and Certification Institute (SCCI), the country’s national seed authority, contracted farmers received training on climate-smart agricultural techniques and seed production guidelines. Through extension services to seed growers, smallholder farmers can adhere to the seed production guidelines set out in the National Seed Act to ensure the quality of certified seed produced.

Smallholder farmers hold improved, certified seed. (Photo: AFRI archives)

Afriseed has invested more than USD 335,000 toward supporting the production, aggregation, and processing of 317 t of certified climate-smart legume seeds—265 metric tonnes (MT) for soybean and 52 MT for common bean. Data have shown that the seeds were aggregated from 313 smallholder seed growers, 40 percent of whom were women, in Zambia’s Eastern Muchinga, Copperbelt and the Northern provinces. Seed aggregation improves access to quality seed varieties, increases crop yields and incomes, enhances integration into value chains, and creates market links for smallholder farmers.

Notable progress has been made with the contracted farmers, who have applied improved crop management practices and technologies on more than 600 ha of land to produce the seed. With this encouraging progress, Afriseed intends to scale up its last-mile seed distribution strategy to reach and directly help an estimated 35,000 underserved rural smallholder farming households with improved legume seeds in the 2023–2024 cropping season.

AID-I is one of the ways in which Feed the Future, the U.S. Government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. One of the project’s initial actions is to strengthen local seed systems so that agribusinesses can reach smallholder farmers with a diversity of improved seeds varieties, including climate-resilient and more nutritious varieties for maize and legumes.

Transforming rural agriculture with improved seed and mechanization

Excited farmers pose after purchasing seed in preparation for the upcoming cropping season. (Photo: CIMMYT)

More than 1,300 smallholder farmers, across the Mwenezi and Masvingo districts of Zimbabwe, braved the hot morning sun to attend the fourth edition of the seed and mechanization fair organized by CIMMYT and partners in early October 2023. The event, themed “Harnessing improved seed and mechanization for climate resilience,” saw these farmers from all walks of life—first timers to past attendees—eager to participate, learn and explore the innovations on display.

Evolving over time, the seed and mechanization fair has continued to serve as a strategic platform to connect local farmers with private sector companies while enhancing the uptake of drought-tolerant maize varieties and scale-appropriate machinery. “Since 2020, CIMMYT-driven seed fairs have encouraged smallholder farmers in semi-arid areas, to grow the right seed at the right time to avoid any shortcomings due to unpredictable of weather patterns,” said Christian Thierfelder, principal cropping systems agronomist at CIMMYT.

Fast approaching farming season

El Niño continues to pose a threat to farmers especially in semi-arid areas such as in Mwenezi district situated in southern Zimbabwe and Masvingo district in south-eastern Zimbabwe which are drought prone areas characterized by high temperatures, rainfall deficit, among other challenges. Through the seed fairs, CIMMYT, a consortium member of the World Food Program projects, R4 Rural Resilience and the Zambuko Livelihoods Initiatives supported by the Swiss Agency for Development and Cooperation (SDC) and USAID, has been at the forefront, advocating for and inspiring local farmers to buy and use seed varieties suitable for their environment, while encouraging farming as a business. In addition, the regional project Ukama/Ustawi Diversification in East and Southern Africa joined efforts to support farmers in income diversification from pure cereal-based systems to more diversified cereal-legume and mechanized farming systems.

“I believe this is the right function at the right time as we prepare for the next farming season. From this event, we anticipate that farmers will say, ‘Yes we have received new technology, yes we have knowledge on new varieties, yes we have information about the weather forecast’. We now have confidence that farmers are well-equipped and ready for the season to achieve the Zimbabwe Vision 2030,” said Isaac Mutambara, district development coordinator from Mwenezi.

Building resilience with drought-tolerant varieties

Amid climate change, equipping farmers with climate-smart knowledge and the right seed varieties has been central to the seed fairs. Working hand in hand with the government, CIMMYT has been breeding drought tolerant, orange maize with high nutritional value. “We encourage the growing and consumption of crops with nutritional value for household food security. Furthermore, we have different varieties of orange maize which are drought-tolerant,” said Thokozile Ndhlela, maize line development breeder. In addition, CIMMYT as part of HarvestPlus, has been encouraging the growing and consumption of nutritious NUA45 beans which are high in iron and zinc.

Mechanizing agriculture

Live demonstration of the basin digger in Mwenezi. (Photo: CIMMYT)

The joint participation of the USAID funded ‘Feed the Future Zimbabwe Mechanization and Extension activity’, helped to emphasize the importance of transforming smallholder agriculture through scale-appropriate equipment. At the event, machinery manufacturers such as Prochoice, Kurima and Mahindra showcased cutting-edge machinery, designed to ease farming operations. These companies showed live demonstrations of two-wheel tractors, basin diggers, multiple crop threshers amongst others, effectively emphasizing the benefits of scale-appropriate mechanization. The innovations on display demonstrated the unwavering dedication of the private sector towards supporting farmers and driving agricultural innovation. “It has been a truly exciting opportunity operating the peanut sheller, while appreciating the different machinery in live action. I will consider buying this machine as it reduces the added burden of shelling and processing,” said Lungiwe Nyathi, a local farmer from Mwenezi.

Partnerships for growth

Various seed companies, including AgriSeeds, SeedCo, Farm and City, Super Fert, National Tested Seeds, Intaba Trading, Sesame for Life and K2, marketed appropriate seed varieties that ensure bumper harvests. Sales of seed, fertilizer and other inputs were high, with the total value of sales reaching US6,450. Vouchers were distributed to farmers who made high cash purchases of seeds. “I bought 45kgs of seed which I believe is a great start, and I am happy that I do not have to pay extra money for transporting the seed to my home,” said Martha Chiwawo, a farmer from ward 16 in Masvingo.

The fairs would not be complete without CIMMYT partners. While Zambuko Livelihoods Initiative shared their expertise in the district, SNV has been encouraging sustainable savings and lending schemes among farmers to purchase machinery while facilitating market access and reducing post-harvest losses. The World Food Programme (WFP) encouraged farmers to become resilient and self-sufficient through valuable knowledge and skills to improve their lives. In addition, the Mwenezi Development Training Centre (MDTC) focused on encouraging small livestock which are adaptable to the area. Additional partners Cesvi and Sesame for Life, who both operate in ward 6 of Mwenezi district, participated in the seed fairs for the first time. Both partners advance the production of high value crops—paprika and sesame—which have a ready export market and favorable prices for smallholder farmers. Government extension departments showed strong support while researchers from the Makoholi Research Station in Masvingo used the opportunity to talk to farmers about their research initiatives.

