Skip to main content

Transforming Farming in Uganda: The journey of four farmers and their demonstration plots

On the lush soils of Uganda, four farmers are using awareness creation demonstration plots to showcase the performance of improved varieties of groundnut, sorghum, and finger millet and their impact on transforming transform livelihoods.  

Not only are these farmers improving their yields, but they are also inspiring their neighbours to adopt more resilient and climate-smart crops as part of a larger collaboration initiative between the National Semi-Arid Resources Research Institute (NaSARRI) and CIMMYT through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. The AVISA project, funded by BMGF, aims to improve food security and resilience in the drylands of Uganda and other eight countries in eastern and southern Africa (Ethiopia, Kenya, Tanzania, Malawi, Mozambique, South Sudan, Zambia, and Zimbabwe). The efforts of these four farmers in Uganda highlight the importance of demonstration plots as a powerful tool for creating awareness and promoting transformational agricultural technologies like improved crop varieties and other recommended agronomic practices.  

Dennis Obua, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

Demonstration plots serve as practical, hands-on learning sites, where farmers can observe the performance of improved crop varieties under farming conditions in their localities. Apart from demonstrating crop performance, these demonstration plots also serve as sources of seed for the farmers, which when selected can be grown in bigger plots in subsequent seasons targeting seed production This ensures that seed of the target crop varieties are available to local farmers. Through these demonstration plots, farmers not only witness firsthand improved yields, but farmers also make informed decisions for adoption of specific varieties for their environments to improve productivity, food security and resilience, especially in regions vulnerable to climate change. They also provide a platform for knowledge sharing, as farmers can interact with other farmers, researchers and extension agents to enhance uptake of practices that lead to success. 

Farmers Driving Variety Adoption through Demonstration Plots

In Lira District, Dennis Obua, a farmer from Teyawo village, has embraced improved varieties of drought-tolerant crops. His journey into farming began in 2018 after observing the challenges faced by local farmers due to inconsistent rainfall. He started small, with a handful of finger millet seed obtained from NaSSARI, which he multiplied and shared with neighbouring farmers. With support from the seed systems unit at NaSSARI, Dennis now manages demonstration plots of groundnut, sorghum, and finger millet and promotes these crops in his community. 

In the current season of 2024 (Mar-Jul), Dennis planted three improved groundnut varieties — SERENUT 8R, SERENUT 11 and SERENUT 14, which were released in 2011. In his assessment, his preferred variety is SERENUT 14 as it yields about 14 to 16 bags per acre. The variety is drought tolerant, disease resistant, especially rot and rosette, produces a good yield and also has a good number of pods.  Under demonstration are two finger millet varieties, NAROMIL 2 and SEREMI 2 (U15) though he prefers NAROMIL 2 (released in 2017) for its drought tolerance, high yield and red colour of the grain. His success has inspired many local farmers to adopt these improved varieties, with many seeking seeds to grow on their own plots. The seed demand generated from these demonstration plots is communicated by the host farmer to the research institute, which works on making the seed available through local entities. The host farmer keeps records of seed requests and preferred varieties from farmers visiting the demonstrations. 

Bagonza Simon oversees demonstration plots, which serve as a hub for agricultural learning, showcasing groundnut, finger millet, and sorghum varieties (Photo: Marion Aluoch/CIMMYT)

At the Kihola Demonstration Centre, the farm manager, Bagonza Simon oversees demonstration plots that serve as a hub for agricultural learning. Working with NaSARRI, Simon has introduced improved varieties of groundnut (SERENUT 8R, SERENUT 11, and SERENUT 14), sorghum (NAROSORGH 2 and SESO 1), and finger millet (NAROMIL 2 and SEREMI 2). Farmers visit the center to observe these varieties and learn about their benefits. The selection of preferred sorghum varieties by farmers appears to be influenced by the degree of bird damage observed across different types. For example, the white-grained sorghum (SESO 1) suffered significant bird damage, which led farmers to naturally favor the red-grained NAROSORG-2, released in 2017. In addition to being less susceptible to bird damage, NAROSORG-2 also demonstrates drought and striga tolerance, further enhancing its appeal among farmers. 

Simon has been particularly impressed by the attributes of the groundnut variety SERENUT 8R, which has performed well despite the challenging weather conditions observed in the season characterized by very erratic rainfall patterns. His demonstration plots have become a beacon of hope and innovation, inspiring local farmers to adopt drought-tolerant crop varieties. Farmer to farmer seed exchanges are common in this locality due to seed shortages and he therefore plans to share seed from his plots to interested farmers and is working with NaSARRI to expand seed availability across the region. 

Steven Odel from Kaloka village has drought-tolerant varieties of sorghum, finger millet, and groundnut in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

In Bukedea District, farmers Steven Odel from Kaloka village and Nelson Ekurutu from Kasoka village are also leading the way with their demonstration plots. Both are testing drought-tolerant varieties of sorghum, finger millet, and groundnut. While Steven encountered challenges with his sorghum crop due to midge attacks, he has had great success with NAROSORG-2, which he describes as having better germination and faster maturity, and therefore enabling the plants to escape midge attack. 

Steven is also growing red finger millet variety SEREMI2, which is very popular for its early maturity and high market demand for making porridge and local beer. He regularly hosts farmers on his plots, sharing his knowledge and experience.  

Nelson Ekurutu is trialling three new groundnut varieties—SERENUT 8, SERENUT 11, and SERENUT 14—and is optimistic about their performance. His experience with finger millet, particularly the red variety- SEREMI2, has been positive, noting its fast growth and high demand in local markets. Nelson also grows red sorghum (NAROSORG 2), which he prefers for its resistance to bird damage. These demonstration plots provide a platform for Steven and Nelson to test new varieties in their local context, helping them and others understand what works best in their locality.  

Nelson Ekurutu is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Increasing awareness and seed availability 

Utilizing these demonstrations to bring new varieties closer to farmers can further accelerate seed uptake and demand. Farmer-managed demonstrations in their own environments ensure that variety selections align with local preferences and adaptability. Farmers who consistently host these demonstrations build trust in the varieties within their communities, while also creating opportunities for local seed businesses to explore. Strengthening the linkages between research institutions, farmers, and seed producers is crucial for ensuring the rapid adoption of new and improved varieties. Additionally, the distribution of small seed packs at scale is essential to enable more farmers to test these varieties on their own farms, ensuring wider adoption and transforming livelihoods in these communities. 

How Atubandike dialogues are redefining gender and youth inclusion in Zambian agriculture

Women and youth are essential drivers of agricultural and economic resilience in Zambia’s rural farming communities. However, they frequently encounter significant barriers such as restrictive social norms and inadequate access to vital resources which hinder their ability to participate fully in the economy.

Female youth sharing her views (Photo: Moono Seleketi).

Recognizing the critical roles of women and youth in shaping the present and future of Zambian agriculture, the ‘Atubandike’ approach, under CIMMYT’s USAID-funded Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub project, has been actively engaging with communities to address systemic barriers faced by these groups. This initiative combines digital tools with face-to-face interactions, creating spaces where community members can share their stories, challenges, and questions to co-create solutions.

Atubandike, which means ‘let’s have a conversation’ in the local Tongo language, was launched in Zambia in 2023 as an advisory service. The model represents a scalable, community-led approach that empowers marginalized groups, including women and youth, as active contributors and leaders in agriculture. With each interaction building upon the previous one, this ongoing work advances the broader mission of fostering inclusivity and resilience across Zambia’s agricultural sector.

To uncover and tackle the structural barriers faced by women and youth, the Atubandike team recently engaged over 1,700 farmers across 14 communities in Southern Zambia, gaining critical insights into the biases that persist in rural areas.

Stereotypes and structural barriers

The community conversations highlighted generational divides and deeply rooted stereotypes that cast youth as disengaged or disinterested in farming. Older community members opined that young people are more drawn to urban lifestyles and reluctant to take on the demanding labor associated with agriculture. One elderly farmer said: “Many youths prefer a comfortable lifestyle and quick money. They don’t have the patience for the hard work farming requires.”

