Skip to main content

The land that gives life: Tomasa and Fabián’s plot

Somewhere in the enchanted valley of Santa Catarina Lachatao, Oaxaca, under the vast blue sky and in the heart of a land full of history and hope, Fabián Marcos Cano and Tomasa García Pérez are working toward the future they have long envisioned, their hands deep in the soil. In this land, where the Zapotec language gives its name to the territory, each seed sown by their hands is an act of trust.

Fabián, his gaze marked by years of experience, speaks of his land with the pride of someone who has learned to listen to the voice of the earth. “We used to plant the way God guided us,” he says, recalling the days when farming was a practice of intuition and inherited wisdom.

Today, with the support of SEFADER technicians like Reinalda Gómez and her team, they have transformed their approach to farming. Fabián and Tomasa have learned to respect the rhythms of the soil, to give back what they take, and to see each plant through a new lens. “It’s like food for food,” Fabián explains.

Corn and beans grow unhurriedly in their fields. The land is enriched with crop residues that were once fed only to livestock, along with compost that was once discarded. “It’s a lot of work, but it’s our life,” says Fabián, with the firm determination of someone who understands that effort is part of the cycle.

For Tomasa, each harvest is a link to her ancestors. “The land gives us life,” she says with unwavering certainty. In her fields, milpa thrives alongside squash, beans, amaranth, and purslane, in a balance that requires patience and respect. She has learned to let nature do its work, to understand that burning fields robs the soil of its ability to renew itself. “We pile up the weeds, let them decompose, and that’s how the land nourishes itself,” she explains.

The journey has not been easy. Last year, a violent storm destroyed much of their crop. “It grew beautifully, but the wind tore everything down,” Fabián recalls with resignation. But they are not giving up. “We make do with what God gives us, because it is more than enough for us.” What remains is harvested as seed for the next cycle.

Every application of bio-inputs, every crop diversification, every lesson shared by agricultural engineers has changed their way of farming and their understanding of life. The land, once seen as an adversary that imposed its own rules, is now an ally that responds generously to care.

The story of Fabián and Tomasa is a testament to resilience and learning. It is proof that agriculture can be different, that tradition and innovation can go hand in hand. Because in every bean they harvest, in every ear of corn they save for the next cycle, there is a valuable lesson: the land gives back what it receives. And in Santa Catarina, under the sun that shines on Fabián and Tomasa’s fields, life flourishes with strength.

How more inclusive maize breeding can yield better outcomes for women farmers in Zimbabwe

Farmers in Zaka with their recent harvest of drought tolerant maize (Photo: CIMMYT)

In Zimbabwe, CGIAR, through CIMMYT, runs a maize breeding program to strengthen food security and livelihoods in a country where maize is a staple crop. The program spans diverse testing plots – managed exclusively by men, women, or both – providing crucial insights into real-world farm dynamics. A significant component of our work is the extensive on-farm trials conducted across various regions, helping us understand how men and women farmers interact with and benefit from new maize varieties. Here are two ways we ensure that women-managed plots reap the same benefits as those led by men in Zimbabwe.

Increasing Women’s Representation in Crop Breeding Trials

In many developing economies, women tend to have limited access to fertilizers, leading to lower soil fertility and faster land degradation.

At the same time, although men and women may express similar preferences for improved maize varieties, when faced with the same options, women tend to grow varieties that better meet their specific needs – requiring less fertilizer, for example.

This dichotomy highlights the importance of on-farm trials in the crop development process, as they provide insights into the diverse needs and realities of different farmer groups.

Zimbabwe’s maize breeding program has expanded on-farm trials significantly over the past few years, by over five-fold. However, women-managed plots are often underrepresented in participatory approaches. Research from Kenya also showed that trial participants are often wealthier and more educated, benefiting from stronger access to information and agricultural networks.

Training to Ensure Inclusive Farmer Representation

CGIAR and CIMMYT often rely on partners with direct connections to farming communities to select host farmers for breeding trials. Recognizing the risk of bias and underrepresentation of women farmers in this process, we designed a training program for extension officers to ensure a more representative selection of women farmers from different socioeconomic backgrounds in the country.

Without intentional representation, trial results may skew toward wealthier, male-managed farms – limiting their relevance for the broader farming population. In addition, in Zimbabwe, women-managed households are not a homogeneous group. Our research identified two distinct categories, each with unique challenges and needs. One group was wealthier in terms of agricultural assets and livestock, with a greater area under maize production. The second group of women-managed households was more resource-poor, with smaller livestock herds and greater use of intercropping within maize fields.

Using data from a survey of over 2,000 farmers, we worked to validate farmer selection processes, ensuring that women farmers were accurately represented. Today, this training is conducted annually and has become a key component of our program’s approach.

For too long, on-farm trials did not adequately reflect the diversity of farming realities. Through this gender-sensitive approach, we are now able to fine-tune recruitment methodologies to account for socioeconomic disparities. By ensuring that all groups are included in trials, we can develop and promote maize varieties that truly serve the diverse realities of Zimbabwean farming households.

Farmer in Murehwa District with her drought tolerant maize variety (Photo: Jill Cairns/CIMMYT

Incorporating Gender and Social Considerations into the Testing of Novel Genetic Technologies

In hybrid maize seed production, both male and female plants are planted side by side to facilitate controlled pollination. A critical step in this process is detasseling – the removal of male flowers (tassels) from the female plants to prevent self-pollination. If detasseling is not done correctly, the resulting seeds will not express hybrid vigor, ultimately affecting yield and performance.

This process presents two major challenges. Incomplete detasseling can result in hybrid purity issues that can lead production fields to either being rejected or farmers unknowingly paying for lower-quality seed that impacts productivity. Accidental leaf loss during the detasseling process also reduces female seed yields by approximately 14%.

To address these challenges, a Gates Foundation-funded project we implemented has explored ways to simplify the process of hybrid maize seed production by removing the need to detassel through a novel genetic technology. This technology also had a clear benefit for women farmers.

Why This Matters and How to Scale the Innovation

Although seed production involves multiple steps, this innovation has direct benefits, especially in resource-limited settings. Since only 50% of plants produce pollen, this approach optimizes yield—particularly under low-nitrogen conditions, where many smallholder farmers struggle. The technology is adaptable across different maize varieties, making it a scalable solution.

Ultimately, women farmers, who tend to manage smaller plots with fewer resources, stand to gain from improved seed access and yield stability.

To validate this approach, we conducted station trials, followed by on-farm testing. These trials are helping us understand how both men and women farmers adopt and benefit from these varieties, particularly in drought-prone areas, where women are more likely to recycle seeds.

With the knowledge that in drought-prone years women were more likely to recycle hybrid seed, we refined our testing strategy to evaluate potential yield benefits if recycled. We found the technology provided a small, yet significant yield benefit should a farmer choose to recycle hybrid maize seed in an anticipated drought season.

Our approach provides insights into how gender and social inclusion considerations can be incorporated into breeding testing strategies. By evaluating variety performance across real-world farm conditions and gathering insights to refine and optimize future breeding efforts, new varieties will meet the needs of men and women farmers in Zimbabwe.

Conclusion

When promoting the adoption of new maize varieties and technologies, gender is one factor among many that shape adoption. Early- and late-stage on-farm trials are essential in bridging the gap between scientific innovation and real-world impact, ensuring that the varieties we develop are not only high-performing in research settings but also practical, accessible, and beneficial for all farmers.

To achieve this, a transdisciplinary approach is key. Integrating social scientists into breeding and development strategies provides deeper insights into how different farming groups interact with new technologies. By refining our selection process, testing, and deployment, we can ensure that both women- and men-managed farms benefit equitably, ultimately driving food security and better livelihoods.

Farmer Tariro from Gokwe South prepares maize for milling (Photo: CIMMYT)

Resources: 

  • Snapp, Sieglinde. (2002). Quantifying Farmer Evaluation of Technologies: The Mother and Baby Trial Design. 

*** 

Written with Julie Puech, Breeding for Tomorrow and Accelerated Breeding.

Main image: Farmers in Zaka with their recent harvest of drought tolerant maize.

Photo credit: CIMMYT.

We express our gratitude to the CGIAR research funders for their invaluable contributions to the CGIAR Trust Fund. 