As the day came to an end, farmers were brimming with excitement and ready to embark on the season ahead with purchased, improved seed and a wealth of knowledge on innovative conservation agriculture practices. The event proved to be an invaluable opportunity for uniting farmers, government, seed companies, and partners in a shared mission to promote sustainable farming practices and ensure food security.

Combatting maize lethal necrosis in Zimbabwe

Maize is a staple crop in Zimbabwe, playing a vital role in the country’s agricultural landscape as food for its own people and an export good. However, behind every successful maize harvest lies the quality of seed and resistance to diseases and stresses.

Amidst the multitude of diseases that threaten maize crops, one adversary is maize lethal necrosis (MLN). Though not native to Zimbabwe, it is crucial to remain prepared for its potential impact on food security.

What is maize lethal necrosis?

MLN is a viral disease, caused by a combination of two virus diseases. The disease emerged in Kenya in 2011 and quickly spread to other countries in eastern Africa. The introduction of MLN to Africa was likely affected by the movement of infected seed and insect vectors. MLN has had a severe impact on regional maize production, leading to yield losses of up to 90%.

Recognizing the need to equip seasoned practitioners with the knowledge and skills to effectively diagnose and manage MLN, CIMMYT organized a comprehensive training on MLN diagnosis and management, targeting 25 representatives from Zimbabwe’s Plant Quarantine Services.

From students to experienced technicians, pathologists and plant health inspectors, this was an opportunity to refresh their knowledge base or an introduction to the important work of MLN mitigation. “This training for both advanced level practitioners and students is crucial not only for building competence on MLN but also to refresh minds to keep abreast and be prepared with approaches to tackle the disease once it is identified in the country,” said Nhamo Mudada, head of Plant Quarantine Services.

Maize plants showing maize lethal necrosis (MLN). (Photo: CIMMYT)

Expectations were diverse, ranging from sharpening understanding of key signs and symptoms to learning from country case examples currently ridden with the disease. With CIMMYT’s guidance, practitioners learned how to identify MLN infected plants, make accurate diagnoses, and implement management strategies to minimize losses.

“For over 10 years, these trainings have been important to raise awareness, keep local based practitioners up to speed, help them diagnose MLN, and make sure that they practice proper steps to tackle this disease,” said L.M Suresh, CIMMYT maize pathologist and head of the MLN screening facility in Kenya.

Identifying the specific MLN causing viral disease affecting a maize plant is the first step in combating MLN. Determining whether it is a biotic or abiotic disease is critical in establishing its cause and subsequent diagnosis. By implementing proper diagnostic techniques and understanding the fundamentals of good diagnosis, practitioners can bring representative samples to the lab and accurately identify MLN.

Tackling MLN in Zimbabwe

Initiated in 2015 at Mazowe as a joint initiative between the Government of Zimbabwe and CIMMYT, a modern quarantine facility was built to safely import maize breeding materials from eastern Africa to southern Africa and enable local institutions to proactively breed for resistance against MLN.

The MLN quarantine facility at the Plant Quarantine Institute is run by the Department of Research and Specialist Services (DRSS) and is mandated to screen maize varieties imported under strict quarantine conditions to ensure that they are MLN-free.

Training participants pose outside of the MLN screening facilities. (Photo: CIMMYT)

To date, CIMMYT and partners have released 22 MLN resistant and tolerant hybrids in eastern Africa. CIMMYT’s research and efforts to combat MLN have focused on a multidimensional approach, including breeding for resistant varieties, promoting integrated pest management strategies, strengthening seed systems, and enhancing the capacity of farmers and stakeholders.

“Support extended through valuable partnerships between CIMMYT, and the collaborations have played a pivotal role from surveillance to diagnostics and building capacity,” said Mudada.

Feedback and insights

Chief Plant Health Inspector for Export and Imports Biosecurity, Monica Mabika, expressed gratitude for the training. “It is always an honor when we have expert pathologists come through and provide a valuable refresher experience, strengthening our understanding on issues around biosecurity and learning what other countries are doing to articulate MLN,” she said.

Students learn how to screen maize plants for MLN. (Photo: CIMMYT)

Among the students was Audrey Dohwera from the University of Zimbabwe, who acknowledged the importance of the training. “I have been attached for 2 months under the pathology department, and I was eager to learn about MLN, how to detect signs and symptoms on maize, how to address it and be able to share with fellow farmers in my rural community,” she said.

With the knowledge gained from this training, practitioners are well equipped to face the challenges that MLN may present, ultimately safeguarding the country’s maize production status.

Strengthening seed systems with Zamseed

Bram Govaerts and Amsal Tarekegne compare a maize hybrid. (Photo: Katebe Mapipo/CIMMYT)

Maize is a vital crop in Zambia and Tanzania, both for farmers’ economic livelihoods and for delivering nutrients and sustenance to a large group of people. But maize is threatened by climate change, like more severe droughts, and from pests like fall army worm (FAW), which can completely devastate farmers’ fields.

Against this backdrop of looming threats, CIMMYT, as part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is partnering with the Zambia Seed Company Limited (Zamseed) to distribute seeds that are drought tolerant and resistant to the ravages of FAW. And because maize is a staple of many people’s diets, CIMMYT and Zamseed are also developing and distributing maize varieties enhanced with vitamin A.

To uphold maize variety integrity, CIMMYT and Zamseed are engaged in the capacity building of quality assurance and quality control for local stakeholders.

CIMMYT’s engagement with Zamseed involves efforts to popularize high yielding, drought-tolerant, and vitamin enhanced maize varieties in Zambia and Tanzania. Some of these efforts include demonstrations of the new varieties, field days held at different stages of maize development, and deliberate engagement of women throughout the entire seed selection, planting and harvesting effort.

“Our partnership with Zamseed started in October 2022,” said Ir Essegbemon Akpo, a CIMMYT maize seed systems specialist. “It has been a fruitful collaboration, delivering significant outputs to thousands of farmers in Zambia and Tanzania.”

To date, Zamseed has held 300 and 500 demonstrations in Tanzania and Zambia, respectively. The company has held many field days at the demonstration sites to showcase drought tolerant and vitamin A enhanced maize to hundreds of small-scale farmers.

“We have witnessed many farmers who visited the demonstration activities who are excited to see the new high yielding and drought tolerant varieties,” said Amsal Tarekegne of Zamseed.

Seeded by funds from the AID-I project, Zamseed is producing 60kg of Early Generation Seed (EGS) of parents of a FAW-tolerant hybrid maize variety. The company plans to produce 200kg of this hybrid for commercialization and launch in 2024.

To ensure that seeds delivered to farmers are of the highest quality, CIMMYT is working with Zamseed to develop quality assurance and control frameworks, involving genotyping of selected seeds at various times during the seed multiplication and distribution process.