In contrast, younger participants shared that this perception overlooks the genuine obstacles they face such as limited access to land, financing, training, and mentorship opportunities. They emphasized that their lack of involvement often stems from these barriers rather than a lack of motivation.

Young male farmer speaking (Photo: Moono Seleketi).

The consultations also underscored pervasive gender norms that limit women’s roles in agriculture. Despite their significant contributions to household food security, female farmers are often relegated to secondary roles, focusing on ‘women’s crops such as groundnuts, while men cultivate staple crops such as maize and cash crops such as soybean. A participant shared, “The community always perceives men as the real farmers because they are considered the heads of the household.” This perception frequently limits women’s access to critical resources and their decision-making power within the agricultural sphere.

However, through Atubandike’s sessions, communities are beginning to confront these entrenched norms, shedding light on the vital contributions of women and youth in agriculture. This shift is laying the groundwork for a more equitable approach, where both men and women, young and old, are recognized as essential to farming success and household resilience. As these conversations grow, Atubandike is paving the way for solutions that promise meaningful and lasting change for both women and youth in agriculture.

Community-driven solutions

  • Building youth capacity through skills and leadership: Many community members expressed a strong desire to see more youth involved in agricultural activities, emphasizing the importance of hands-on training. “We need to get the youth involved in actual farming [tasks] such as irrigation and crop management. It keeps them busy and teaches them valuable skills,” shared one local leader.

To support this vision, Atubandike is training young community members as digital champions, equipping them with both technical expertise and leadership skills that allow them to mentor their peers and encourage youth participation in agriculture. These digital champions not only extend the reach of Atubandike’s initiatives but also serve as relatable role models, inspiring other young people to engage in agriculture as well as see it as a viable and rewarding path.

  •  Towards a more inclusive future for Zambian agriculture
    The Atubandike initiative – by fostering open community dialogue, empowering digital champions, and promoting household-level collaboration – lays the foundation for a more inclusive future for Zambian agriculture. As each community engagement builds momentum, CIMMYT, through the AID-I project, creates a cycle of empowerment and growth that ensures women and youth are not only heard but also empowered to lead.
Women celebrating at community meeting (Photo: Moono Seleketi).

Amidst the challenges of erratic weather patterns and economic constraints, building resilience through cross-generational and gender-inclusive collaboration is crucial. Atubandike is addressing these geographic and social challenges and paving the way for a future where every farmer, regardless of age or gender, plays a pivotal role in Zambia’s agricultural success.

Enhancing agricultural research with FAO’s AGRIS and AGROVOC programs: A conversation with CIMMYT’s knowledge management team

Farmer examines wheat seed (Photo: CIMMYT).

In a recent series of conversations with CGIAR knowledge management teams, Sara Jani and Valentina De Col interviewed Jesús Herrera de la Cruz, CIMMYT’s Deputy Director of Knowledge Management and Information Technologies. They discussed CGIAR’s collaboration with the Food and Agriculture Organization of the United Nations (FAO) on AGRIS and AGROVOC – two key resources in agricultural research. AGRIS is a comprehensive bibliographic database focusing on agriculture and nutrition, while AGROVOC is a multilingual thesaurus covering a wide range of agricultural terms.

Benefits of being in AGRIS

CIMMYT has shared its knowledge products with AGRIS and plans to do so more. What are the benefits of your center’s participation in AGRIS?

Jesús: When I think about it, there’s one clear benefit: projection. AGRIS allows CIMMYT to be part of one of the most important databases in our field, if not the most important. This link allows us to showcase our work on a global scale. Another critical benefit is trust. AGRIS is a trusted source of accurate and reliable information. In today’s age, where the internet is flooded with information, having a trusted source like AGRIS is invaluable. It ensures that CIMMYT’s contributions are part of a verifiable and respected database, which is crucial to maintaining the integrity and credibility of our work.

Importance for CGIAR of sharing research results through AGRIS

From a broader perspective, do you think it is important for CGIAR to share its research results with a wider community and global users through AGRIS? If so, why?

Jesús: Absolutely, and it’s not just important—it’s our mandate. As part of our commitment to make our public goods as accessible as possible, AGRIS is one of the main channels we use to fulfill this mandate. The more we share our scientific outputs, the better we fulfil our mission. This sharing aligns with our goals and enhances our ability to collaborate and fulfil our mission.

CIMMYT’s knowledge content: content types and topics  

How would you describe the knowledge content produced by your center and made available through your repository? In which specific research areas does your center publish?

Jesús: CIMMYT focuses primarily on maize and wheat improvement, genetic resources and conservation agriculture. Recently, CIMMYT has expanded its research into other crops, although these newer projects are not yet strongly reflected in our repository. We expect this to change in the coming years as new research results becomes available. In addition to our scientific content, our repository includes institutional documents, such as financial reports and other forms of historical memory. These items are often overlooked, but they provide a richer understanding of the history of our work by offering insights into the context in which our research took place.

Importance of AGRIS for agricultural research institutions such as CGIAR

Do you think it is important for agricultural research institutions or networks such as CGIAR, to have access to a comprehensive bibliographic database such as AGRIS? If so, what are the specific benefits of having access to such a database?

Jesús: As I mentioned earlier, having access to AGRIS is more than important— it is essential. AGRIS is a cornerstone for ensuring we remain compliant with our mandate. It’s a trusted source that provides control and guarantees the credibility of the content within it. This reliability is invaluable to researchers and readers alike. AGRIS is a source of truth and its role in maintaining the integrity of our scientific output cannot be overstated.

Improving searchability and interoperability with AGROVOC

CGIAR contributes to and uses AGROVOC as a common vocabulary. How does this collaboration affect the discoverability and interoperability of your data?

Jesús: Absolutely. AGROVOC significantly enhances the discoverability and interoperability of our data. By using controlled vocabularies such as AGROVOC, we can ensure consistent and accurate data exchange across platforms. AGROVOC is the definitive controlled vocabulary in our field, and it plays a crucial role in maintaining the standardization necessary for seamless interoperability. For us, it’s not just a tool, it’s a cornerstone of our data management strategy, and it’s essential that it continues to be the standard.

The discussion focused on the role of AGRIS in increasing the visibility and accessibility of CIMMYT’s research results. By continuing to strengthen links with the AGRIS and AGROVOC programs, the CGIAR is well placed to increase the global impact of its research and ensure that vital agricultural knowledge reaches those who need it most around the world.

For more info on the CGIAR and FAO collaboration:

Report: https://hdl.handle.net/10568/116236

Brief: https://hdl.handle.net/10568/116448

Webinar: https://youtu.be/0klZSY1c0UU?si=mlVvEQSpF1KNFSvG

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

The other revolution that was born in Mexico: The legacy of sustainable transformation and its new roots

Members of the Maíz Criollo Kantunil group next to a plot of land cultivated using sustainable practices (Photo: Jenifer Morales/CIMMYT)

The Mexican Revolution was not the only transformative movement to emerge in Mexico. Another profound transformation began in the Mexican countryside, and today, far from guns, today it continues to drive a more peaceful and resilient society through the integration of science, innovation and ancestral knowledge. 

In the 1960s, Mexico set a precedent for global agricultural change. Today, that movement has evolved into a sustainability approach that responds to today’s challenges: climate change, biodiversity loss and the need to ensure food security. Under CIMMYT’s leadership, the Hub model has established itself as a key tool for delivering scientific solutions to producers, strengthening resilient and sustainable agricultural systems. 

At CIMMYT, we believe that ensuring food security means not only producing healthier food but also conserving natural resources such as soil and water and promoting the well-being of farmers and their communities. Through the Hub model, we have promoted practices such as the sustainable management of staple crops such as maize and related crops, and the use of strategies to strengthen the seed system to meet the challenges of the agricultural sector. 

A clear example of this approach is the Maíz Criollo Kantunil group in Yucatán. Led by Edgar Miranda, this collective of eight families has adopted innovative practices such as regenerative agriculture, efficient water use and agroecological pest management. By linking with the Hub model, the group has been able to conserve native seeds, strengthen local agroecology and generate social and productive benefits for their community. 