Advancing gender and social inclusion in agroecology: Insights from the CGIAR Agroecology Initiative in Zimbabwe

Agriculture lies at the core of rural livelihoods, yet longstanding social inequities have stifled the potential of marginalized groups particularly women and youth to fully benefit. The CGIAR Agroecology Initiative (AE-I) recognizes gender and social inclusion as critical pillars in achieving sustainable agricultural transformation. By embedding these aspects within its framework, AE-I ensures that marginalized groups—especially women and youth—play a meaningful role in agroecology transitions.  

Current realities on women and youth in agriculture

Women and youth are central to Zimbabwe’s agricultural economy, yet they remain underrepresented or excluded in decision-making processes and face barriers to accessing   critical resources. Globally, women make up about 48% of the agricultural labor force in Sub-Saharan Africa (World Bank, 2024), yet they consistently face challenges in accessing land, credit, and markets. In Zimbabwe, these disparities are even more pronounced. In  Mbire and Murehwa districts, rural economic activities, including agriculture, rely heavily on women and youth. Women make up approximately 70% of the agricultural labor force (UNDP, 2024) in these regions, but they often lack control over resources needed to enhance productivity and economic stability such as land, credit, and markets.  

Agroecology Living Landscapes and Gender and Social Inclusion Matter

Embedding gender and social inclusion (GESI) into agroecology is not just a moral imperative but a foundational requirement for achieving lasting and transformative impact. Traditional top-down development approaches have often neglected marginalized groups’ unique needs and contributions, resulting in unsustainable outcomes. In contrast, the AE-I prioritizes inclusive and participatory processes, exemplified by its Agroecology Living Landscapes (ALLs), which serve as collaborative spaces where community members actively co-create locally relevant solutions.   

Central to the CGIAR Agroecology Initiative (AE-I) is a commitment to “do no harm—say no harm,” ensuring that the inclusion of women, youth, and other marginalized groups is safe, meaningful, and impactful. Including marginalized groups can disrupt existing power structures and opportunity hierarchies, so it must be done with contextual sensitivity. Young and old women are provided equal opportunities to participate in and contribute to the co-creation of innovations. However, systemic barriers-such as limited agency or entrenched gender norms-continue to hinder meaningful engagement. To address these challenges, AE-I collaborates with key stakeholders, such as the Ministry of Women Affairs, Community, Small and Medium Enterprises Development (MWACSMED), to advocate for gender mainstreaming. Concrete actions have included training programs, documentation of gender norms and their impacts, elevating women and youth role models, and ensuring equal participation in ALL activities. MWACSMED has evolved into a proactive stakeholder in this process. Initially a passive participant in ALL discussions, the ministry now plays a leadership role in addressing gender and social inclusion issues within the landscapes. This deliberate attention to GESI within ALLs has illuminated systemic barriers such as unequal access to resources, rigid cultural norms, and the exclusion of certain social groups.   

Conversations with farmers during ALLs meetings (Photo: CIMMYT)

Agroecology recognizes that inclusion is not merely about representation but about fostering environments where meaningful transformation can happen. For instance, cultural norms often limit the participation of women and youth in mixed-group activities. To address this, the AE-I initiated monthly “dialogues with elders,” engaging traditional authorities and community leaders to reconcile cultural traditions with transformative gender and social inclusion goals. These dialogues have yielded positive shifts in such perspectives. As one elder participant noted, “We value inputs from women and acknowledge their critical role in our community.”   

The transformative impacts of AE-I’s inclusive approach are increasingly visible. Across Murehwa and Mbire districts, Agroecology Living Landscapes (ALLs) are reshaping community dynamics by empowering previously marginalized groups, such as elderly women, to contribute to agricultural innovation. Within some of the activities of the Initiative, women and youth engagement is quite impressive, with over 60% of participants in seed fairs and field days. These figures highlight the significant potential for expanding women’s and youth’s opportunities to advance agroecological goals through gender- and youth-focused interventions. It also demonstrates their eagerness to engage in knowledge-sharing opportunities. Such initiatives improve livelihoods and build women’s and youths’ agency as active contributors to agricultural innovations. 

Inclusivity within ALLs is further is reinforced by low barriers to entry, emphasizing a willingness to learn and transform their crop and livestock production rather than asset ownership. This approach has expanded participation among resource-poor farmers, breaking down traditional exclusionary practices brought by other Donor programs.  

As one farmer remarked, “In the past, only those with cattle or fenced homesteads could join such programs on transformative change. Now, even those of us without such assets can participate.”  

Such practices have strengthened the confidence of marginalized farmers, enabling them to navigate complex production dynamics collectively.   

Building Economic Independence and Transforming Food Systems

The AE-I’s focus on inclusive value chains has begun to yield tangible economic benefits. In Mbire and Murehwa, women are transitioning from subsistence farming to economic independence by engaging in agroecological business models. For example, Sasso poultry farming has become a viable income-generating activity, allowing women to reinvest in their farm-level activities. Youth are also leveraging their involvement in agriculture to build assets, diversify income and nutritional sources, and secure a more stable future. 

A critical challenge remains exploitative market dynamics that limit farmers profitability. Farmers have raised concerns about the informal urban markets, where asymmetric power dynamics and a lack of competitive pricing mechanisms enable buyers to dictate unfavorable prices. Middlemen in the poultry markets suppress prices by 40%, while unstructured sorghum buyers pay 20–30% below market rates, eroding farmers’ profitability.  

Addressing these bottlenecks through cooperative-led marketing, digital trading platforms (e.g., Hamara App), and guaranteed off-take agreements ensures equitable economic participation and a resilient food system. 

Drudgery and Women in Agri-Food Systems

The transition to agroecology offers both opportunities and challenges, particularly for women, who bear the brunt of agricultural labor. In many rural communities, women are responsible for labor-intensive activities, including land preparation, weeding, and post-harvest handling.  

While agroecological practices promote sustainability and resilience, some approaches—such as conservation agriculture—can initially increase women’s workload, exacerbating drudgery and limiting their time for other economic or social activities.  

To ensure that agroecology transitions are both equitable and scalable, it is essential to integrate appropriate-scale mechanization that reduces labor burdens while maintaining ecological integrity. By embedding gender-responsive technologies into agroecological systems, AE-I can foster inclusive, productive and sustainable farming solutions. 

Women in Murehwa receiving training on how to use the basin digger (Photo: CIMMYT)

To address this, the Initiative has facilitated the adoption of labor-saving technologies, improving access to mechanized solutions that ease women’s workload. In Mbire and Murehwa districts, 43 out of 95 women farmers now have access to basin diggers, significantly reducing the effort required to establish planting basins in conservation agriculture. Additionally, four multigrain threshers have been introduced in each district, enabling women to process small grain cereals more efficiently, cutting down the time spent on post-harvest handling.  

These innovations not only alleviate physical strain but also increase productivity, allowing women to participate in value-added activities and play a greater role in decision-making processes within the food system.  

By prioritizing appropriate-scale mechanization, the AE-I ensures that agroecology transitions foster inclusivity, sustainability, and economic empowerment for women farmers. 

Wrap up

The CGIAR Agroecology Initiative’s work in Mbire and Murehwa provides a step forward for centering gender and social inclusion into agricultural development. Through participatory methods, inclusive partnerships, and a focus on actor agency and opportunity for behavior change, the Initiative has redefined what it means to build sustainable and equitable food systems. For donors, partners, and other stakeholders, the AE-I offers a compelling case for investing in inclusive approaches that transform agriculture and uplift entire communities. As agroecology continues to evolve, centering gender and social inclusion will remain vital for achieving sustainable, impactful outcomes.  

 

Scientific careers that are transforming the future of food for humanity

María Luisa Cabrera in the laboratory where she conducts her research at CIMMYT. (Photo: Francisco Alarcón / CIMMYT)

The progress of science and technology depends on the diversity of talent that contributes to its development. However, the participation of women in fields such as science, technology, engineering, and mathematics (STEM) remains limited. In Mexico, only 22% of women enrolled in higher education choose STEM fields, and according to the Mexican Institute for Competitiveness (IMCO), only 13.5% graduate.