Zamseed has been servicing the requirements of farmers in the sub-Sahara region since 1980, focusing on products that will enhance the profitability of the small-scale farmer and ensure household food security.

Sowing seeds of change: CIMMYT leads crop diversification efforts in South Asia

Farmers participate in a training on improved seeds and technologies. (Photo: S. Mojumder Drik/CIMMYT)

Rapid urbanization, globalization, economic development, technological advancement, and changing agriculture production systems in South Asia are transforming food systems and the food environment.

India and Bangladesh, particularly, have seen a significant transformation since the advent of the Green Revolution as each became able to feed their population without having to import major crops.

However, that policy focus on food self-sufficiency and yield intensification has incurred significant health, environmental and fiscal costs, including a precipitous drop in crop diversification*.

This loss of crop diversification threatens economic and social development and environmental stability while weakening the crucial link between agriculture and community health, particularly in undernourished rural areas. To ensure sustainable food production and nutritional security, it is imperative to manage and conserve crop diversification.

To address these issues and ensure sustainable food production, there is an urgent need to transition from intensive to sustainable farming practices.

CIMMYT exploring crop diversification pathways

CIMMYT’s ongoing projects in South Asia, including the Transforming Agrifood Systems in South Asia (TAFSSA) and Transforming Smallholder Food Systems in the Eastern Gangetic Plains (RUPANTAR) are conducting extensive on-site and on-farm trials, including socioeconomic dimensions of farmers to promote crop diversification.

“To effectively address the challenges of crop diversification, it is essential to integrate on-farm trials and participatory action research, involving farmers in the experimentation and adaptation process tailored to their unique regional needs,” said Ravi Nandi, innovation systems scientist at CIMMYT in Bangladesh. “This hands-on involvement provides valuable data to guide policymaking, ensuring relevance and applicability.”

In addition, TAFSSA and RUPANTAR are engaging in participatory action research to uncover the most viable options for crop and livelihood diversification, understand the socioeconomic factors impacting farmers, and identify the potential opportunities and challenges associated with the crop and livelihood diversification efforts among the farmers.

Researchers completed two comprehensive surveys, engaging with 2,500 farmers across the Eastern Gangetic Plains (EGP) of India, Nepal and Bangladesh, yielding valuable data that will inform future strategies for crop diversification in the region.

Ongoing investigations into the political economy of policies for crop diversification in Bangladesh generate novel insights, further contributing to the development of efficient crop diversification projects and sustainable agricultural policies.

The rise of crop diversification in practices and policy

In recent years, crop diversification has gained traction as a promising strategy to boost agricultural productivity, reduce risks (production, market, climate, and environmental), enhance nutritional outcomes, and promote sustainable agriculture.

Following the inaugural National Conference of Chief Secretaries in Dharamshala, India, led by the Prime Minister of India, state governments introduced numerous policies and schemes to support crop diversification. Some of these initiatives, highlighted in Figure 1, were backed by substantial budget allocations aimed at motivating farmers to diversify their crop production from the current intensive production system.

Figure 1: Author’s compilation from various public sources.

Similar initiatives have been started in Bangladesh, Nepal and other South Asian countries to promote crop diversification. These policies and schemes are important steps towards addressing inadequacies that intensive farming has created in agriculture and food systems.

While policies promoting crop diversification in South Asia are a positive step, their effectiveness is contingent on evidence-based decision-making. The complexities of implementing diversification strategies vary significantly depending on local contexts, particularly in countries like India, Nepal and Bangladesh, where most farmers operate on less than one hectare of land and face diverse weather conditions.

Smallholder farmers, at risk of losing economic stability from abandoning profitable monocrops, face additional challenges because of limited access to advanced technologies and fragmented markets, making the transition to diversified farming a precarious endeavor.

A shift towards comprehensive multi-criteria assessments, including qualitative methods and stakeholder interactions, is necessary for creating practical and locally relevant indicators. Supporting infrastructure, accessible extension services and market development, along with empowering farmers through education on agronomic practices and crop management, will play a crucial role in successfully implementing and reaping the benefits of crop diversification.

*Crop diversification is a process that makes a simplified cropping systems more diverse in time and space by adding additional crops. 

Planting seeds for bringing youth into agriculture

When it comes time to consider career plans, very few young people even consider agriculture as an option. Many young people believe urban areas offer more profitable jobs with less physical labor. However, agriculture in India is evolving every single day. New digital innovations and cutting-edge technologies are making farming more profitable and smarter.

To deliberate on young people’s challenges and solutions to address them, a parallel session was held during the CGIAR GENDER conference, From Research to Impact: Towards Just and Resilient Agri-food Systems, October 9–12, 2023, in New Delhi, India.

In the four-day conference, gender researchers and practitioners from 68 countries shared their perspectives, knowledge and skills about improving gender inclusion in food systems. The conference served as a platform where policymakers, practitioners and private sector actors came together to share the goal of equitable food-systems transformation. They aimed to bridge the gap between research and practice and foster gender-equal and socially inclusive, resilient food systems.

Technology and combined efforts from academia, industry and the government will continue to play critical roles in collectively attracting young people toward these new, innovative ideas in agriculture. Agricultural education can, therefore, play a profound role in shaping the future of sustainable agriculture in India.

Panelists L-R: Neerja Prabhakar, SKLTSHU, Hyderabad; Dorte Thorsen, Institute of Development Studies, University of Sussex; P.S. Pandey, RPCAU Samastipur, Bihar; R.C. Agrawal, Indian Council of Agricultural Research (ICAR); Ch. Srinivasa Rao, Director, ICAR-NAARM, Hyderabad; Laura Estelle Yeyinou Loko, Ecole Nationale Supérieure des Biosciences et Biotechnologies Appliquées (ENSBBA); Geethalakshmi Vellingiri, Vice Chancellor, Tamil Nadu Agricultural University; Seema Jaggi, ICAR.

How academia can enable opportunities for youth

S. Pandey, vice-chancellor of Dr. Rajendra Prasad Central Agricultural University, Bihar, shared his thoughts on addressing youth-centric issues in agriculture. He emphasized that artificial intelligence (AI) is increasingly vital because of its many applications and benefits and that it can help youth to use the power of big data and the internet.

“Use of AI can change the entire scenario: technology-driven agriculture is the need of the hour. New tools and techniques are important to address the current challenges where youth can be at center stage,” he said.

In addition, Geethalakshmi Vellingiri, vice-chancellor of Tamil Nadu Agricultural University (TNAU) said, “Agriculture is looked at as manual, hard work, and not as a lucrative job, which makes it unattractive to youth. TNAU is starting One Student One Farm Family linkage for the first-year students. In this model, students will get to know about the issues being faced by the farmers in the field. They will then link the farmer to the scientist for probable solutions, thus bridging the gap.”