“Our main objective is that the next generations will have seeds available to meet their food needs,” said Edgar Miranda. “We work with sustainable practices that allow us to conserve our resources and produce healthy crops,” he added. 

In addition to supporting producers, the Hub model fosters associativity and community participation, essential pillars for building inclusive and resilient food systems. These activities are in line with national initiatives such as strengthening production chains, but also reflect CIMMYT’s commitment to a global approach to sustainable development. 

CIMMYT’s strategy in Mexico not only supports producers in transforming their agricultural systems, but also promotes strategic alliances with public and private actors. These collaborations strengthen the integration of scientific solutions and sustainable practices, stimulate innovation in rural communities, and promote resilience to the challenges of climate change. With an approach based on science, inclusiveness and continuous learning, CIMMYT continues to contribute to building a more equitable, sustainable and prosperous future for Mexico and the world. 

‘I have bigger plans ahead’ – The journey of Tichaona from odd-job man to agricultural entrepreneur

Tichaona transporting hay bales using his acquired two-wheel tractor (Photo: Dorcas Matangi, CIMMYT)

In the heart of Mbire’s Ward 2 in Zimbabwe, Tichaona Makuwerere has earned the trust of his community, not just as a farmer but also as a resourceful problem-solver. His journey began with “piece jobs” — manual labor that barely made ends meet. From providing firewood and bricks to renting an ox-drawn cart, Tichaona’s days were filled with tough and gritty work. Occasionally, he crossed into Zambia to collect baobab fruit for sale, returning with livestock pesticides, which he traded locally.

However, stability remained elusive. Jobs were scarce, and community hiring often favored personal connections. Undeterred, Tichaona turned to self-employment in 2007, offering ox-drawn ripping services to farmers. His commitment didn’t go unnoticed. When the CGIAR Agroecology Initiative (AEI) came to Mbire, the community recognized Tichaona’s entrepreneurial spirit and nominated him as a service provider.

Catalyst for change: CGIAR Agroecology Initiative 

The CGIAR-funded Transformational Agroecology across Food, Land, and Water Systems (AE-I) aims to empower farmers like Tichaona to lead their communities toward sustainable agricultural practices.

AE-I brings together farmers and stakeholders to address local challenges and develop practical solutions in Mbire and Murewa. Through Agroecological Living Landscapes (ALLs)—collaborative spaces for innovation—various stakeholders work to identify, co-design, test, and adopt agroecological practices. One challenge identified was that agroecology can be labor-intensive, highlighting the need to reduce labor demands by integrating mechanization for manual activities such as crop planting, manure transportation, and threshing. Partnering with private sector organizations like Kurima Machinery, AE-I provides farmers in Mbire and Murewa with the tools and training necessary to make mechanized services more accessible.

Equipped for success through training and support 

Tichaona’s journey with AE-I began with intensive training at Gwebi College of Agriculture in Zimbabwe, where he learned the intricacies of machine operation, repair, and business management. The hands-on experience gave him the confidence he needed. “It was a turning point,” said Tichaona. “The training gave me skills that are hard to come by here. I learned how to run and sustain an agricultural service business.”

In addition, Kurima Machinery provided practical guidance and support when delivering his new equipment kit, which included a two-wheel tractor, trailer, grass cutter, chopper grinder, ripper, thresher, and basin digger. Although Tichaona had no prior experience with engines, his determination, along with Kurima’s ongoing virtual support, helped him develop the skills needed to operate and maintain the equipment.

Scaling up from oxen to efficient mechanization

The kit has dramatically transformed Tichaona’s way of working. Where he once struggled with oxen, the two-wheel tractor can now complete a three-hour task in just 30 minutes. This leap in efficiency has enabled him to expand his services beyond ripping and transportation. Tichaona now offers grass cutting, baling, grinding, threshing, and basin digging services.

Mechanization has not only streamlined his business but also significantly increased his clientele. Previously, he served around 50 clients per year; now, with the tractor, he supports over 200 annual clients, many of whom are repeat customers. In a region where animal feed is scarce during the dry season, Tichaona’s baling services have become especially valuable. Over the past year, he has produced more than 3,000 bales, even attracting safari operators who use the bales as bait for animals.

“Hatisi kumira kutsvaga mabasa” (We keep going forward and look for new jobs), Tichaona reflected with pride. In his drive to grow, he has further diversified his services to include grinding forest products such as Faidherbia albida, acacia, and Piliostigma thonningii pods, producing affordable livestock feed for farmers. He acquired these skills during livestock feed production training at the ALLs.

Mechanization has not only improved productivity but also mitigated environmental risks. Grass cutting and baling have curbed the practice of uncontrolled burning, which previously caused frequent veld fires in Mbire and Murehwa. In recognition of the project’s success in promoting sustainable land use, the Environmental Management Authority (EMA) has invested in additional service kits for other wards.

Transporting grass bales in Mbire for local farmers (Photo: Dorcas Matangi, CIMMYT)
Strengthening Resilience Amid Climate Uncertainty

Tichaona’s services have become indispensable in a community grappling with erratic weather patterns and prolonged droughts. By baling grass, sorghum stalks, and crop residues, he enables farmers to store feed for their livestock, mitigating risks during drought seasons. The benefits extend beyond livestock care—his machinery has helped farmers expand cultivable areas despite a shrinking planting season.

Moreover, Tichaona has stepped up as a water carrier during the dry months. With wells drying up, villagers often dig makeshift wells in distant riverbeds. Using his tractor, Tichaona fetches water from the borehole for the community. His efforts free up time for farmers to focus on land preparation and other critical tasks, boosting their productivity.

Building a Lasting Legacy at the Community Level

Tichaona’s success has translated into significant improvements for his family. His increased income has allowed him to build a new home and purchase land in Guruve town. He has also invested in goats for his children as a form of social security. “Kudya kaviri kwaitonetsa, ikozvino takutodya uye atichatenderi kuti muenzi asvika abve pamba asina kudya (We could barely afford two meals a day, but now we eat more than four meals. We ensure that no visitor leaves without eating),” he shared.

His generosity extends beyond his family. Tichaona provides free transportation for vulnerable residents, including the elderly, and offers free grinding services to low-income families. These acts of kindness have solidified his reputation as a respected and valued member of the community.

A Model of Adaptability and Determination

Tichaona’s journey has not been without challenges. Mechanical issues, such as trailer body wear, brake replacements, and two-wheel tractor bearing failures, have tested his resourcefulness. He stocks essential spare parts, conducts regular maintenance, and leverages Kurima Machinery’s support network for troubleshooting and repairs. Collaborating with other AE-I operators, he shares tips and techniques for maintaining machinery, ensuring consistent and reliable services.

As his confidence and skills grow, Tichaona is planning to expand his offerings. He envisions adding oil pressing for sunflower and groundnut as well as peanut butter production. Already, he has invested in a grinding mill operated by his wife, allowing him to focus on field services. His ambitions extend to poultry farming, where he plans to use his chopper grinder to produce feed, incorporating local products into his supply chain.

“Ndine hurongwa hukuru” (I have bigger plans ahead), Tichaona said. He dreams of drilling a borehole to support horticulture production, a venture that would benefit not only his family but also nearby farmers by providing easier access to water. His ultimate goal is to establish a comprehensive agricultural service hub, offering everything from land preparation to livestock feed production, to strengthen the community’s resilience.

A Model for Agroecological Transformation

Tichaona’s story exemplifies the far-reaching impact of empowering local service providers in rural agriculture. Through the CGIAR Agroecology Initiative, he transformed from being a community handyman to a pioneering agricultural entrepreneur in Mbire. His contributions not only enhanced agricultural efficiency and overall life for himself and his community, but also offered a blueprint for sustainable development in agriculture. His story reminds us that when local expertise is supported and equipped, it can transform communities into models of resilience and sustainable growth.