This situation presents both challenges and opportunities. Science, especially in critical areas such as food security and nutrition, needs a greater presence of women to drive significant change. The Food and Agriculture Organization of the United Nations (FAO) has highlighted the urgency of integrating more women researchers into agricultural science to accelerate innovations that improve production and the well-being of rural communities.

One example of the transformative impact of women in science is María Luisa Cabrera Soto. Since childhood, Luisa was inspired by female scientists she saw in the media, which fueled her dream of working in a laboratory. “These women were my reference, my source of inspiration. I visualized myself and said, ‘I want to work in a lab.'” But her journey was not easy. Coming from a family with traditional gender expectations, she faced resistance to her desire to pursue a career in science.

The first obstacle she encountered was her family’s outright disapproval. “I come from a family of six women and a patriarchal figure. Hearing phrases like ‘you are not capable of studying something as complex as science or mathematics’ was the first barrier I had to overcome,” she recalls.
“I had to break these family stigmas, these traditions, and say to myself: ‘I am capable of studying what motivates and inspires me, which is science. Being a woman does not limit me to domestic activities.'”

Today, the girl who once dreamed of working in a laboratory is part of the CIMMYT research team. As a research assistant, her work in chromatography—a process that allows the separation, identification, and quantification of chemical components in various mixtures—helps assess the nutritional quality of various crops, primarily maize. Her work has a direct impact on the nutrition and health of various populations, as well as the livelihoods of agricultural producers.

María Luisa’s story has become an inspiration to her sisters, who have also ventured into the world of science, demonstrating how one personal choice can inspire change across generations. “I broke the paradigm in my family, and fortunately my four younger sisters also chose science. It was a change that broke down a major barrier in my home.”

Through their scientific work, Luisa and other female researchers at CIMMYT are making a significant contribution to improving the human condition in a sector where women play a critical role in food production and security, from the field to the laboratory.

The low percentage of women in STEM fields in Mexico and globally is not only an issue of equity—it is also an obstacle to developing innovative solutions in key sectors. According to UNESCO, only 33.3% of researchers worldwide are women. Luisa’s message to girls and young women in Mexico is clear: “Follow your dreams, question the world, and don’t let social ideologies or family traditions dampen your curiosity and enthusiasm. More and more women are joining this field, and we must support one another.”

Transforming Nigeria’s sorghum seed system with the FCMSS approach

In Nigeria’s drylands, a seed revolution is transforming the landscape, bringing hope and prosperity to farmers in even the most remote communities. Through the innovative Farm and Community-Managed Seed System (FCMSS) approach, farmers, women’s groups, and seed entrepreneurs are gaining access to high-quality sorghum seed, driving agricultural transformation in underserved regions.

Championed by the Institute for Agricultural Research (IAR) and the Dryland Crops Program through the AVISA project led by CIMMYT, this initiative bridges the gap between traditional and formal seed systems, delivering life-changing solutions to last-mile farmers and enhancing rural livelihoods across the country.

Empowering communities through innovation

The FCMSS approach combines community-driven strategies with institutional support to ensure improved seed availability, accessibility, and adoption. The impact has been profound, with three newly released sorghum varieties—SAMSORG 52, SAMSORG 52, and SAMSORG 53—transforming the agricultural landscape. These varieties are being produced locally, ensuring that farmers in nearby communities have access to seeds tailored to their needs.

Farmers achieve record yields

For farmers like Abdullahi Danliti Dawanau, the FCMSS approach has been life changing. Cultivating SAMSORG 52, Dawanau achieved an impressive 4 tons per hectare—the best yield of his farming career.

“This is the best yield I’ve achieved in all my years of farming,” he shared, highlighting the transformative potential of the new sorghum varieties.

His farm, located near the Dawanau International Grain Market in Kano State, has become a demonstration site, inspiring fellow farmers and drawing admiration for the high yield and quality of the variety. Many even mistake it for an imported hybrid, underscoring its quality and productivity.

Women are leading the production and distribution of new sorghum varieties across several states in Nigeria. (Photo: Muhammad Ahmad Yahaya/IAR )

Women farmers leading the way

Women are emerging as key drivers of this agricultural revolution. The Yakasai Women Farmers Group in Kano State, led by Rabi Yakasai, is spearheading efforts to produce and distribute the new sorghum varieties. Their success has led to an overwhelming demand for the seeds in states such as Kano, Jigawa, Gombe, Bauchi, and Yobe, as well as in neighboring Niger Republic.

“These varieties fit perfectly into our farming systems,” said Mrs. Yakasai, emphasizing how they cater to local agricultural needs. SAMSORG 52, for instance, is an early-maturing and short-statured variety that aligns well with relay cropping systems, particularly when intercropped with cowpea. Similarly, SAMSORG 52 and SAMSORG 53 are medium-maturing varieties suitable for intercropping with millet and maize. These varieties provide tailored solutions to enhance productivity and sustainability for farmers in the region.

Following their participation in TRICOT on-farm trials, the group is working to meet increasing demand across multiple states.

“We need support to scale up seed production and meet these orders,” added Mrs. Yakasai.

Government and industry support success

The success of the FCMSS approach has garnered support from state governments and private sector stakeholders. During the 2nd National Sorghum Conference, held in Gombe State on December 4-5, 2024, the Gombe State Commissioner for Agriculture reaffirmed the state’s commitment to adopting climate-smart, early maturing sorghum varieties.

Private companies are also getting involved. GreenPal Global Limited, a prominent seed company, is stepping up its efforts to meet growing demand. Following successful trials of the new varieties, the company plans to scale up the production of certified seed by 2025. Similarly, Northern Nigeria Flour Mill, the country’s largest sorghum processor, is working with farmer associations such as SOFAN and NASPPAM to source quality sorghum for its flagship product, Golden Penny Dawavita—a key ingredient in staple foods such as Tuwo (a dish made from sorghum or millet flour, cooked into a thick, smooth paste or dough-like consistency) and Dumame (a dish made from fermented sorghum or millet flour, often cooked into a thick porridge).

Locally produced grains of the new sorghum variety, ensuring farmers in nearby communities have access to seeds tailored to their needs. (Photo: Muhammad Ahmad Yahaya/IAR )

Ensuring quality and certification

The National Agricultural Seed Council (NASC) is actively supporting the initiative by training seed entrepreneurs and monitoring seed production to ensure quality standards. During a Brown Field Day in Bagadawa community, Kano State, NASC commended the progress made under the FCMSS and the active involvement of farmers and women’s groups.

“The progress of the FCMSS and the active participation of farmers and women’s groups are truly commendable,” said the North-West Regional Director of NASC.

A brighter future for the drylands of Nigeria

The FCMSS approach is more than a seed production system—it is a movement transforming the lives of farmers and communities. By building a resilient seed system, empowering local communities, and driving economic growth, the initiative is ensuring food security and prosperity in Nigeria’s drylands. With growing momentum, the future is bright for farmers, processors, and entrepreneurs, signaling a new era of agricultural success.

Time Running Out to Avert Food Catastrophe, but There Is Hope

Time is of the essence, but we are not making the most of it in the fight against hunger. In 2015, world leaders agreed to set ambitious targets for addressing humanity’s most pressing concerns, which shaped the 2030 Agenda and became widely known as the Sustainable Development Goals (SDGs). We are only five years from 2030, but SDG 2 Zero Hunger has completely slipped through our fingers. In 2023, there were between 713 million and 757 million undernourished people in the world. The latest estimates point to an uncomfortable truth: hunger is on the rise, and we will not meet SDG 2 by the end of this decade.

The outlook is so bleak that 153 Nobel and World Food Prize recipients signed an open letter published on Jan. 14 calling on political and business leaders worldwide to seriously fund “moonshot” efforts to change our current trajectory and meet the food requirements of a global population of 9.7 billion people by 2050. The renowned signatories are sounding the alarm at the dawn of 2025 because it takes decades to reap the rewards of agricultural research and development programs, but also because yields of staple crops are stagnating or even declining around the world at a time when food production should increase between 50% to 70% over the next two decades to meet expected demand.

Joint 2024 World Food Prize Laureate and former U.S. Envoy for Global Food Security Cary Fowler coordinated the global appeal, which was discussed during a hearing with the US Senate Committee on Agriculture in Washington, D.C. The open letter published afterward listed the most promising scientific breakthroughs that should be prioritized to sustainably increase food production, including “improving photosynthesis in staple crops such as wheat and rice to optimize growth; developing cereals that can source nitrogen biologically and grow without fertilizer; as well as boosting research into hardy, nutrition-rich indigenous crops that have been largely overlooked for improvements.”