Government’s role in shaping policy

“Students are unaware of the different dimensions of agriculture; hence, their inclination towards agriculture education is not much,” said R. C. Agrawal, deputy director general of the Agricultural Education Division of the Indian Council of Agricultural Research (ICAR), and moderator of the youth careers session. “ICAR is designing a new agriculture-based curriculum for primary, middle and secondary levels to attract more youth. ICAR has initiated its efforts towards integrating the agriculture world with this new education policy.”

Industry opening doors for youth in agriculture

Ch. Srinivasa Rao, director of ICAR’s National Academy of Agricultural Research Management (NAARM), Hyderabad, spoke about the importance of industry. “The youth, both men and women, should be sensitized towards the agrifood sector. Start-ups can help to attract youths’ attention. We should characterize farms as an industry, farming as a business and the farmer as a businessperson. If this orientation doesn’t occur, livelihoods cannot be improved, and youth retention in agriculture won’t be achieved.”

How CGIAR maize breeding is improving the world’s major staple crop for tropical regions

Maize production is surging due to its diversified end uses. While it is already the first staple cereal globally, it is expected to emerge as the world’s predominant crop for cultivation and trade in the coming decade. Globally, it serves primarily as animal feed, but it is also a vital food crop, particularly in sub-Saharan Africa, Latin America, and in some areas in Asia. 

Climate change is, however, altering the conditions for maize cultivation, especially in the rainfed, stress-prone tropics. Abiotic stresses like heat, drought, and floods, as well as biotic threats such as diseases and insect pests are becoming more frequent. These have a disproportionate impact on the resource-constrained smallholders who depend on maize for their food, income, and livelihoods. 

In a race against time, crop breeders are working to enhance maize’s resilience to the changing climates. Among others, CIMMYT and the International Institute of Tropical Agriculture (IITA), working within CGIAR’s Accelerated Breeding Initiative, are utilizing breeding innovations to develop climate-resilient and nutritionally enriched maize varieties needed by the most vulnerable farmers and consumers.  

Better processes

Improving maize yields in the rainfed, stress-prone tropics is challenging. Nevertheless, CGIAR’s efforts have significant impacts, as breeding programs embraced continuous improvement and enhanced efficiency over the years.  

To increase genetic gains, CIMMYT maize breeding program implemented a systematic continuous improvement plan. Sixty percent of CIMMYT’s maize lines in Eastern and Southern Africa (ESA) are now developed through technologies that speed up breeding cycle and improve selection intensity and accuracythese include doubled haploid technologyhigh-throughput phenotyping, molecular marker-assisted forward breeding, and genomic selection. The breeding cycle time has been reduced from five or six years to only four years in most of the maize product profiles. Product advancement decisions now incorporate selection indexes, and specialized software aid in the selection of parental lines for new breeding starts. 

CIMMYT and IITA maize teams are working together to investigate several key traits in maize for discovery, validation, and deployment of molecular markers. CGIAR maize team developed a framework for implementing a stage-gate advancement process for marker-trait pipeline, which enables informed decision-making and data-driven advancements at multiple stages, from marker-trait discovery proposal to marker discovery, validation, and deployment. Consolidating research efforts and implementing this process is expected to increase efficiency and collaboration in maize breeding programs.

An example of maize biotic stress exacerbated by climate change: fall armyworm (FAW) larvae, highly destructive pests, emerge out from an egg mass placed on a maize leaf. (Photo: A. Cortés/CIMMYT)

At the end of the breeding process, breeders must ensure the quality assurance and quality control (QA/QC) of the parental lines of the new varieties. Seed quality, which includes genetic purity, genetic identity, and verification of parentage – is critical in maize breeding and commercial seed production.  

CIMMYT has worked to enhance the capacity of NARES and seed company partners in Eastern and South Africa (ESA), Asia, and Latin America, in utilizing molecular markers for QA/QC in breeding and commercial seed production. This has resulted in more reliable and accurate outcomes. In addition, webinars and user-friendly software have boosted results for NARES maize breeders, regulatory agencies, and seed companies. These combined efforts mean a dependable, cost-effective, and efficient QA/QC system for the maize seed value chain in the Global South. 

Better tools 

With traditional means, obtaining a genetically homozygous or true-to-type maize line requires six to eight generations of inbreeding, and thus, more than ten years for developing a new hybrid. The technique of doubled haploid (DH), which enables derivation of 100% genetically homozygous lines in just two generations, is now integral to modern maize breeding. CIMMYT has pioneered the development of tropical maize DH technology, by developing and disseminating tropicalized haploid inducers, establishing centralized DH facilities in Mexico, Kenya and India, and providing DH development service to partners.  

Regional on-farm trials (ROFTs) is a crucial step in maximizing the impact of breeding investments. ROFTs help scientists understand performance of the pipeline hybrids under diverse farmers’ management conditions, besides environment, soil variability, etc. 

In ESA, ROFT networks for maize are expanded significantly over the last few years, from 20-30 sites per product profile to up to 300 sites, encompassing a wide range of smallholder farming practices. The experimental design was simplified to use less germplasm entries to be tested per farm, making it easier for the farmers to participate in the network, while improving data quality. Collaboration with NARES, seed companies, NGOs, and development partners was significantly stepped up to capture the social diversity within the target market segments. Gender inclusion was prioritized.

Training workshop organized by CIMMYT at the Maize Doubled Haploid Facility in Kunigal, India. (Photo: CIMMYT)

Strengthening the capacity of NARES and SMEs to systematically access and utilize improved maize germplasm is critical for increasing genetic gains in the stress-prone tropics. But partner institutions are at different stages of evolution, which means capacity strengthening must be tailored to institutional strengths and constraints.  

Accelerated Breeding has been strengthening regional CGIAR-NARES-SME collaborative maize breeding networks via activities such as exchanging elite tropical germplasm (inbred lines, trait donors, and breeding populations) through field days, and widely disseminating CIMMYT maize lines (CMLs) requested by institutions globally.  

Partners participate in CGIAR maize stage-advancement meetings – they are given access to multi-location trial data and participate in the selection process of promising hybrids to be advanced from the different breeding stages. CGIAR maize teams also assessed the capacity of different NARES institutions, and formulated continuous improvement plans in consultation with respective NARES teams for further support.  

Better varieties

Systematic integration of new breeding techniques and innovations in CGIAR maize breeding pipelines are leading to better varieties, at a much faster pace, and at lower cost. Given the impacts of climate change, this is indeed the need of the hour.  