Training the next generation of plant breeders with VACS

The foundation for a Vision for Adapted Crops and Soil (VACS) is capacity building: to boost adoption of opportunity crops, for nutritional security, diverse and climate-resilient cropping systems, to build healthy soils, a cohort of researchers and professionals is being supported to improve opportunity crops in Africa. Launched in October 2024 in Nairobi, Kenya, the VACS Capacity Project aims to train scholars and professionals in the latest plant breeding technologies. Professor Julia Sibiya, VACS Capacity Project Lead at CIMMYT, elaborates on how the project aims to contribute to the promotion, development and delivery of improved “crops that nourish” people, and the planet.

As part of the VACS Capacity Project, 30 Master and PhD students will be mentored by prominent experts in plant breeding. What support will they receive?

The students will be exposed to the latest technologies in plant breeding but will also learn from their mentors to deliver the VACS vision on opportunity crops and healthy soils.

The project also includes training of 40 mid-careers professionals. We want them to master the latest technologies and be able to apply them to develop improved opportunity crop varieties that will be used by farmers.

To achieve this goal, the VACS Capacity Project is supported by three hubs to facilitate the training by matching the scholars and professionals with appropriate mentors and institutes where they will be exposed to the latest research and technologies. The selected hubs are the International Institute of Tropical Agriculture (IITA-Nigeria), the West Africa Centre for Crop Improvement (WACCI) in Ghana, and the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) in Kenya. The hubs have “support entities” through Iowa State University and Cornell University.

For maximum and long-term impact, the CIMMYT Academy, with the support of the Sustainable Agrifood Systems program, is developing gender-aware mentoring and curriculum on a wide range of topics, to directly address priorities of the 70 scholars and professionals. Expertise is being sourced at institutions such as Iowa State University, CIMMYT and African universities for robust e-learning modules on the entire plant breeding pipeline and seed systems, with materials updated and designed for the African continent.

What gaps does the VACS Capacity Project aim to address?

Today, in Africa, very few plant breeders and scientists working on plant improvement are focusing on the opportunity crops identified by VACS, such as finger millet, bambara groundnut, and amaranth. Most breeders focus on the main staples. This is why we want to build a critical mass of scientists who work on opportunity crops that are vital for food security and nutrition under climate change.

Besides increasing the critical mass of researchers working on the opportunity crops, we also want to bring up-to-date the skills of professionals in the breeding sector, which is a sector where technologies are evolving very quickly. Most of the approaches to crop improvement used today differ greatly from approaches used ten years ago, hence the request by many professionals to upgrade their skills.

In addition to the long-term training fellowships for Master and PhD students, we will provide targeted skills training to professionals, with short-term placements between one and six months in institutions where they can learn cutting-edge techniques that they will apply to opportunity crops.

The project is also designed to build networks and communities of practice around these crops, so people can collaborate in breeding and scaling efforts that are requested by farmers and consider market intelligence for impact pathways. This is in addition to exchanging knowledge and germplasm.

How does this project differ from other plant breeding capacity building projects?

The difference is that we will place professionals into institutions where they will be provided with hands-on training. We will work with universities, international research institutes, and the private sector, including seed companies. This is like offering internships to mid-career professionals who want to upgrade their skills or learn new ones.

Our approach also includes mentorships for both scholars and professionals. Mentors will be recruited from all over the world to assist the fellows in various aspects of their research journey. Last but not least, we hope to see researchers working with farmers so they can learn from each other.

What are the expected outcomes of reaching a “critical mass of plant breeders”?

The objective is to have sufficient breeders to implement crop breeding programs designed for opportunity crops. We also want to encourage them to apply modern techniques to improve opportunity crops and, this way, to contribute to the development of more nutritious plants that are grown in healthy soils. As I mentioned earlier, besides empowering scientists themselves, we also aim to create the conditions for effective collaboration and partnerships for the successful delivery of improved opportunity crop varieties, and this delivery will be accelerated by reducing the breeding cycle. Overall, it will allow us to scale up efforts towards opportunity crops worldwide.

ADCIN strengthens agricultural capacity and resilience in sub-Saharan Africa

The Africa Dryland Crops Improvement Network (ADCIN) emphasizes capacity building as a cornerstone for sustainable development and agricultural innovation. By addressing both human and infrastructure development, ADCIN is empowering research institutions and individuals across Africa to enhance agricultural practices, strengthen food security, and improve livelihoods in dryland regions.

In 2023, ADCIN made significant strides toward these goals by investing $1 million to strengthen National Agricultural Research and Extension Systems (NARES). This initiative focused on enhancing human capacity and infrastructure, equipping researchers, students, and institutions to address the unique challenges of dryland agriculture. The funding supported 32 awardees from East and Southern Africa (ESA) and West and Central Africa (WCA), including 15 visiting scientists, 7 students, 4 group training sessions, and 6 infrastructure development projects.

In 2024, ADCIN organized multiple training sessions in Senegal, Ethiopia, Nigeria, and Kenya, targeting seed system development, business sustainability, crop production improvements, and advanced data management techniques. These capacity-building efforts promoted knowledge sharing, collaborative research, and best practices in seed systems, crop breeding, agronomy, and data analytics. Four group training sessions were held: two in Kenya and Ethiopia for the ESA region, and two in Senegal and Nigeria for the WCA region.

Strengthening Seed Companies and CBOs for Growth in Nigeria

ADCIN, in collaboration with Syngenta Foundation Nigeria, hosted a two-day capacity-building workshop for seed companies and community-based organizations (CBOs) in Kano, Nigeria, on September 4–5. Supported by partners such as CDA, IITA, ICRISAT, and NASC, the workshop aimed to enhance seed production and commercialization efforts while promoting AVISA crops like sorghum, pearl millet, groundnut, and cowpea.

The workshop attracted 30 participants, including 20 CBOs and 10 seed companies, who were trained in topics such as seed production best practices, post-harvest handling, and seed certification standards. Key outcomes included the implementation of modern innovations like e-certification and seed tracking technologies, designed to improve transparency and efficiency in the seed sector.

Participants of the training in Nigeria on strengthening seed companies and community-based organizations (CBOs) to enhance seed production and commercialization effort (Photo: CIMMYT)

Participants were also introduced to the Farmers’ Hub concept, which offers smallholder farmers access to essential agricultural inputs, machinery, and market opportunities. Many participants expressed enthusiasm about using the Farmers’ Hub to expand their customer base and grow their businesses.

“The networking opportunities provided by this training have been invaluable. I’m looking forward to applying what I’ve learned and taking my business to the next level,” shared one participant.

The training is expected to have a lasting impact on seed quality and foster business growth in Nigeria. By equipping CBOs to transition into fully operational seed companies, ADCIN is advancing the sustainability of Nigeria’s seed industry. Participants are now better prepared to tackle challenges in seed production, marketing, and regulatory compliance, paving the way for a more resilient seed sector.

With the knowledge gained from the workshop, participants are now better prepared to address the challenges of seed production, marketing, and regulatory compliance, paving the way for a more resilient and robust seed industry in Nigeria. 

Promoting Crop Improvement in Senegal

From August 20-27, 2024, more than 50 breeding and crop protection technicians from nine West and Central African countries gathered in Saly, Senegal for a comprehensive training session. The training, co-funded by the AVISA project and organized by CIMMYT in collaboration with National Agricultural Research and Extension Systems (NARES) from nine West and Central African countries, including Burkina Faso, Cameroon, Chad, Ghana, Mali, Niger, Nigeria, Togo, and Senegal, aimed to improve the efficiency of cowpea, groundnut, pearl millet, and sorghum breeding operations. 

Participants gained hands-on experience in key areas such as seed trial management, electronic data collection, and genotyping. These skills are essential for improving crop varieties and making them more resilient to local conditions. 

Field trips to Bambey, Senegal allowed participants to practice techniques such as setting up and managing seed trials, leaf sampling for genotyping, and electronic data collection using tablets making research more efficient and accurate. 

Participants of the training in Senegal on improving the efficiency of cowpea, groundnut, pearl millet and sorghum breeding operations (Photo: CIMMYT)

“This training has given me new insights into how we can improve our breeding programs and provide better seeds for our farmers. The practical sessions were particularly helpful,” said a participant.