The good news is that we already have the platform of cutting-edge science to develop and scale up these innovations where they are most needed in Mexico and in nearly 90 countries where CIMMYT works with the support of an unrivalled network of international donors and local partners.

Increasing Wheat’s Ability to Capture, Use Sunlight

Varieties of wheat plants differ in their capacity to use sunlight to produce grain. The main goal of breeders is to increase wheat’s yield potential to harvest more grain sustainably and from the same area of arable land. At present, current breeding can increase wheat’s average yield potential by 1% annually, but it would be necessary to achieve average yield increases of at least 1.7% year after year to meet the expected demand by 2050. Research is focusing on photosynthesis in wheat spikes to boost yield potential. Spike photosynthesis adds on average 30% to grain yield of elite wheat lines developed at CIMMYT, but these gains can go as high as 60% in wheat’s wild relatives and landraces. The strategy is to tap into this underutilized potential to boost yields of modern wheat varieties that are also better adapted to a warming and drier world, and resistant to known and new pests and diseases. We wish to accelerate this research and are seeking a US$100 million investment in the platform.

Boosting Nitrogen Use Efficiency in Wheat

Wheat is the world’s largest nitrogen fertilizer consumer, which contributes significantly to greenhouse gas emissions and soil degradation. Groundbreaking research led by CIMMYT is increasing wheat’s ability to use nitrogen more efficiently, thereby reducing its dependency on nitrogen fertilizer by between 15% to 20%, depending on regional farming systems. Increased nitrogen use efficiency has been achieved after successfully transferring a natural ability to inhibit biological nitrification from wheat’s wild relatives to modern wheat varieties. Biological nitrification inhibition (BNI) is a natural process that provides wheat plants with a more sustained source of nitrogen available in the soil, thereby increasing their nitrogen use efficiency. BNI wheat is a game-changing innovation that will contribute to significantly reducing agriculture’s nitrogen footprint sustainably without compromising yields or grain quality. While the BNI research platform has received its first investment for wheat, an additional investment of US$30 million per crop would expand the platform to maize, millet, and sorghum.

Improving and Scaling Up ‘Opportunity Crops’

CIMMYT recently partnered with the United Nations Food and Agriculture Organization (FAO) to advance the global Vision for Adapted Crops and Soils (VACS) endorsed by the G7, which aims to sustainably increase the production of diverse, nutritious, and climate-adapted indigenous and traditional food crops grown on healthy soils. We have identified seven “opportunity crops,” including pearl millet, finger millet, pigeon pea, cowpea, mung bean, and amaranth, that can be grown sustainably and significantly improve nutrition and food security in sub-Saharan Africa. At present, the VACS partner network is working hard to develop new varieties of these opportunity crops and to build pathways for African farmers to access improved seeds and markets for their produce. The soil component of the VACS movement is underfunded, so we are looking for a US$500 million investment to launch a strong VACS Soils initiative.

A Parting Shot

Improved photosynthesis and increased nitrogen use efficiency in wheat, and nutrient-dense indigenous crops are exciting “moonshot” efforts already building resilient food systems that may help humanity avert a global food catastrophe in two decades’ time. But political will and available funding for agricultural research and development will ultimately determine if these and many more urgently needed scientific breakthroughs will reach their full potential in the fight against hunger in a more food insecure and unstable world.

Bram Govaerts is CIMMYT’s director general. He is an international authority in maize, wheat and associated cropping systems who works for a successful transformation of small-scale farming in Africa, Asia and Latin America. Govaerts advises public, private and social organizations worldwide and is an active member of research groups and associations, including the American Society of Agronomy and Cornell University’s Andrew D. White Professors-at-Large Program.

Read the original article

Advisory services boost bean farming in Malawi

For Malawian farmers Monica Levison and Liden Mbengo, the 2023-24 cropping season posed distinct challenges compared to prior years. Like many of their fellow smallholders, they grappled with the El Niño-induced drought, which severely impacted agricultural production across Southern Africa.

Despite these challenges, smallholders demonstrated extraordinary resilience due to crucial advisory services provided by the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub Project. The initiative enabled farmers to adopt climate-smart practices such as using drought-tolerant seeds and improved soil management techniques.

A smallholder farmer in Malawi, proudly showcases the high-quality bean seeds he harvested after adopting AID-I’s climate-smart farming techniques.
(Photos: CIAT and CIMMYT)

Connecting Farmers to Innovative Tools and Information

At the core of AID-I’s approach lies the delivery of innovative advisory services and proven agricultural technologies—strategies that have transformed the lives of farmers like Monica and Liden.

The AID-I project is transforming agriculture in targeted regions of the Democratic Republic of Congo, Malawi, Tanzania, and Zambia.

By providing smallholder farmers with critical information and innovative solutions, AID-I empowers them to enhance food production. The project focuses on strengthening legume and maize seed systems to enhance the availability and access to multi-stress-tolerant and nutritious crops. It also emphasizes delivering agricultural advisories to the last mile and improving soil health and fertilizer efficiency. These efforts are compounded with extensive training conducted by the Alliance of Bioversity International and CIAT through the Pan-Africa Bean Research Alliance (PABRA).

Seed Multiplication: A Key Entry Point for AID-I in Malawi

In Malawi, seed multiplication is a critical entry point for AID-I interventions. This approach ensures that farmers have access to high-quality, locally adapted seeds, reinforcing seed systems while supporting food security and resilience among smallholders. Through a network of demonstration plots, the initiative introduced high-demand bean varieties while showcasing modern agronomic practices, including proper planting techniques, precise fertilizer application, and effective pest and disease control strategies. These hands-on demonstrations equipped Malawian farmers with practical and sustainable methods to optimize bean cultivation, even during challenging conditions.

Monica’s Journey: From Small Harvests to Realizing Her Dreams

In Thambolagwa village, Monica had spent more than two decades growing beans only for her family’s consumption. After attending AID-I’s bean production training and receiving 2 kilograms (kg) of NUA35 seed from the demonstrations, she harvested 25 kg, significantly increasing her yield.

Building on this success, Monica planted the harvested seeds on one acre of land during the 2023-24 growing season and harvested 15 bags, each weighing 50 kg. She then sold part of her produce to Milele Agro Processing, earning over US$577.

“The training was incredibly valuable,” she said. “I’m looking forward to the 2024-25 season, during which I plan to expand my business by cultivating two acres of land. With the profits, I aim to make future investments in farming and save money to build a modern house for my family.”

AID-I Demonstrates the Power of Knowledge Through Mbengo’s Transformation

Liden, from Kang’oma Village, spent years planting four bean seeds in a single hole, unaware that this practice limited his agricultural potential. AID-I’s training introduced him to effective agronomic practices such as planting techniques, crop rotation, soil fertility improvement, and pest management as guided by PABRA.

“Following these guidelines, I harvested 15 kg of VTTT 924/4-4 and 18 kg of NUA35 from just half a kilogram of seed. In the previous year, I harvested only 3 kg after planting the same number of seeds and then nearly gave up on bean farming. The knowledge I have gained is priceless. It has reinforced my interest in bean farming and will stay with me forever,” said Mbengo.

Liden Mbengo, a farmer from Kang’oma Village, displays his impressive bean harvest, demonstrating the impact of AID-I training on improving yields and resilience.

A New Era for Malawian Bean Farmers

For extension workers such as Chrissy Minjale in Ntcheu district, the AID-I program has been transformative.

“The trainings were eye-opening for both us and the farmers,” she said. “Smallholder bean farmers in Malawi are likely to experience a significant increase in bean seed and grain production in the long run.”

Farmers and extension workers, inspect newly planted bean crops during a field visit, highlighting the hands-on learning provided by AID-I advisory services.

Field Learning and Adoption of Climate-Smart Practices

The program’s emphasis on linking farmers to off-takers, understanding climatic conditions, and adopting modern agronomic practices has sparked interest in bean farming across Malawi. As Yohane Nkhoma, a field extension officer in Ntchisi, observed:

“We now understand the importance of timing the first rains for beans and other crops. I’m committed to sharing this knowledge with hundreds of farmers in my area and helping them pay closer attention to the climatic conditions crucial for bean production. The results we have witnessed will encourage more farmers to engage in bean cultivation as a serious business.”