Maize breeders need to respond rapidly to emerging and highly destructive insect-pests and diseases. For instance, the invasion of fall armyworm (FAW) in Africa (since 2016) and Asia (since 2018) has ravaged maize crops across more than 60 countries. CGIAR maize team in Africa responded to this challenge and made progress in identifying diverse sources of native genetic resistance to FAW, resulting in elite hybrids and open-pollinated varieties (OPVs) adapted to African conditions. 

Since 2017, CIMMY has strengthened the maize insectary capacity of KALRO-Katumani by optimizing the FAW mass rearing protocol and screening of maize germplasm under FAW artificial infestation at Kiboko Station, Kenya. The station now has sixteen 1,000m net houses. The intensive work since 2018 led to identification of FAW-tolerant inbred lines by CIMMYT and their distribution to over 90 public and private institutions in 34 countries. 

NARES partners across 13 countries in Africa have undertaken national performance trials of three FAW-tolerant hybrids developed by CIMMYT. Kenya, Zambia, Malawi, South Sudan and Ghana released the three hybrids in 2022-23, while several more countries are expected to release these hybrids in the coming months.

Drought and heat tolerant maize ears are harvested through a CIMMYT project. (Photo: J.Siamachira/CIMMYT)

Climate change is also exacerbating maize diseases. Affecting at least 17 countries in the Americas, the Tar Spot Complex (TSC) disease affects maize in the cool and humid regions. It causes premature leaf death, weakens plants, and reduces yields by up to 50%. CIMMYT maize team in Mexico has mapped genomic regions conferring TSC resistance, and is using these markers in breeding programs 

The Global South is also particularly vulnerable to drought and high temperature stresses. In the past five years, 20 drought- and heat-tolerant maize hybrids have been released in Asia, including Bangladesh, Bhutan, India, Nepal, and Pakistan. Socio-economic studies in India and Nepal showed that farmers who adopted these hybrids realized higher grain yields, and increased income compared to the non-adopters. 

In 2022, certified seed production of CGIAR multiple stress-tolerant maize varieties reached 181,119 metric tons in sub-Saharan Africa (from 72,337 tons in 2016). This is estimated to cover ~7.4 million hectares, benefiting over 46 million people in 13 countries. 

With maize facing unprecedented threats from climate change-induced stresses in the rainfed stress-prone tropics, CGIAR maize breeding programs working closely with NARES and private sector have demonstrated remarkable success in breeding as well as deploying climate resilient maize.  These efforts rely on better processes and modern breeding tools, leading to drastically reduced breeding cycle time, cost saving, and improved efficiency.  

The resulting improved varieties–resilient to major environmental stresses, diseases and insect-pests–are increasingly adopted by smallholders across sub-Saharan Africa, South Asia, and Latin America, showing that tomorrow is already here. The work continues to ensure that maize remains a constant source of food security and prosperity for generations to come in the tropical regions.

Exposing the potential of agricultural mechanization in India and Bangladesh

As geographical neighbors, Bangladesh and India share many characteristics in terms of land, weather, and food production. Because of these similarities, the Feed the Future Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA) organized a series of exposure visits to India for Bangladeshi farmers and other agricultural stakeholders to establish market linkages, provide access to financial and technical advice.

The CSISA-MEA, funded by the United States Agency for International Development (USAID) works to increase the usage of agricultural machinery to benefit farmers by increasing their productivity and efficiency. The Activity works with several stakeholders, including agriculture-based light engineering (ABLE) enterprises, dealers, and machinery solution providers (MSPs).

Over the course of the activity, a significant lesson learned is that both groups, the hosting party and the visiting party, benefit from exposure visits.

CSISA-MEA organized two international exposure visits to India in July 2023. A total of 34 participants in two cohorts visited India, 18 workers from Faridpur and Cox’s Bazar, and 16 from Bogura and Jashore.

The CSISA-MEA delegation from Bangladesh in Punjab, India visits the Borlaug Institute for South Asia (BISA) during the exposure visit. (Photo: Rowshon Anis, OMD, CSISA-MEA, iDE Bangladesh)

CSISA-MEA arranged the visits with the objective to familiarize Bangladesh ABLE enterprises with modern agri-machinery manufacturing and improve their working practices. The visits covered factories, ABLE workshops and foundries in Punjab, including Amargarh, Bamala, and Ludhiana, areas where India’s agriculture mechanization is most notable, and incorporated public and private sector companies, and academia including LANDFORCE, M/S Dasmesh Mechanical Works, Panesar Agriculture Works Pvt. Ltd., Sokhi Manufacturing Ltd., the Borlaug Institute for South Asia, and National Agro Industry.

Learnings from the exposure visit

The exposure visits have emphasized the importance of systematic line production for machinery and spare parts manufacturing to ensure efficiency and consistency in output. Quality control has been highlighted as a non-negotiable aspect, and the significance of delivering reliable and high-quality products. Using natural light and ventilation systems showcased the potential for environmentally friendly production facilities.

The visits also highlighted how maintaining proper occupational health and safety measures ensures the well-being of the workforce along with a gender inclusive environment in the agri-machinery factories. The factories have a significant female workforce, an eye-opening sight for the ABLE owners of Bangladesh.

These exposure visits have helped equip ABLE owners with invaluable insights and strategies for success in their agricultural machinery businesses, including building connections among themselves, such as that between two ABLEs from Jashore, Bangladesh to facilitate the production and supply of the fodder chopper–demonstrating the potential for cooperation to expand market reach.

Reflections from the visits

The trip to meet their Indian counterparts provided CSISA–MEA ABLE owners with invaluable insights and knowledge, with their unanimous feedback reflecting the profound impact of the visits, which they deemed truly eye-opening. Encouragingly, since their return, each ABLE enterprise has prepared action plans, taking proactive steps to implement the new techniques and business strategies they gained during their visit.

“I can’t express how thrilled I am to have unlocked the secrets behind the exceptional quality of Indian machines and spare parts. It’s not just a technical upgrade, it’s a commitment to quality products,” said Md. Ashraf Hosen, owner of M/S Ashraf Machinery & Akmol Engineering Workshop.

During the exposure visit, the CSISA-MEA team from Bangladesh visits the Sokhi Components in Ludhiana, Punjab, India. (Photo: Sokhi Components)

Another visitor, Md. Iqbal Hosen, proprietor of Titas Moulding & Engineering Works, said, “I found discovering new innovations very exciting, especially the core-making process, the mechanical mold-making process to reduce production costs, appropriate charge calculation techniques and induction furnaces. I’m determined to apply these things in my foundry, to improve the quality of the products and reduce production costs.”