By enhancing technicians’ skills in trial management and data collection, the training is expected to improve field data accuracy and contribute to the development of climate-resilient crop varieties, directly addressing regional food security challenges.

Enhancing Seed Producers’ Skills in Ethiopia

ADCIN held a three-day workshop in Addis Ababa, Ethiopia, from July 30 to August 1, 2024, focusing on building the capacity of the country’s seed producers. Organized in collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and supported by CIMMYT, the workshop aimed to strengthen Ethiopia’s seed producers by improving their skills in key areas such as seed health management, seed business management, variety maintenance, breeder seed production, and postharvest handling. 

The training attracted 19 participants from both the public and private sectors, including seed companies, producer associations and research centers. The sessions provided critical insights into the management of seed-borne diseases such as mycotoxins and aflatoxins, which affect crops like sorghum, chickpea, beans, and finger millet. Participants learned how to incorporate seed health testing into Ethiopia’s national certification process, which will help ensure healthier seeds and increased crop productivity. 

Participants of the training in Ethiopia whose aim was to strengthen Ethiopia’s seed producers by improving their skills in key areas (Photo: Marion Aluoch/CIMMYT)

The seed business management session introduced participants to the Business Model Canvas (BMC), a framework for creating viable and demand-driven seed business models. By emphasizing sustainable practices in seed production, processing, and marketing, the training equipped participants with the tools they need to grow their seed businesses and contribute to Ethiopia’s growing agricultural sector. 

The workshop also discussed the importance of variety maintenance and breeder seed production, focusing on the genetic integrity of improved varieties. The postharvest handling session focused on seed storage techniques and pest management, helping participants in maintaining seed quality after harvest. 

“This workshop has really opened our eyes to new business strategies and how we can ensure that our seed businesses remain profitable and sustainable,” shared a representative from a local seed company. 

Through this training, ADCIN is supporting Ethiopia’s seed producers in their efforts to improve seed quality and business sustainability, thereby contributing to the long-term growth of the seed industry. 

Equipping Breeders with Advanced Data Management Skills in Kenya

ADCIN held a training on modern biometrics, quantitative genetics and data management in Nairobi, Kenya, from 10 to 14 June. This capacity-building initiative brought together 43 participants from nine Eastern and Southern African (ESA) countries, representing breeding leaders, data champions, and young breeders working on crops such as chickpea, finger millet, pearl millet, pigeonpea, and sorghum. 

Participants of the training in Kenya that focused on data-driven decision-making in breeding programs (Photo: CIMMYT)

The training focused on data-driven decision-making in breeding programs and covered topics such as experimental design, advanced data analysis using the CGIAR Breeding Analytical Pipeline, and managing genotype x environment (GxE) interactions. Participants learned about the Breeding Management System (BMS), quality control processes, and practical applications of the CGIAR Breeding Analytical Pipeline, which enhanced their ability to analyze large data sets and improve breeding accuracy across the CGIAR-NARES network. 

A Holistic Approach to Capacity Development

These training programs are just a small part of ADCIN’s broader initiative to build capacity across Africa’s dryland regions. These efforts, which focus on critical areas such as seed production, crop improvement, business sustainability, and data management, are helping to develop resilient agricultural systems capable of withstanding the challenges of dryland agriculture. As ADCIN works to strengthen robust and sustainable seed industries, these capacity-building programs will play an important role in increasing food security and improving the livelihoods of communities in Africa’s drylands. 

Improving Ethiopia’s Agricultural Systems Through Collaborative Research

The collaborative long-term experiments (LTEs) established by CIMMYT and Ambo University on the Guder Mano Mezemer campus, specifically at the Abebech Gobena Agricultural Research Center (Photo: CIMMYT)

A collaboration effort between CIMMYT and Ambo University has positioned CIMMYT as the national leader in implementing high-impact technologies to improve the quality and quantity of cereal crop production in Ethiopia. This partnership, established over three decades ago at national and regional levels, has become a vital element in driving innovations and advancements in the agricultural sector.

A recent field visit to the LTEs, which were established three years ago, at the Abebech Gobena Agricultural Research Center in Guder, West Shewa Zone of the Oromia Region, demonstrated the importance of collaboration between research and development partners. The LTEs were established to study three main climate-smart interventions: nutrient management (including organic, inorganic, and residue-based practices), crop rotation, and intercropping, over an extended period of time. The event highlighted CIMMYT’s ongoing efforts to improve Ethiopia’s agricultural production, particularly by testing agronomic practices that increase yields and enhance soil health through the use of different organic fertilizers along with inorganic fertilizer and proper cereal-legume rotation over the past two years at the center and in farmers’ fields.

Focus areas of research

Research will focus on developing the best combination of locally available organic inputs with inorganic fertilizer, together with appropriate cereal-legume rotation on LTE plots, to monitor yield and soil health parameters such as organic matter accumulation over time, improve resource use efficiency, and enhance soil health. The main crops involved are:

  • Maize (Zea Mays): Jibat variety 
  • Wheat (Triticum aestivum): Wane variety 
  • Teff (Eragrostis teff): Quncho variety 
  • Legumes: Faba bean, soybean, haricot bean, and pigeon pea 

The LTE sites have served as demonstration and learning platforms for local communities. The cropping system in the area has traditionally been dominated by continuous monocropping of cereals for decades. In response, this collaborative LTE initiative has introduced four legume crops into rotation and intercropping systems, three of which are new to the area. Some of these new crops have been well received by farmers, who have selected the most promising options to try on their fields as “baby trials,” with the LTE plots referred to as “mother trials.” These efforts have been accompanied by training and resources for farmers and extension workers.

Community engagement and outcomes

The initiative has involved 55 farmers from three villages, with a focus on optimizing crop yields and promoting sustainable agriculture. Dr. Tesfaye Sida, an Agronomist/Sustainable Agrifood Systems at CIMMYT, highlighted the importance of these trials in improving food security and soil health in the intervention areas. He added, “This streamlined client-based collaboration, based on capacity development and knowledge transfer, is helping us to drive the pathways for climate-resilient, sustainable, and inclusive agricultural development for food and nutrition security in Ethiopia.”

A diverse group of stakeholders visiting the collaborative research trial sites (Photo: CIMMYT)

On September 23, 2024, a significant stakeholder gathering, including academic professionals, research and development partners, and farmers, as well as local government decision-makers, visited the trial sites to observe the research activities and progress at the Guder Mano Mezemer campus in Birbirsa village, where CIMMYT and Ambo University are conducting collaborative research. During the event, Dr. Gizachew Kebede, a soil scientist at CIMMYT, highlighted the dual focus of the research: crop rotation and soil nutrient management. “Despite farmers’ familiarity with crop rotation, they often face challenges in identifying the best companion crops and appropriate sequences. We are addressing this by rotating cereals such as maize, wheat, and teff with legumes such as soybean and pigeon pea, some of which are new to the system and likely to improve soil fertility and system resilience. The other fascinating part of the research is the testing of both organic and non-organic fertilizers, an intelligent approach to determining best practices for soil health and productivity, with a particular focus on understanding long-term effects, with plans extending for at least a decade. This kind of knowledge transfer is crucial to improving agricultural productivity and sustainability in the community, and we have seen great results from the trials so far.”

Dr. Tesfaye Shiferaw, an agronomist/Sustainable Agrifood Systems emphasizes the model. “Initially these were long-term experiments (LTEs), which mainly established the long-term impacts of interventions (nutrient management, crop rotation, intercropping, etc.) on climate change effects, productivity, and soil health. However, during the demonstrations of these LTEs, local farmers expressed interest in trying the agricultural technology/intervention/practice of their choice. We then added potential other technologies that could be options and allowed them to conduct their own mini-trials (called baby trials) to increase the number of alternatives. In this context, the LTEs can now be referred to as “mother trials.”