Scaling Impact: Training Thousands of Farmers

With over 11,007 farmers trained, 6,786 of whom are women, AID-I is not only improving yields but also empowering communities, building resilience, and igniting a wave of agricultural innovation.

The ripple effect of these interventions is clear. Beyond feeding their families, smallholder farmers are also paving the way for a more secure and sustainable future.

These individuals are more than beneficiaries. They are change agents whose successes inspire their communities and beyond.

As AID-I continues to amplify its impact, it is reshaping the trajectory of smallholder farming in Malawi and setting a precedent for resilience and food security across the region.

The future of farming here is thriving, innovative, and full of promise—as illustrated by Monica, Mbengo, and many more.

Exploring Azolla Farming as a Sustainable Feed Source for Poultry in Murehwa, Zimbabwe

A handful of azolla (Photo: Telma Sibanda, CIMMYT)

Often referred to as “green gold,” Azolla is a small, free-floating and fast-growing aquatic fern with immense potential in driving towards agriculture sustainability. Thriving in waterlogged environments, this hardy plant forms a symbiotic relationship with nitrogen-fixing cyanobacteria, making it a natural fertilizer for crops like rice. Rich in protein, Azolla is also an affordable, eco-friendly feed for livestock and fish, reducing reliance on commercial alternatives. Its rapid growth and carbon sequestration capabilities contribute to climate resilience and resource efficiency. The water in the pond is enriched with nitrogen and can be used to irrigate plants/crops, increasing its value to farmers. Farmers in low-income regions are embracing Azolla as a game-changer, unlocking opportunities to boost productivity, improve soil health, and transition toward more sustainable farming practices.

Recognizing Azolla’s potential, the CGIAR-funded Transformational Agroecology across Food, Land, and Water Systems Initiative, also known as the Agroecology Initiative (AEI) in Zimbabwe, is integrating it into agroecological approaches in Murehwa. This initiative, which operates through five work packages (WPs), is reimagining farming systems by combining innovative business models (WP3) with agroecological technologies (WP1).

Chicken fowl run in Murehwa, (Photo: Loveness Mudarikwa, CIMMYT)

In one of the districts in Murehwa, AEI Zimbabwe selected poultry business model working in collaboration with Hamara Chicks, focusing on resilient and dual-purpose Sasso chickens. Known for their resistance and ability to free-range, these chickens provide both meat and eggs, offering farmers diversified income streams. Hamara Chicks implemented a two-stage model: first the brooding stage, where farmers raise chicks up to four weeks old and then sell them to other farmers who raise them from juveniles to maturity. While promising, the first cycle faced challenges, including a lack of affordable, nutritious feed, and difficulties in securing a market post-brooding and after maturity. To address these issues, WP1 and WP3 identified Azolla as a potential supplemental or alternative feed to support the poultry business model.

The dilemma of Azolla: Two sides of the coin

Azolla farming offers a compelling mix of benefits for sustainable agriculture. Environmentally friendly and resource-efficient, Azolla farming requires minimal land, water, and inputs, making it particularly suitable for small-scale farmers seeking cost-effective solutions. Its rapid growth is one of its standout attributes; under optimal conditions, Azolla can double its biomass in just 3-5 days. This rapid growth allows farmers to produce significant quantities of forage with limited investment, significantly reducing feed costs and increasing overall profitability. Its ability to be harvested daily ensures a consistent and reliable feed supply.

Source : Azolla Biosystems Ltd – Azolla Biosystems Ltd

Nutritionally, Azolla is a powerhouse. With a protein content of 25-30% (dry weight), it is packed with essential amino acids, vitamins such as A, B12, and beta-carotene, and essential minerals. When incorporated into livestock and poultry diets, Azolla contributes to improved health, faster growth rates, and better production results. For smallholder poultry farmers, these benefits translate into tangible gains in meat and egg production, providing a pathway to higher incomes. Moreover, Azolla’s agricultural utility extends beyond animal feed. Its nitrogen-fixing capability enriches soil fertility, reducing reliance on synthetic fertilizers and supporting sustainable crop production systems.

However, as promising as Azolla is, its cultivation is not without challenges. Water availability is a critical requirement, posing a potential barrier in regions with limited water resources. In Murehwa, Zimbabwe, where the CGIAR-funded Transformational Agroecology Initiative is promoting Azolla, horticulture farmers already have access to reliable water sources, alleviating this concern.

Another challenge is the maintenance of Azolla ponds. To thrive, Azolla requires well-managed conditions, including optimal pH levels and nutrient balance. Poorly maintained ponds can compromise growth and productivity. Recognizing this, farmers participating in the initiative have received extensive hands-on training to effectively manage and sustain these conditions effectively, ensuring that Azolla remains a viable and productive resource.

Empowering farmers through training and capacity building

The initiative partnered with KDV Consultancy to train 70 farmers, including 40 women in Murehwa, equipping them with essential skills for Azolla cultivation. The training sessions focused on pond construction, maintenance, and integration of Azolla into poultry feeding systems. This hands-on approach ensures that farmers can sustainably enhance their poultry value chains.

Training in progress in Murewa (Photo: Dorcas Matangi/CIMMYT)
Training in progress in Murewa (Photo: Dorcas Matangi/CIMMYT)
Training in progress in Murewa (Photo: Dorcas Matangi/CIMMYT)
Training in progress in Murewa (Photo: Dorcas Matangi/CIMMYT)

By co-designing solutions with farmers, the initiative prioritizes their needs and challenges, and promotes practical, farmer-driven outcomes. Empowering farmers with the knowledge and tools to implement sustainable practices not only strengthens their resilience but also enhances the long-term sustainability of poultry production in Murehwa. This collaborative effort is laying the groundwork for a more robust and adaptive agricultural future.

The integration of Azolla farming represents a promising step towards achieving a more sustainable and resilient agricultural system in Murehwa. By addressing the feed challenges faced by poultry farmers, Azolla not only enhances poultry production but also contributes to the broader goals of food security and economic stability in the region. As the Transformational Agroecology across Food, Land, and Water Systems project progresses, the positive impacts of innovative practices like Azolla farming continue to support the well-being and livelihoods of farmers in Murehwa.

Advanced Training in Conservation Agriculture: Fostering Sustainable Agronomic Systems

Participants attended the opening ceremony at NAS Complex in New Delhi (Photo: CIMMYT)

CIMMYT, the Borlaug Institute for South Asia (BISA), and the Indian Council of Agricultural Research (ICAR) jointly organized a three-week training course on conservation agriculture (CA) and regenerative agriculture (RA). The program focused on the potential of sustainable farming methods as vital tools for managing risks in agrifood systems in both irrigated and rainfed areas.

Held from December 3–23, 2024, the training brought together farmers, scientists, and stakeholders to explore innovative solutions to agrifood challenges. Sessions were held at the ICAR Indian Institute of Maize Research and BISA in Ludhiana, Punjab; the ICAR-Central Soil Salinity Research Institute in Karnal, Haryana; and the ICAR-Indian Institute of Farming Systems Research in Meerut, Uttar Pradesh, India.

Building Resilient Agrifood Systems

Conservation agriculture (CA) and regenerative agriculture (RA) are approaches to land management that prioritize ecosystem health. These practices are based on three core principles: minimal soil disturbance, continuous soil cover, and crop diversification. Together, they improve yields, restore natural resources, reduce farming costs, and develop resilient agricultural systems that protect the environment, enhance climate resilience, and improve rural livelihoods, particularly in the Global South.

In South Asia, where rural communities rely heavily on natural resources, farmers face significant challenges, including loss of soil fertility, water scarcity, pollution, and the effects of climate change. These pressures are straining agricultural systems, particularly in irrigated and dryland farming areas.

Despite the clear benefits of CA, adoption remains limited due to barriers such as lack of knowledge on how to implement CA in different agro-ecologies, limited access to appropriate tools, insufficient policy support, and low awareness of the long-term benefits of CA. To address these challenges, training and capacity development are essential for scaling up CA technologies among smallholder farmers and ensuring their long-term impact.