Sarkar Agro-Engineering & Multiple Works in Bangladesh has displayed a commitment to implementing the key takeaways of the exposure visit to India. The owners have ensured natural light and ventilation in their production facilities, creating a more conducive and eco-friendlier working environment for staff. They have also installed a customized lathe machine, painting every part of a machine before assembling it, and manufacturing mini tractors, all because of their exposure visit.

CSISA–MEA staff have also taken something from the trips, including feedback to include demonstrations of forging machines in future visits to further extend the workforce’s technical knowledge. There are plans to visit local spare parts markets during the next expedition to provide participants with a broader understanding of market dynamics, while visits to solar power and battery-operated machinery companies would provide an opportunity to witness sustainable technologies in action.

CIMMYT at the Borlaug Dialogue

Harnessing Change was the theme of the 2023 Borlaug Dialogue, an annual summit of international thought leaders, development specialists, researchers, farmers, and practitioners, designed to promote global food systems transformation and food security, and is organized by the World Food Prize Foundation.

This iteration of the Borlaug Dialogue, held in Des Moines, Iowa, October 24-26, 2023, was the site of the inauguration of a collaboration between CIMMYT and the Gorongosa Restoration Project to improve climate resilience, food security and nutrition in Mozambique’s Gorongosa National Park.

“These kinds of collaborations exemplify what the Borlaug Dialogue is all about,” said CIMMYT Director General Bram Govaerts. “The annual event and the work of the World Food Prize Foundation year-round is dedicated to bringing people and organizations together to work better and smarter. CIMMYT is proud to be a part of it.”

CGIAR Centers based in the Americas host discussion on Latin America’s food security challenges and opportunities

CIMMYT, the International Potato Center (CIP), the Alliance of Bioversity International and the International Center for Tropical Agriculture, and International Food Policy Research Institute (IFPRI) co-organized the side event Maximizing Latin America and the Caribbean’s Contributions to Global Agriculture and Biodiversity Solutions at Dialogue.

Govaerts moderated the panel discussion and the Q&A session that followed with members of the audience.

Panelists, including Elsa Murano, director of the Norman E. Borlaug Institute for International Agriculture & Development, Rob Bertram, chief scientist for the Bureau for Resilience and Food Security at the U.S. Agency for International Development (USAID), and María (pilu) Giraudo, honorary president of Argentina’s No Till Farmers Association, shared views on Latin America’s role in global agriculture from academic, development and farming offer academic insights, international cooperation recommendations and farmer perspectives.

CIMMYT and USAID co-host panel focused on AID-I’s impact at the Borlaug Dialogue

CIMMYT and USAID hosted an event at the Dialogue organized by the World Food Prize Foundation on October 25 focused on the Southern Africa Accelerated Innovation Delivery Initiative (AID-I).

The discussion labelled, Harnessing Innovation to Rapidly Respond to Crises, aimed to present AID-I’s innovative approach to addressing systemic weaknesses in agriculture by accelerating the market-based delivery of improved seeds, fertilizers, and critical information to farmers.

(Left to right) Bram Govaerts, Kevin Kabunda and Dina Esposito. (Photo: CIMMYT)

Dina Esposito, USAID’s Global Food Crisis coordinator and assistant to the Administrator for the Bureau for Resilience, Environment and Food Security, described how AID-I is “turning crisis into opportunity” by improving farmers’ resilience and profitability.

“We joined CIMMYT and went to Zambia, and the partnership was a glimmer in our eyes,” said Esposito, referring to a recent visit to a model farm with AID-I partners.

Reporting progress in Zambia, Malawi and Tanzania, Kevin Kabunda, CIMMYT’S AID-I chief of party in southern Africa, noted that the private sector had produced 13,000 tons of maize in the first year.

“The extended or increased potential for every farmer who uses fall armyworm-tolerant varieties translates to US$100 dollars,” said Kabunda who estimated AID-I reached 1.3 million farmers in its first year generating an aggregated value of at least US$65 million dollars.

In addition, Mtieyedou (Abdou) Konlambigue, AID-I chief of party in the Great Lakes Region, pointed out that the project has given access to new bean varieties and fertilizer recommendations to over 500,000 farmers in Rwanda, Burundi and the Democratic Republic of the Congo.

Farmers take the stage

Two champion farmers, María (pilu) Giraudo and Guillermo Bretón joined CIMMYT’s Director General, Bram Govaerts, and CGIAR Board Chair, Lindiwe Majele Sibanda, during a main stage session of the Borlaug Dialogue organized by the World Food Prize Foundation on Tuesday, October 24.

The event, MasAgro Taking it to the Farmer, reported on progress achieved and milestones reached by one of CIMMYT’s flagship projects, Crops for Mexico (MasAgro), which began 14 years ago and earned Govaerts the 2014 Norman E. Borlaug Award for Field Research and Application endowed by The Rockefeller Foundation.

Giraudo, an Argentinian farmer who co-founded the Rural Women Network and serves as honorary president of Argentina’s no till farmer association Aapersid, said that the best way to acknowledge MasAgro’s work is to seize the opportunity to offer women farmers the possibility of having full access to science and technology.

Bretón, a farmer from Mexico’s state of Tlaxcala, described MasAgro as a disruptive way of understanding agriculture. “Investing in our soils is better than investing in a one-cycle crop,” he said.

CGIAR Board Chair Lindiwe Majele Sibanda was enthusiastic about the project’s trajectory and proud of its evolution into CIMMYT’s ongoing efforts, including adapting MasAgro to southern Africa.

Sibanda expressed her excitement about MasAgro-inspired activities in Africa and praised the diversified seed systems that today include dryland crops sold in smaller seed bags by young entrepreneurs who are taking up businesses in villages without having to go to urban centers.

Govaerts moderated the event and thanked Dina Esposito, and U.S. Special Envoy for Global Food Security, Cary Fowler, for facilitating the establishment of MasAgro programs in southern Africa.

I cannot do it alone

On October 4, 2023, CIMMYT continued its online seminar series — Catalysts of Change: Women Leaders in Science. The event featured a talk by Esther Ngumbi, an entomologist and academic at the University of Illinois Urbana-Champaign.

A riverside farm

Born into a small, rural community on the Kenyan coast, Esther Ngumbi grew up farming alongside her family. “I enjoyed the process of growing crops because I knew at the end of the season, we would have extra food for ourselves,” she explained. By the age of seven she decided she wanted to go it alone, and her father provided a small strip of land by the river, where she took to growing vegetables.

“Every morning I would sit there and just enjoy looking at this thriving cabbage patch I had,” she says. “And then one day the rains came. It rained for three days, the field flooded, and by the time the water receded I had lost my cabbages. The joy that had built was gone.”

“But this heartbreak continued,” she added. “Halfway through the season I would watch all our hard work go to waste.” Along came insects, drought, or flooding—all the stresses associated with climate change—and for her family it would mean no food. Ngumbi soon realized that this was not limited to her family’s farm: her neighbors, community, county, and country were all impacted by these challenges, leading to widespread food insecurity.