Research collaborators also echoed this sentiment. Dr. Nigusie Bekele, Director of Guder Mezemer Campus, highlighted Ambo University’s pride in hosting trials and major events related to their research collaboration with CIMMYT. He emphasized the university’s commitment to multidisciplinary research and service to the community, noting that their partnership with CIMMYT is instrumental in this regard, particularly in promoting productive, inclusive, and resilient food systems in Ethiopia. Dr. Nigusie described their joint action research and innovation efforts as transformative, benefiting not only the local community but also the wider Ethiopian population dependent on smallholder agriculture.

New launch of common beans and farmer insights
Farmer Shelema Hirpasa proudly displays a thriving crop of haricot beans grown after receiving seeds from CIMMYT. This image highlights the positive impact of research and support in increasing agricultural productivity and empowering local farmers (Photo: CIMMYT)

The photo features young farmer Shelema Hirpasa proudly displaying a thriving crop of haricot beans grown after receiving seeds from CIMMYT. This image highlights the positive impact of research and support in increasing agricultural productivity and empowering local farmers.

The introduction of soybean and pigeon pea in the intervention villages has generated considerable interest among farmers, leading to increased participation and positive results. Farmer Shelema Hirpasa from Tuke Kutaye District was enthusiastic about the exceptional performance of these new crops, noting a stark contrast with the traditional varieties he had previously grown. Highlighting the advantages of crop diversification, he said: “I have been involved in farming since my childhood but have never seen such performance in my crops.” This reflects the transformative impact of these new agricultural practices on local farming communities.

CIMMYT researcher gives visitors a detailed briefing on the ongoing activities at the demonstration sites (Photo: CIMMYT)

This interaction highlights the importance of knowledge sharing and engagement in agricultural research, as stakeholders learn about innovative practices and advances being implemented in the field. The gathering also reflects the commitment of the various partners in the initiative, showcasing their shared interest in advancing agricultural research and promoting food security through collaboration between CIMMYT and Ambo University.

Media coverage and future directions

The collaboration and field visits have drawn media attention, with coverage from outlets such as the Oromia Broadcasting Network (OBN). This initiative, implemented by CIMMYT and Ambo University with support from One CGIAR’s Excellence in Agronomy (EIA) and Ukama Ustawi initiatives, is paving the way for sustainable and resilient agricultural practices in Ethiopia.

Through continued partnership and innovation, CIMMYT and Ambo University are not only transforming agricultural practices in the region but also contributing to the broader goal of food and nutrition security throughout Ethiopia.

The increasing frequency of drought challenges agriculture sustainability and livelihood of smallholder farmers

Crops struggling to grow in drought conditions, Bihar (Photo: Moben Ignatius/CIMMYT)

Agriculture is one of the sectors most affected by droughts, which can last for months or even years. In Bihar, where rain-fed agriculture is the primary source of livelihood for many, droughts can be devastating for rural farmers. The growing threat of climate change to crop production and farming practices calls for adopting alternative farming methods. In 2022-23, many districts in Bihar experienced drought conditions.

To better understand the impact of drought on crop production practices and farmers’ livelihoods, researchers from CSISA, a CIMMYT-led project, conducted a survey in Bihar during both the Kharif and Rabi seasons of 2022-23, the year of the drought. In the Kharif season, 518 farmers from 11 districts, 39 blocks, and 79 villages were surveyed, while 339 farmers participated in the Rabi season survey. The primary goal of this data collection was to assess the impact of drought on agricultural practices and provide evidence to guide policy and decision-making processes.

The survey collected data on 123 variables related to rice production, including land preparation, cropping patterns for 2022 and 2021, crop establishment methods, irrigation management, fertilizer application, and weed management. Farmers also shared their perceptions of how the drought had altered their rice production practices and affected their livelihoods compared to the previous year.

For many farmers, the experience of the drought was harsh. Magni Singh from East Champaran reflected on the challenges: “This year (2022), the drought hit us hard. I could only plant paddy on a small piece of land, but with no rain, there was not much harvest. Our fragmented land makes efficient irrigation almost impossible, and relying on rain feels like gambling with each season. Farming in these conditions is becoming increasingly unsustainable.”

Similarly, Shanti Devi of Banka shared her struggles: “The season started with drought, and we struggled to get water to the crops. By the time the rain came, it was too late – it came during the harvest and damaged the crop. I couldn’t afford fertilizers in time, which made things worse. Every year, it feels like we’re battling both nature and rising costs.”

This drought impact assessment by CSISA is also valuable for further research, particularly for comparing rice production practices between drought and non-drought years. Such comparisons can help researchers and policymakers develop effective drought mitigation strategies tailored to farmers’ needs.

An electric pump used to irrigate a paddy field in Buxar, Bihar (Photo: Nima Chodon/CIMMYT)

Read more about these livelihoods framework at Drought Impact Assessment in Bihar – August 2024https://acrobat.adobe.com/id/urn:aaid:sc:AP:66f00f6f-df17-4b13-9fee-2e0050de12ea 

For further research and analysis, primary data from the survey can be accessed at CIMMYT data verse

Positioning Nepal as a future seed production hub in South Asia

MoU signing event between Nepal and Bangladesh seed companies (Photo: Sirish Shrestha/CIMMYT)

In August 2024, four Nepalese seed companies and six international seed companies from India, Bangladesh, Japan and Thailand signed a memorandum of understanding (MoU) for custom seed production of cereals and vegetables in Nepal, opening up game-changing economic opportunities in South Asia. This agreement will allow international seed companies to produce seed in a suitable agroecology in Nepal and export to international markets. To support this, the Government of Nepal has agreed to exempt variety registration for export-oriented custom seed production and expedite the process with added incentives to attract more international seed companies. This move aims to position Nepal as a future regional seed production hub. 

The signing of the MoU was the pinnacle of an international seed conference organized by CIMMYT in collaboration with Seed Quality Control Center (SQCC), the Nepal Agricultural Research Council (NARC), and Seed Entrepreneurs Association of Nepal (SEAN) in Kathmandu from August 22-24, 2024, focusing on innovation, partnership, and policy.  

The conference attracted over 150 participants from 11 countries, including Bangladesh, Ethiopia, India, Japan, Kenya, Nepal, Pakistan, Singapore, Switzerland, Thailand, and the USA, representing research centers, civil society organizations, private seed companies, and national agricultural research systems (NARS). The event was organized under the USAID’s Nepal Seed and Fertilizer (NSAF) project which aims to foster Nepal’s seed market systems through the enhancement of stakeholders’ capacity in seed research, quality seed production, as well as the creation of an enabling environment that links seed companies with input and output markets. 

Enhancing seed market systems in South Asia  

The MoU is expected to enhance the seed market system in the region, create new economic opportunities for Nepal, boost agricultural exports, and generate income for farmers. It will also facilitate the transfer of advanced seed technology and foster stronger partnerships between seed companies in the region and beyond. Mr. M Anis Ud Dowla, Board Chairman of Advanced Chemical Industries (ACI) Limited, one of the largest business conglomerates in Bangladesh, expressed optimism about the partnership, citing Nepal’s favorable conditions for producing seeds of cool-season crops and the potential benefits for farmers in Nepal and Bangladesh.  

In addition, ACI signed MoUs with Gorkha Seed Company and SEAN Seed Service Center, for the production of cereals and vegetable seeds, demonstrating growing confidence in Nepal’s seed sector where CIMMYT and its partners played a key role to enhance the capacity of the seed stakeholders for the past several years. “About 10 or 12 years ago, I had the opportunity to interact with the seed stakeholders in Nepal and at that time the seed sector was not viable, and the role of the private sector was insignificant. Now, I am impressed to see such seed sector transformation initiatives in Nepal,” says Manesh Patel, President of Asia and Pacific Seed Association (APSA) while acknowledging the effort made by CIMMYT and other seed stakeholders. He added that “it is time for Nepalese private seed companies to become a member of APSA to leverage regional opportunities.” 