The Advanced Course on CA/RA in Asia was launched in 2010 by CIMMYT in partnership with the Indian Council of Agricultural Research (ICAR) to address the challenges of sustainable agriculture. Since its inception, advanced training workshops have been held annually, and this is the 13th edition.

The training bridges cutting-edge scientific research and multidisciplinary strategies, equipping participants with skills in sustainable intensification, diversification of production systems, resilience-building, and natural resource conservation. To date, CA training has benefited more than 220 researchers, policymakers, and development practitioners from 20 countries.

The 13th edition, held in India, welcomed mid-career researchers from Uzbekistan, Morocco, and India. The course was coordinated by Mahesh Gathala, Cropping Systems Agronomist, and Alison Laing, Agroecology Specialist, both from CIMMYT; Madhu Choudhary, Senior Scientist at ICAR-CSSRI; and Raj Kumar Jat, Senior Scientist at BISA.

Key Highlights of the Advanced Conservation Agriculture Training Course

The Advanced Conservation Agriculture (CA) course was inaugurated on December 4, 2024, at the NASC Complex in New Delhi. The inaugural address was delivered by S.K. Chaudhari, Deputy Director General for Natural Resource Management at ICAR, who highlighted the importance of CA in addressing climate challenges and managing agronomic risks. Chaudhari emphasized CIMMYT’s leadership in promoting CA in India and reflected on the impact of the program, saying, “I have been watching this course for many years. Many young scientists have benefited from this course.” He also fondly recalled the inaugural training session held 13 years ago and extended his best wishes to all the participants. Watch his complete statement here.

Participants experiencing hands-on training at the BISA farm in Ludhiana.

During the course, participants explored a wide range of topics related to conservation agriculture (CA) and regenerative agriculture (RA) in different agro-ecologies. Key areas of focus included the role of emerging technologies such as drones, carbon credits, soil fertility, nutrient management, crop modeling, and soil testing in informing policy. Experts from various scientific disciplines provided valuable insights into cutting-edge research for both irrigated and dryland systems.

At BISA’s research station in Ludhiana, participants gained practical experience through hands-on training sessions conducted under the expert guidance of H.S. Sidhu and Manpreet Singh (both from Punjab Agricultural University), with the support of Pardeep Sangwal (BISA).

Participants learning new techniques at CSSRI, Karnal (Photo: CIMMYT)

The training included field visits to ICAR-CSSRI in Karnal, where Director R.K. Yadav, Madhu Choudhary, and Kailash Prajapat presented the Institute’s long-term conservation agriculture (CA) experiments. They also conducted hands-on demonstrations on soil biology and its role in generating evidence for policy decisions.

In addition, Mahesh Gathala conducted hands-on training in basic soil physical and chemical analysis techniques at joint ICAR-CIMMYT field plots in Karnal.

Special visits were organized to innovative agricultural machinery manufacturers, including Landforce and National Agroindustry, where participants observed advanced manufacturing techniques and explored the latest agricultural equipment.

Participants also interacted with the manufacturers’ association at the 5th India International Agri Expo in Ludhiana, gaining insights into emerging trends in agricultural machinery.

Participants visited the National Agro manufacturing unit in Ludhiana, Punjab (Photo: CIMMYT)

In addition, a village visit outside Karnal gave participants the opportunity to interact with farmers practicing conservation agriculture (CA). Farmers shared their experiences, giving participants a first-hand look at the practical benefits and real-world impact of CA on farming communities.

A visit to Golden Temple in Amritsar, Punjab (Photo: CIMMYT)

The success of the program underscores the importance of continued collaboration and training in advancing sustainable agricultural practices. By equipping participants with practical skills, cutting-edge knowledge, and opportunities to connect with peers across regions, the training was instrumental in advancing conservation agriculture (CA) and regenerative agriculture (RA).

Participants left the program with enhanced technical expertise, greater confidence in applying CA practices, and valuable insights into emerging areas such as carbon credit schemes and innovative agricultural technologies. These results underscore the critical role of capacity development in strengthening food security, building climate resilience, and promoting sustainable development in the Global South.

Sowing a Seed of Hope: Transforming Lives through Mixed Farming in Nepal

Birma Sunar Tending (Photo: Lokendra Chalise/CIMMYT)

In Nepal, hope is slowly taking root in the mid-hills as communities and farmers transform traditional systems into productive, diversified, nutritious and market-oriented farming systems. Through the CGIAR Mixed Farming Systems (MFS) Initiative, farmers like Ms. Birma Sunar and communities like Gurbhakot in Surkhet are building a transformative pathway. Since 2022, CIMMYT and IWMI have been supporting communities in planning and engaging stakeholders in identifying organizational and technical solutions. The initiative aims to increase milk production through improved forages, improve nutrition and income diversification through high-value fruit trees, and improve water efficiency in vegetable production through micro-irrigation.   

Birma’s Journey: Overcoming Challenges, Cultivating Dreams

Birma Sunar, 49, a determined farmer from Surkhet, represents the aspirations of countless smallholder farmers struggling to survive on limited means. A Dalit woman and an amputee, her small plot of land was once dedicated to subsistence farming, leaving her family struggling to make ends meet. The maize and wheat she grew barely lasted a year, and her family of seven was struggling for food. With her husband earning meager wages as a day laborer, the family often faced food insecurity.  

Her perspective on farming began to change when she became involved with the Mixed Farming Initiative. Birma received training in the cultivation of high-value fruit trees and the planting of Napier grass to feed dairy cattle, as well as micro-irrigation techniques. With her new skills and the eight mango saplings and one lychee tree she received from the Initiative as part of  action research, she hopes to increase her family’s income..   

I was unaware of commercial farming,” says Birma. “I have a lime tree and a banana tree in my field however, it used to be for home consumption. But now, once my mango and lychee trees start giving fruits, I hope to sell the produce in local markets and earn enough to buy essential household items and feed my family.”  

Last year, she planted high-value fruit saplings that are now growing into healthy plants, giving her hope for stability and food security in the future.   

Birma Sunar intercultivating a mango plant (Photo: Lokendra Chalise/CIMMYT)
Youthful Aspirations: Santosh’s Agricultural Renaissance

After working abroad for a few years in the hope of a brighter future, Santosh KC, 25, returned home, disheartened yet determined. Equipped with the knowledge gained from his agricultural education and a passion for change, he started a nursery for high value fruit trees and improved forages and ventured into dairy farming with Napier grass.  

The journey was not easy. In the first year, Santosh faced losses, and his family doubted the viability of his efforts. But with unwavering dedication, he turned his fortunes around. Today, Santosh cultivates 45 ropanis (2.29 hectares) of land, raises 22 goats, and earns a steady income. He also participates in the Mixed Farming Initiative training organized jointly with the Gurbhakot municipality and mentors farmers on the benefits of mixed farming.   

For many youths, farming doesn’t seem like a viable option. However, with support for modern agricultural techniques and market integration, we can build livelihoods that are not just sustainable but rewarding,” shares Santosh.  

A Municipal Vision: Building Resilient Communities

The Initiative has been jointly implemented by CIMMYT and IWMI in the local municipality of the working district. With the support of the initiative, the Gurbhakot municipality is playing a critical role in scaling up the benefits of mixed farming. Recognizing the value of the crops, the municipality has embraced Napier grass and high-value fruits as key components of its agricultural strategy. By prioritizing mangoes, lychees, oranges, and lemons, the municipality aims to improve household nutrition and create commercial opportunities for farmers.  

We distributed high-value fruit trees to farmers last year under the theme ‘One Home, Two Fruit Plants’. This year, we’re planning a study to identify the best topography for different fruits. This knowledge will allow us to scale our goal to integrate these practices into larger public programs, creating decent livelihoods for farmers,” said Mr. Hasta Pun, Mayor of Gurbhakot Municipality.   

Mayor Hasta Pun (Photo: Lokendra Chalise/CIMMYT)
A Vision for the Future  

The Mixed Farming Initiative has been critical in identifying solutions to bring tangible improvements to smallholder farmers like Birma and Santosh, but it has also strengthened local governance and resilience. In the three years of implementation, the pilot program in Gurbhakot in Surkhet and Halesi-Tuwachung in Khotang has set the stage for scaling up these efforts in more municipalities. By 2030, the initiative aims to impact 13 million people and ensure equitable opportunities for women, youth, and marginalized communities.  