Feeding curiosity

“As a girl I was very curious,” said Ngumbi. “How do these insect pests find our crops? And when they find them, why aren’t our crops resilient enough to overcome these stresses? Little did I know that this curiosity would lead me into what my career is today: an entomologist.”

“But growing up in a rural village there were no role models; there were no scientists. There were no people I could look up to and be inspired to know that you could make a career out of entomology or that you could be a woman in science.”

Despite initially considering a career in accountancy, Ngumbi ended up studying for a BSc in biochemistry and zoology at Kenyatta University, where she immediately fell in love with practical research. “Stepping into the lab was such an exciting day for me,” she recalled. “I had so many questions, and I remember not wanting to leave because I wanted to answer all the questions I had grown up with.”

Later, extra-curricular experience at a local research center would feed her interest in entomology. The scientists she ended up working with ran a biological control program to assess how maize is impacted by lepidoptera pests, and the natural biological control agents that could be used to combat these. “How do plants communicate and call for help? Through releasing a chemical. I discovered that there is a wave of communication happening between our food crops and the community of organisms that associate with plants.”

Eager to learn more, Ngumbi went on to pursue an MSc before joining a Ph.D. program at Auburn University in Alabama, USA. “My parents had always told me that education is the gateway out of poverty, and they consistently encouraged me to go to the highest level. I knew I had to go to the top.”

At Auburn she had the opportunity to delve deeper into how plants defend themselves, and her successful research into beneficial soil microbes led to at least three U.S. patents. Following a few post-doctoral positions, she landed a role at the University of Illinois Urbana-Champaign, where she currently works as an assistant professor in the Departments of Entomology and African American Studies.

Bringing others along

Ngumbi credits mentorship with getting her to where she is today. “At Kenyatta University my teachers saw a spark in me; I was curious and wanted to find answers. Mentors introduced me to scientists the International Centre of Insect Physiology and Ecology (ICIPE), so I could carry out experiments beyond what we were doing as part of my course.”

She recalled walking across the stage during her Ph.D. graduation ceremony, a key moment of reflection. “It was real that there were very few women like me in science. That I was only one of the many women I had grown up with that was privileged to have a PhD. And I wanted not to be the only person,” she said. “I wanted to make sure that I would leave open the same door I had walked through. That I would do my best to bring other women along.”

“I would step up to be a mentor. Step up to encourage other women. Step up to encourage other children from rural communities to say: you can do it, you can dream, you can follow your passions, you can be a scientist.”

With this in mind, Ngumbi ensures she collaborates with others in all areas of her research, incorporating young researchers into her labs and working directly with farmers. “I’m committed to ensuring that farmers who work so hard — especially smallholders — can grow crops and see all their hard work pay off.”

“I will continue to follow this journey of finding solutions to feed our growing planet, but I know that I cannot do it alone. We need all of us,” she added. “We still have very few women scientists — UNESCO estimates around 30% — and I hope that by the time I’m done with my career that number changes. But it’s going to depend on all of us.”

Ngumbi’s talk was followed by a Question and Answer led by Olivia Odiyo, a CIMMYT research associate based in Nairobi. The full discussion can be viewed online here. Spanish and French-language audio is also available.

Millers in Nigeria laud the release to farmers of co-developed, CIMMYT-derived wheat varieties

Nigerian wheat scientists and millers recently recognized and thanked CIMMYT for its contributions to four new wheat varieties released to farmers, citing the varieties’ exceptional performance in field trials and farmers’ fields across national wheat-growing regions.

“The release of these four wheat varieties, uniquely tailored to suit our local conditions, has marked a significant milestone in enhancing food security and farmer livelihoods,” said Ahamed T. Abdullahi, agronomist for wheat value chains at the Flour Milling Association of Nigeria (FMAN), in a recent message to CIMMYT’s Global Wheat program. “The improved characteristics, such as higher yield potential, enhanced disease resistance, and adaptability to local climatic conditions, have significantly boosted wheat productivity. Moreover, the quality profiles of these varieties, as expressed in Nigeria, comply fully with the standards required by the local industry.”

Two of the varieties are bread wheat and yield up to 7 tons of grain per hectare, according to a recent Nigeria Tribune article. The other two are durum wheat, a species grown to make pasta and foods such as couscous and tabbouleh. One of those, given the name LACRIWHIT 14D in Nigeria, was from a CIMMYT wheat line selected for its novel genetic resistance to leaf rust and high-yield potential under irrigated conditions. It was also released in Mexico under the name CIRNO C2008 and is the country’s number-one durum wheat variety, according to Karim Ammar, a wheat breeder at CIMMYT.

Four new bread and durum wheat varieties based on CIMMYT breeding lines are well adapted to local conditions and offer excellent yields and grain quality. (Photo: FMAN)

“Aside from its high yield potential, it has considerable grain size and an aggressive grain fill that is expressed even under extreme heat,” explained Ammar. “These characteristics have certainly helped its identification as outstanding for Nigerian conditions.”

Writing on behalf of FMAN and the Lake Chad Research Institute (LCRI) of Nigeria’s Federal Ministry of Agriculture and Rural Development, Abdullahi said, “We deeply appreciate the expertise and support provided by CIMMYT throughout the development and release process. Your team’s technical guidance on the access to germplasm has played a crucial role in equipping our farmers and extension agents with the necessary skills and resources for successful wheat cultivation.”

Nigeria has a fast-growing population which, coupled with increasing per capita demand for wheat, has made increasing wheat production a national priority, according to Kevin Pixley, director of the Dryland Crops and Global Wheat programs at CIMMYT.

“Until recently, Nigeria produced only 2% of the wheat it consumes, but potential exists to double the current average yield and expand wheat production by perhaps 10-times its current area,” said Pixley. “New wheat varieties will be essential and must be grown using sustainable production practices that improve farmers’ livelihoods while safeguarding long-term food security and natural resources.”

Abdullahi said the release of the varieties demonstrated the power of collaborative research and highlighted the potential for future collaborations. “We look forward to continued collaborations and success in the pursuit of sustainable food systems.”

Scaling up health diet seed kits in Zanzibar

Many people on the islands of Zanzibar face food insecurity and nutritional challenges. The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub, implemented by CIMMYT, has partnered with the World Vegetable Center (WorldVeg) to directly distribute health diet seed kits to vulnerable households, while prioritizing vulnerable groups such as pregnant and lactating mothers and children under five.

The kits contain a diverse selection of nutrient-rich vegetables specifically chosen for their high nutritional value, ensuring optimal health and development.