Untapped potential 

Nepal’s diverse agroecology, encompassing tropical, subtropical, and temperate environments, provides an ideal condition for seed production of cereals, fruits, and vegetables. However, this potential remains largely untapped due to limitations within the country’s formal seed sector. The informal system dominates, leaving farmers with insufficient access to quality seeds. In 2023, the formal sector only met 25% of the total 180,000 metric ton requirement for cereal seeds. Consequently, Nepal heavily relies on imported seeds, particularly hybrid varieties of rice and maize, costing nearly half a billion dollars annually when accounting for both cereal seeds and grain imports. 

Several factors hinder the development of Nepal’s seed sector: limited availability of high-yielding varieties that are tolerant to major biotic and abiotic stresses; a lack of farmer awareness regarding quality certified seeds and modern technologies; inadequate infrastructure for improved storage and road access; vulnerability to climate change impacts; insufficient incentives for private sector investment; and limited human and institutional capacity across the seed value chain. 

To tackle these challenges and seize opportunities, the Government of Nepal has outlined key interventions through the National Seed Policy, National Seed Vision, and Agricultural Development Strategy (ADS). These policies aim to create seed roadmaps and foster an enabling environment to attract private sector participation. Recently, the government of Nepal approved the issuance of research and development licenses to private seed companies, allowing them to develop and deploy new seed varieties. Collaborative efforts by the Nepal Agricultural Research Council (NARC), Seed Quality Control Center (SQCC), and CIMMYT under the USAID-supported Nepal Seed and Fertilizer (NSAF) project are also leading to local seed companies producing hybrid seeds for rice, maize, and vegetables across various districts. However, this is at budding stage, and it needs to be scaled up further. 

The nexus of seed security and resilient agrifood systems  

The interplay between seed security and resilient agrifood systems is crucial for enhancing food security, particularly amidst climate change and global challenges. This relationship underscores the importance of robust seed systems that can adapt to various stresses while ensuring sustainable food production. “Seed systems are complex networks involving farmers, seed companies, service providers, and authorities, all working together to ensure high-yielding and resilient seeds reach farmers’ fields as quickly as possible,” said Bram Govaerts, Director General of CIMMYT, while addressing conference participants. He further emphasized that demand-oriented and effective seed systems help to harness the benefits of crop improvement.  

The conference brought together prominent figures from South Asia and beyond, who shared their insights. “A well-functioning seed system guarantees seed security for all farmers,” noted BM Prasanna, Director of the Global Maize Program at CIMMYT, during his keynote address. He highlighted the critical nexus between seed security and resilient agrifood systems, emphasizing the need for technical, organizational, and institutional innovations. Prasanna also called for continuous public-private-producer collaboration to develop and strengthen seed systems in the global south.  

Linking global and regional seed industry practices to fit into local conditions  

The Hon. Minister of Agriculture and Livestock Development of Nepal, Ram Nath Adhikari, inaugurated the conference, welcoming delegates and emphasizing the event’s significance to Nepal’s agricultural sector. Benu Prasad Prasai, Chief of SQCC, shared emerging trends in Nepal’s seed industry, highlighting efforts to engage the private sector and reduce seed import dependency. “We need to harmonize and link seed policies across South Asia and beyond to fully capture the benefits of plant breeding gains,” said Prasai, while emphasizing Nepal’s potential for seed business and investment. Dyutiman Choudhary, NSAF project lead, echoed these sentiments, emphasizing the importance of international and regional partnerships in developing a vibrant seed market. He highlighted the need for enabling seed policies and regulations that facilitate market system development.  

The discussions resulted in high-level recommendations to further augment Nepal’s seed sector: strengthening public-private partnerships in research and development to transform Nepal’s seed industry into a viable, resilient, and sustainable seed system; collaboration with foreign counterparts for joint research and technology exchange is vital to strengthening Nepal’s seed R&D and promoting custom seed production; legal frameworks must be developed and executed to create an enabling environment that strengthens public and private sector seed R&D efforts. 

Panel discussion on creating an enabling environment for private sector engagement in seed and varietal R&D (Photo: Sirish Shrestha/CIMMYT)
Official opening session of the International Seed Conference in Nepal (Photo: Deepa Woli/CIMMYT).

A blueprint for soil health initiatives

Ethiopia’s agricultural and food production systems face significant challenges due to soil acidity. Approximately 41% of the country’s cultivated land is affected, with 28% of this area being highly acidic. Heavy rainfall and inherent soil properties are significant drivers of this, and practices like continuous residue removal greatly accelerate these conditions.  

Stakeholders attending the national workshop on acid soil management in Addis Ababa, Ethiopia (Photo: CIMMYT)

The resulting acidic soil conditions can severely limit the uptake of critical nutrients, leading to lower yields and poorer crop responses to inputs. As a result, Ethiopia’s soil acidity conditions constrain the production and productivity of the country’s main staple crops and compromise efforts to achieve national food security. To help address these problems, policymakers, technical experts, and development partners in Ethiopia have come together to advocate for innovative data-driven solutions to remediate acid soils to raise crop yields and promote sustainable economic growth.  

“At a national workshop convened by CIMMYT and the One CGIAR initiative on Excellence in Agronomy on 29 July 2024 in Addis Ababa, experts from CGIAR, the Ministry of Agriculture (MoA), the Ethiopian Institute of Agricultural Research (EIAR), universities, regional research institutes, the national soil health task force, NGOs, and other key stakeholders gathered to discuss acid soil management in Ethiopia. Participants emphasized that proper management of soil acidity could increase fertilizer use efficiency from 20% to as much as 90%, depending on the initial acidity levels and specific nutrients involved.

Tackling soil acidity 

“Acidic soils are complex and widespread, affecting millions of hectares of arable land in Ethiopia,” said Tesfaye Shiferaw, an agronomist with CIMMYT’s Sustainable Agrifood Systems program and regional lead for the One CGIAR initiative on Excellence in Agronomy. “We understand the situation well and have developed innovative solutions under the GAIA project to address the issue. The spatial targeting framework created within the project represents a significant breakthrough, which the MoA has incorporated into Ethiopia’s nationwide acid soil reclamation initiative.”

Feto Esimo, Director General of EIAR, highlighted, “Addressing soil acidity is critical for enhancing food security and economic development in Ethiopia. A few years ago, we appealed to partners to intensify their efforts in creating sustainable strategies with lasting impacts for future generations. We are now seeing the GAIA project’s ongoing efforts effectively addressing these issues and offering potential solutions.”

The GAIA project approach 
Project research team monitoring and evaluating the field activities in Jimma Zone-Ethiopia (Photo: CIMMYT)

Researchers on the GAIA project have been evaluating alternative approaches to managing soil acidity, with a particular focus on lime application. This method aims to reduce aluminum toxicity and improve the availability of essential nutrients such as phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) in the soil. Additionally, liming decreases the solubility and leaching of heavy metals and offers benefits for legumes, such as increased microbial activity and enhanced biological nitrogen fixation. The GAIA team’s detailed evaluation includes core activities like spatial targeting to identify priority areas for liming, determining optimal lime application rates, and assessing profitability for specific crop types.

The primary goal in Ethiopia is to guide targeted investments for effective soil health reclamation and increased agricultural productivity through liming and enhanced nutrient management. The project aims to establish a strategic spatial targeting framework, serving as both a policy tool and a blueprint for soil health management. This framework is designed to optimize lime application, ensuring it is prioritized in areas where it can deliver the highest return on investment for farmers and the government. Project outcomes also include expanding this framework for broader application.

Major project outcomes in Ethiopia 

The GAIA research team conducted an in-depth investigation into the interactions between lime and fertilizer, developed a workflow and an essential policy tool integrated into the Ethiopian National Soil Information System (NSIS), and presented evidence-based recommendations on acid soil remediation to national and regional policy forums. The following significant system-level accomplishments have resulted from CIMMYT and partners’ research-driven recommendations.

Firstly, the Ethiopian Ministry of Agriculture (MoA) recognizes the GAIA project’s model as a successful blueprint for implementing and scaling up acid soil remediation nationwide. The government has launched a plan to reclaim 300,000 hectares of acidic cropland in 2024–2025, targeting around 10% of affected areas identified through the spatial targeting framework. To support this initiative, 1.4 billion ETB (approximately 12 million USD) has been allocated to manage acidic agricultural land. Additionally, at the National Stakeholder Consultation Forum on Acid Soils held in Bonga town, South-Western Region, in April 2023, the Ethiopian government prioritized soil acidity as a key focus. Since then, the government has reinforced its commitment to soil health programs, incorporating lime as an essential input alongside improved seeds and fertilizer.