By nurturing the saplings of high-value fruits and integrating forages, local leaders and farmers in the mid-hills of Nepal remain motivated and committed to rewriting their story —One of hope, resilience, and the promise of a food-secure future.   

Why early-stage on-farm sparse testing could be a game changer for crop breeding in Africa

(Photo: CIMMYT)

Over 80% of the world’s 570 million farms are smallholder farms under 2 hectares, supporting rural livelihoods in impoverished regions. Smallholder farmers, who form a significant portion of the 690 million people experiencing hunger, need improved crop varieties to thrive under challenging conditions like low inputs, climate change stresses, and pests. 

Challenges of breeding for smallholder farmers 

Particularly at early stages, breeding programs face difficulties replicating the diverse and resource-constrained environments of smallholder farms, referred to as the Target Population of Environments (TPE). The TPE encompasses all locations where new crop varieties will be grown, characterized by varied biophysical conditions, environmental stresses, and farming practices. 

Conventional research stations, where new selection candidates are tested, don’t fully replicate smallholder conditions. Practices like manual labor for weed management or intercropping are common among smallholders but rarely modeled on research stations. This mismatch can lead to inaccurate predictions of crop performance on farms and discarding potentially successful candidate varieties. 

Early-Stage On-Farm Sparse Testing (OFST)

Early-stage OFST shifts testing to hundreds of smallholder farms at early stages, addressing two major issues. First, it evaluates crops under real-world, farmer-managed conditions. Second, it captures the diversity within the TPE by conducting trials on numerous farms. 

Using farm-as-incomplete-block (FAIB) designs, small farms test 3–5 candidate varieties, aligning with their plot size and resource constraints. A genomic relationship matrix connects trials across farms, ensuring comparability between farms and enhancing selection accuracy through the sharing of information. This approach reduce replication and enable testing more candidates, thereby improving breeding efficiency and providing a basis for accelerated parent recycling. Smallholder farmers are highly diverse, and careful sampling ensures a wide range of farmers can participate. The small land requirements of this approach allow small, poor and/or women farmers to equally participate. 

(Photo: CIMMYT)
On-Farm Testing and on-station testing: complementary yet demanding approaches

Early-stage on-farm testing complements, rather than replaces, on-station trials. Controlled assessments for traits like disease resistance and managed abiotic stresses remain essential at research stations. Conversely, insights from early-stage OFST can help refine on-station testing to better represent farming realities.

Scaling early-stage OFST demands strong partnerships between CGIAR, NARES, and farmers for decentralized trial management. Farmers must consent to participate and be compensated for risks. Additionally, significant resources and coordination are required to ensure trials are representative and reliable. 

Despite these challenges, early-stage OFST holds transformative potential. By aligning breeding programs with smallholder realities, it can deliver improved crop varieties faster and more effectively, enhancing food security for those who need it most. 

For more information, see the article: Accelerating Genetic Gain through Early-Stage On-Farm Sparse Testing by Werner et al., Trends in Plant Science. 

Accelerating genetic gain through early-stage on-farm sparse testing.  

Accelerating genetic gain through early-stage on-farm sparse testing 

Werner, Christian R. et al. 

Trends in Plant Science, Volume 0, Issue 0 

Beyond Survival: Thriving through solar innovation and empowerment in Sudan 

Under the scorching Sudanese sun, Salwa Suliman has become a symbol of transformation in Kasala. Her hands which once used to knead dough and prepare meals as a cook, are now shaping a brighter future for her family and community. A cook and trainer by trade, Salwa’s family relied on agriculture to make ends meet. But when the conflict disrupted their farming activities, their livelihood and future seemed uncertain.  

Through CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS), Salwa has embraced change, learning the secrets of organic fertilizer production, innovative food processing, and sustainable agriculture. With the support from the United States Agency for International Development (USAID), today Salwa now runs a vibrant business that produces food that nourishes the body as well as the soul. Her journey is proof that even in the harshest conditions, with the right support and determination, growth is always possible. Salwa’s success is more than a personal triumph—it’s a testament to the transformative power of hope and action rippling through Sudan. 

Building resilience in the midst of conflict

In Kassala and Gadaref states, solar-powered irrigation kits have replaced costly and unreliable diesel pumps, enabling more than 2,000 farmers to grow high-value crops such as vegetables year-round. These systems not only reduce operational costs, but farmers are trained to maintain and optimize them, ensuring long-term sustainability. 

Solar panels (Photo: Mercy crops)

Equally transformative are the eight solar-powered agro-processing hubs that provide essential machinery such as threshers, oil presses, and grinders. These hubs have become economic lifelines, especially for women, who use them to create micro-enterprises. From grinding and packaging dried vegetables to selling value-added products, women are driving economic growth while reducing post-harvest losses and strengthening food security. 

Commitment to gender equality and representation

Women’s empowerment is a cornerstone of the SASAS approach. Through gender awareness initiatives in 20 communities, more than 2,800 participants, including 2,485 women, have addressed negative social norms, women’s rights, and decision-making in economic activities. Activities such as theatrical performances and competitions have reinforced these messages and created gender-equitable environments. This groundwork has been further strengthened by the establishment of gender committees, each of which integrates men and women to advocate for equitable access to resources and leadership roles. 

The impact extends to grassroots leadership, where trained gender advocates facilitate sensitization sessions that benefit cooperative members and promote sustainable gender advocacy.  

Bridging partnerships for agricultural transformation

The World Vegetable Center (WorldVeg), in partnership with SASAS, has played a key role in integrating sustainable vegetable production into Sudan’s food systems. Their initiatives —from providing quality seeds to training farmers in integrated pest management and post-harvest practices — have reached thousands of beneficiaries, with women making up 50% of the participants. Through partnerships with local organizations and private sector actors, WorldVeg has expanded access to resources and knowledge, ensuring that even conflict-affected communities can thrive. 

ADRA and Mercy Corps have also been instrumental in the success of SASAS. Mercy Corps established solar-powered agro-processing centers and irrigation systems, providing critical infrastructure for sustainable agriculture. ADRA reinforced these efforts by implementing solar-powered cold storage facilities and establishing gender committees with equal representation of men and women to promote gender equity in decision-making and access to resources. 

(Photo: Mercy crops)
(Photo: Mercy crops)
A model for future growth

The success of SASAS demonstrates the power of combining innovative technologies, gender-focused initiatives, and strong partnerships to create lasting change. From the solar-powered cold storage facilities that preserve harvests to the empowered women who transform local economies, the program offers a blueprint for resilience and growth in fragile contexts. 

USAID support for recovery and resilience

None of these achievements would have been possible without the support of the United States Agency for International Development (USAID). By funding and guiding the SASAS program, USAID has enabled the integration of solar power, gender empowerment, and sustainable agriculture into Sudan’s recovery efforts. From solar-powered irrigation to the empowerment of women like Salwa, USAID’s commitment has been a beacon of hope for communities rebuilding in the midst of adversity. 

How one farmer is learning and leading the way in improved millet and groundnut seed production in Uganda

CIMMYT, in partnership with the National Semi-Arid Resources Research Institute (NaSARRI), is transforming dryland farming by giving farmers access to drought-tolerant and disease-resistant crop varieties. Through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, many farmers have not only improved their yields but also built resilience to the challenges of unpredictable rainfall. Dennis Obua, a farmer who has benefited from these research advances, shares his inspiring journey to promote improved finger millet and groundnut seed varieties within his community.  

“My name is Dennis Obua, a farmer from Tewayo village in Lira district. I began my farming journey back in 2018, inspired by the local farmers I met while visiting a nearby region. As I spent time with them, observing how they tilled the land, I felt a strong urge to get involved in farming myself—especially focusing on drought-tolerant cereals, which are crucial in our region due to inconsistent rainfall. 

It all started with a small amount of finger millet seeds—just a handful that I obtained from NaSARRI. At the time, some visitors from NaSARRI had planted a few experimental plots nearby. One of my friends was conducting his own trials, so I approached him and asked for a small sample of seeds to plant on my farm. That was how I started growing improved finger millet varieties NAROMIL 2 and SEREMI 2 (U15). Now, I not only grow millet, but I am also actively promoting it in my community. 