The kits contain traditional African vegetables. (Photo: CIMMYT)

To date, the partnership has reached an impressive number of households in Zanzibar. Over 1,350 health diet seed kits have been distributed, or one seed kit per household, benefiting approximately 4,050 individuals (considering at least three people per household). These numbers showcase the tangible impact AID-I has made in addressing the root causes of malnutrition and hidden hunger, providing a sustainable pathway towards improved health and a brighter future for Zanzibar.

The World Vegetable Center (WorldVeg) conducts research, builds networks, and carries out training and promotion activities to raise awareness of the role of vegetables for improved health and global poverty alleviation.

“This initiative holds tremendous promise in fostering long-term improvements in food security, nutrition, and overall well-being for the communities in Zanzibar and shows the power of collaboration,” said Kevin Kabunda, CIMMYT lead for the AID-I project.

Seed variety encourages improved nutrition

A key strength of the seed kits lies in their diversity. Each kit comprises a range of seeds for various crops, including legumes and nutrient-rich vegetables. This includes amaranth consumed as leafy and grain, African eggplant, Ethiopian mustard, African nightshade, and cowpea. The combination of these diverse crops ensures a more resilient and nutritious food supply, essential to combating malnutrition and fostering agricultural sustainability in the islands.

The seed kits are tailored to suit the local agroecological conditions, considering the specific needs and preferences of farmers in Zanzibar. This localization approach enhances the adoption of the kits and maximizes their potential impact on food security and dietary diversity.

“The partnership between WorldVeg and CIMMYT has been invaluable in driving the success of this activity in Zanzibar,” said Jeremiah Sigalla, WorldVeg technical lead for the AID-I project in Zanzibar. “By providing farmers with these healthy diet seed kits, we aim to promote the cultivation of diverse crops that are essential for a balanced and nutritious diet and its attendant benefits, particularly among vulnerable communities.”

By raising awareness about the significant benefits of incorporating diverse vegetables into daily diets, the partnership has inspired and encouraged the community to fully embrace the intervention. This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being in Zanzibar.

The Ministry of Agriculture, Irrigation, Natural Resources and Livestock delivers a health diet seed kit. (Photo: CIMMYT)

The Honorable Shamata Shame Khamis, the minister of Agriculture, Irrigation, Natural Resources and Livestock in Zanzibar joined a health diet seed kit distribution event at Michiweni district in Pemba, on June 30, 2023, where he commented that the consumption of nutritious vegetables in Zanzibar is very low, and malnutrition-related cases are increasing because of poor daily diets. He also extended his appreciation to the AID-I project, recognizing that this initiative is not only important but also timely, as it serves to meet the urgent need for promoting and enhancing the availability of nutritious vegetables in Zanzibar.

LIPS-Zimbabwe empowers farmers through innovative intercropping trials

Since 2021, CIMMYT, in partnership with the International Livestock Research Institute (ILRI), the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabwe’s Department of Veterinary, has been working in rural communities of Zimbabwe, as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project. The activity is led by Zimbabwe’s Department of Research and Specialist Services and is at the forefront of introducing new agricultural innovations to local farmers.

One of their most impactful initiatives has been the intercropping trials involving maize and various legumes including jack bean, mucuna, lablab, and pigeon pea. This groundbreaking approach has not only transformed the lives of farmers but has also had a positive impact on the overall health of livestock.

Various leguminous fodder crops have been promoted widely as sources of high-quality protein feed in mixed crop-livestock systems of Zimbabwe. However, to diversify and increase the options for the drier regions, the LIPS-Zim project is testing new leguminous crops such as jack bean and pigeon pea, which are well-adapted to dry conditions.

Intercropping trials with jack bean and maize (Photo: CIMMYT)

Netsai Musekiwa, a farmer in the town of Mutoko, has been part of the LIPS-Zim project for the past two seasons, and is currently conducting intercrop trials with jack bean. “Since I started intercropping maize with jack bean, I have been amazed by the results and will continue on this path. The jack bean plants have shown strong tolerance to prolonged dry spells and heat stress,” she said. “Next season, I plan to extend my plot to harvest more jack bean.” These words of encouragement on intercropping maize with jack bean have also been largely echoed by many other farmers in Mutoko and Buhera during the feedback meetings held in October 2023.

What is intercropping and how beneficial is it to farmers?

Intercropping is an agricultural practice of growing two or more crops together on the same field simultaneously to maximize land use and enhance productivity. As different crops have different growth patterns and nutrient requirements, intercropping can help optimize resource utilization and boost overall crop output.

In addition, intercropping reduces the risk of climate induced crop failure as well as minimizing pest damage, enhances soil fertility by diversifying the root system, and can provide additional income streams to farmers.

The science behind jack bean and pigeon pea

Jack bean (canavalia ensiformis) and pigeon pea (cajanus cajan) are leguminous crops valued for their nitrogen-fixing abilities which aides in improving soil fertility. Both jack bean and pigeon pea have deep root systems, making them ideal candidates for the dry semi-arid conditions in Zimbabwe.

Pigeon pea is known for its drought-tolerance and produces edible seeds used in various culinary dishes and is a source of both food and feed. Jack bean is used as a forage crop for livestock, providing nutritious feed.

“Jack bean seeds contain a toxic compound called canavanine, which can be harmful when consumed in large quantities or not properly processed. To make jack beans safe for consumption, it must be boiled, soaked, or fermented,” said Isaiah Nyagumbo, cropping systems agronomist at CIMMYT. “We have introduced many farmers to the best practices for handling jack beans and have opened up new possibilities for its utilization in sustainable farming practices.”

While some farmers were intercropping with jack bean, others explored pigeon pea as an alternative. “I liked the intercropping of maize and pigeon pea on my plot. I am assured of getting nutritious food both for my family and livestock. After harvesting, I usually take the branches, then put them in the shade and dry them to retain the nutritional value. I occasionally give some to my goats during the dry season when feed from natural pastures is scarce, and my goat herd has risen to 12 goats,” said Fungai Kativu, a farmer in Mutoko.

Building capacity of local farmers

To narrow the knowledge gap and highlight the potential of such feed options, LIPS-Zim has also been spearheading the establishment of community level learning centers. These centers are a knowledge hub to local farmers, providing practical knowledge, facilitating the sharing of different perspectives while nurturing working as groups with a common vision. This “farmer learns by seeing” approach has been a success in the community.

Through this initiative, farmers have not only witnessed increased productivity but have also gained the necessary skills and knowledge to adapt to the changing agricultural landscape. “Intercropping leguminous crops with maize has shown great potential in improving food security and livestock feed production in Zimbabwe’s farming communities, especially in areas prone to heat and drought,” said Nyagumbo.