These storylines were highlighted in July 2024 during a national working group meeting aimed at streamlining acid soil management strategies across Ethiopia. The meeting, led by GAIA and EiA in collaboration with the MoA and supported by the One CGIAR initiative EiA, underscored the strategic progress made by the GAIA project in addressing soil acidity. According to Feto Esimo, Director General of the EIAR, these advancements signify a substantial improvement, promising a lasting impact beyond the current agricultural season. He expressed appreciation for the project’s achievements and advocated for its expansion to serve as a model for similar soil health programs across the country.

Lime is the most widely used remedy, and its effectiveness in increasing yields when combined with fertilizer is well-documented,” noted Temesgen Desalegn, Director of Natural Resources Management Research at EIAR. “In this context,” he continued, “the GAIA project is timely, offering a multifaceted approach to soil health management, not limited to acid soils. The project’s model has been widely welcomed and could provide a comprehensive strategy for other soil health initiatives in Ethiopia.”

National working group on acid soil management workshop participants in Addis Ababa (Photo: CIMMYT)

The national working group meeting reached a consensus on recognizing project outcomes that drive system-level impacts. This effort to build a strong consensus extends beyond Ethiopia; it reflects a broader continental trend, highlighted by the Africa Fertilizer and Soil Health Action Plan: 2024–2034. This plan emerged from the Africa Fertilizer and Soil Health Summit held in May 2024 in Nairobi, Kenya, under the theme ‘Listen to the Land,’ organized by the African Union.

The GAIA project, funded by the Bill & Melinda Gates Foundation (BMGF), supports large-scale rehabilitation of acid soils in East Africa through data-driven insights and evidence-based recommendations for decision-makers. Led by CIMMYT in collaboration with various partners across Ethiopia, Kenya, Rwanda, and Tanzania, the project works in partnership with the Excellence in Agronomy (EiA) initiative of the One CGIAR. In Ethiopia, GAIA is implemented in cooperation with the Ethiopian Institute of Agricultural Research (EIAR).

Helping herders access grazing lands and water sources amid prevailing food insecurity in Sudan

In parts of the conflict-ridden Sudan, including the eastern regions such as Kassala and Gadarif, rainfall is sparse and recurring droughts caused by climate change compound the issue. Consequently, perennial grasses that are supposed to grow back year after year are dramatically disappearing.

In addition, uncontrolled and heavy grazing in large areas in Sudan is also negatively affecting soil by increasing erosion, and cattle hooves can compact the soil, preventing plant roots from receiving enough oxygen, water, and nutrients.

Due to these factors, many pastoralist groups in east Sudan are seeking grazing resources outside their recognized tribal territory. A major problem for these groups has been the recurrent droughts and the deterioration of pasture areas, which has forced them to stay longer in areas with rich grazing, thus competing with other groups and leading to frictions and conflicts.

Livestock-Food Systems Development (LFSD) is a component of the Sustainable Agrifood Systems Approach for Sudan (SASAS), funded by USAID, focused on the dairy and meat subsector of the livestock sector. The LFSD aims to enhance the utilization of appropriate forage and feeding options through the demarcation of migratory routes to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

Along with partners, Practical Action and International Livestock Research Institute (ILRI), LFSD, is establishing a 50 km migratory route demarcation from Al Hindiiyya to Banqir in the Atbara River locality, Kassala State, East Sudan. These routes connect villages to public grazing land for livestock to pass through without impacting farmland.

The intervention also includes reseeding 1,000 feddans (around 420 hectares) of grazing lands and creating water ponds for animals during the rainy season. SASAS is also enhancing water harvesting by using a tractor to increase soil moisture. The two interventions were recommended by local communities and agriculture and animal resources authorities in Kassala state.

“As the rainy season is commencing, we started working with the local communities and reseeding the targeted areas in rural Kassala and River Atbara localities as recommended by the Ministry of Agriculture,” said Dr. Abdallah Osman, Project Manager, Practical Action.

Reseeding around 1,000 feddans of grazing lands in River Atbara Locality, Kassala (Photo:Suliman Fadlalla/CIMMYT )

“To ensure the best results, we used a mix of five high-quality seed types, all of which were recommended by the Kassala State Ministry of Agriculture,” Osman said.

The reseeding will serve 15 villages and enhance grazing lands for over 100,000 animals in the area. In addition, water storing capacity will be increased by constructing 15 large water ponds.

“For the past decades, our grazing lands had diminished gradually, and we face huge challenges in feeding our livestock, especially during dry seasons. In most cases, we had to buy costly fodder and water trucking,” said Ahmed Hassan, a community leader and a herder from River Atbara Locality, Kassala State. “We feel very proud to participate in reseeding the grazing lands in our areas, as this will increase grass yield and quality, enabling us to feed our animals better.”

The intervention also aims to rehabilitate animal migratory route demarcations to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

“As farmers, we suffer a lot from animals that cross into our agricultural fields and destroy our crops. We are relieved that reseeding will create more grazing lands for herders, and the demarcation of animal routes will help reduce the chronic seasonal conflicts between farmers and herders,” said Haw Osman, a farmer from Am Safri, Kassala Rural locality.

“At SASAS, we strive to ensure that herders have access to rich grazing lands. We work with our partners to address all problems linked to overgrazing, reseeding pasture lands, and treating the causes of conflict between herders and farmers. We involve local communities in creating clear animal migration routes away from farms and increasing water sources for animals through water harvesting projects,” said Abdelrahman Kheir, SASAS Chief of Party in Sudan.

Water harvesting to create water ponds for animals in River Atbara Locality, Kassala State (Photo: Suliman Fadlalla/CIMMYT )
SASAS partners work with local communities in rural Kassala and River Atbara to mark animal migration routes for animals (Photo: Suliman Fadlalla/CIMMYT)

Malho Marndi finds way forward with Direct Seeded Rice (DSR) Technology

Photo: Nima Chodon/CIMMYT

Malho Marndi, a tribal farmer from Odisha, India, has been cultivating rice on her 10-acre farm for many years. However, worsening climate conditions and labor management challenges nearly pushed her to stop growing rice, except for personal consumption. The traditional method of transplanting seedlings into puddled fields was becoming unsustainable, and farmers across Odisha were experiencing yield declines that threatened their livelihoods.

To address these challenges, the Cereal Systems Initiative for South Asia (CSISA) project led by CIMMYT, introduced the Direct Seeded Rice (DSR) technology in select districts under the Odisha government’s DSR-Odisha project. DSR involves sowing rice seeds directly into the field, significantly reducing the need for labor and water—making it an attractive solution for smallholder farmers.

In the Kharif season of 2021, Malho participated in a DSR awareness program led by CSISA. Inspired by the success stories of fellow farmers, she decided to take a leap of faith and implement DSR on her own land.

The results were transformative. By adopting DSR on her 10-acre farm, along with an additional 9 acres she had leased, Malho saw her yields nearly double compared to the traditional methods she had previously used. Encouraged by these outcomes and supported by CSISA’s technical guidance, she expanded her cultivation to 40 leased acres and her original 10 acres in 2022. By 2023, she increased her leased land to 50 acres, bringing the total area under DSR to an impressive 60 acres.

Photo: CIMMYT

Malho’s success didn’t end there. She became a service provider, investing in a tractor and rotavator to assist other smallholder farmers in her community. In 2023 alone, her machinery was used to support more than 30 acres of land. Today, she empowers both men and women farmers by renting out her equipment and encouraging the wider adoption of DSR.

Through mechanization and improved crop management practices, Malho now independently manages her rice and maize cultivation. Confident about the future, she hopes to see more resource-constrained farmers across Odisha adopt DSR, improving their yields and enhancing their livelihoods.

Photo: Iftikar Wasim/CIMMYT