Dennis, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

If you look around today, you will see that many people here have started growing finger millet here too. It’s becoming quite popular. In fact, recently, some researchers from Makerere University came to our village to look for finger millet, and I took them to a nearby home where they’re doing their own research on finger millet and sorghum.  

More and more people are getting into farming now, especially finger millet, because it’s proving to be profitable.  I’m really grateful for the way things have turned out. It’s incredible to see that something that started with just a small handful of seeds has grown into something so significant for our community. 

Alongside finger millet, I also plant groundnuts. Currently, I have three different varieties planted in neat rows: SERENUT 8R, SERENUT 11, and SERENUT 14. Before these varieties were introduced to my farm, I used to grow a local variety called Red Beauty. We would get the seeds from our local market or sometimes travel to town to buy them but often these seeds didn’t germinate well, so we started relying more on local farmers who save seeds from one season to the next. That’s how we accessed it. That’s how we got access to them. We also have auctions here at the beginning of the season where farmers bring seeds to sell.  

Dennis showcases one of the groundnut varieties planted in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

However, since switching to these new varieties— SERENUT 8R, SERENUT 11, and SERENUT 14 —I’ve seen a significant difference. Among the three, SERENUT 14 is my favorite. I’ve been growing it for several seasons now. It’s drought tolerant, disease resistant, and produces a good yield. It also has a good number of pods. When I plant it, I can usually harvest 14 to 16 bags per acre, with each bag weighing between 42 to 46 kilograms. Compared to SERENUT 8R, which yields slightly less—around 12 to 14 bags per acre— SERENUT 14 performs better in our soil conditions.  

What I appreciate most about SERENUT 14 is that it’s also more resistant to rot and rosette disease. While SERENUT 11 and SERENUT 8R varieties are also drought tolerant, SERENUT 14 has proven to be the most reliable, making it my preferred choice. When you consider yield, disease tolerance, and quality, SERENUT 14 stands out.  

I am proud to say that I’m not the only one growing these improved varieties anymore. Many farmers in my village have adopted them because I’ve been giving them seeds, and they’ve seen the benefits for themselves. Now, they too are switching to these improved varieties of groundnut and finger millet. The two finger millet varieties I have been growing are NAROMIL 2 and SEREMI 2 (U15) and they are also catching up. Among them, NAROMIL 2 is my preferred variety because it yields well, is drought tolerant, and has a great taste — perfect for food. Before this, we only grew our local finger millet varieties. This is the first time we’ve been introduced to these improved varieties.  

Dennis, displays a freshly harvested groundnut plant from his demonstration plot, showcasing the success of improved, drought-tolerant groundnut varieties (Photo: Marion Aluoch/CIMMYT)

Farming has allowed me to give back to my community. It’s amazing to see how the success of one farmer can affect an entire village. More farmers now understand the importance of using quality seeds that are not only drought-tolerant but also disease-resistant. They come to me for seeds because they trust the results they’ve seen. 

That’s not to say there haven’t been challenges. There was one week where we had heavy rains after a long dry spell, which caused some of the groundnut plants to rot. Before that, there had been no rain after planting, although we had managed to do the initial weeding. I’m sure the yield would have been even better if the rains had been more consistent. Despite the challenges, the yield has still been great. That’s one of the reasons I like these varieties—they’re resilient. 

I am grateful for the knowledge and experience I have gained. By sharing what I’ve learned, I hope to help more farmers in my community succeed, just as I have. I’ve seen first-hand how improved varieties of both finger millet and groundnuts can transform farming practices. The combination of drought tolerance, disease resistance, and high yield has made a significant difference to my farm’s production, and I’m hopeful that more farmers will continue to adopt these crops.” 

Farmer trials with improved seeds to promote seed production and improve local farming practices

In Kasoka village of Bukedea District in Uganda, Nelson Ekurutu, a dedicated farmer, is leading the way in agricultural experimentation. With support from the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project—funded by the Bill & Melinda Gates Foundation (BMGF) and implemented in partnership with CIMMYT and the National Semi-Arid Resources Research Institute (NaSARRI)—Nelson has embarked on a journey to test three new groundnut varieties: SERENUT 8, SERENUT 11, and SERENUT 14. The demonstration plots provide him with a platform to test new varieties, helping him and others understand what works best in their locality.  

While Nelson is drawn to the SERENUT 11 variety for its attractive leaves, he remains cautious, knowing that the real test will come only after the harvest. “This is my first time planting these varieties,” he says. As curious neighbors pass by and inquire about the varieties, he explains, ‘We are testing new varieties, and we’ll know more about their performance and yields after the harvest.” 

The AVISA project, which aims to improve the productivity of dryland crops such as groundnut, finger millet, and sorghum, plays a crucial role in Nelson’s work. With funding and technical support from CIMMYT and NaSARRI, farmers like Nelson are given the opportunity to test improved, drought-tolerant, and disease-resistant varieties. These varieties are designed to increase yields and help farmers become more resilient to climate change while enhancing production systems.  

Nelson is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Nelson’s demonstration plots, using seed supplied by NaSARRI, are part of this initiative. CIMMYT has been instrumental in ensuring that these varieties are adapted to the local environment, while also working with NaSARRI to build farmers’ capacity through hands-on training and technical assistance. 

In addition to groundnut, Nelson is also experimenting with finger millet and sorghum. He values the red finger millet variety  SEREMI 2 for its quick maturity and larger heads. “I planted the finger millet on April 10th, and by July this year (2024), it was ready for harvest,” he says proudly. In addition to finger millet, he is also testing several sorghum varieties—NAROSORG 2, which is red, and SESO 1, which is white. Although he likes them all, Nelson has a clear preference: “I prefer the red sorghum because birds don’t eat it as much. When mixed with cassava, it makes a good atapa.”  Atapa is a staple food in Uganda made by mixing cassava and sorghum flour and cooking it with water until it forms a firm, dough-like consistency. It is typically served as a side dish with stews, vegetables, or meat. Similar dishes are known by different names across the region—Ugali in Kenya, Sadza in Zimbabwe, and Pap in South Africa underlining its importance in African cuisine. 

Nelson showcases the SESO 1 sorghum variety that is white in color (Photo: Marion Aluoch/CIMMYT)

Nelson notes that although the white sorghum produces larger heads, it attracts more birds, requiring him to cover the heads to prevent damage. These trials represent Nelson’s first experience with these varieties, and he acknowledges the learning process involved. “The seed was sourced from NaSARRI specifically for these demonstration plots,” he explains. He believes that by seeing the results first-hand, other local farmers will be able to make informed decisions about adopting the new varieties for improved seed production.  

Nelson’s demonstration plots serve as valuable learning sites for the wider farming community. By bridging the gap between research and farmers’ needs, the AVISA project ensures that scientific innovations reach those who need them most. Reflecting on his journey, Nelson describes the testing of these new varieties as a continuous learning experience. “I’ve been growing sorghum for a long time, and when people see how I grow it, they often ask about the variety and where they can get seeds,” he says. After his harvest, Nelson plans to share the seeds with nearby farmers while keeping some for his own future planting. 

Although he hasn’t been involved in large-scale seed distribution before, Nelson sees potential for future collaboration. “ There’s a group of sunflower and groundnut farmers who have organized themselves into a SACCO to access funding,” he says, referring to the Parish Development Model (PDM) initiative. This model could offer Nelson the opportunity to expand seed distribution and help more farmers access improved varieties. 

Committed to helping local farmers adopt best practices, Nelson is eager to share his knowledge. “When people see how I grow the crops, they often ask for advice or seeds,” he says. He believes that organizing field days to showcase the new varieties would be an excellent way to engage more farmers and demonstrate the value of improved seeds. 

Nelson prefers the NAROSORG 2 sorghum variety known for its resilience and red grain colour (Photo: Marion Aluoch/CIMMYT)

One of the challenges Nelson frequently encounters is farmer’s poor planting practices. “Some farmers broadcast the seeds instead of planting them properly in rows,” he notes, stressing the importance of correct planting techniques. Despite this, he continues to share seeds and farming knowledge to help his fellow farmers to improve their yields. 

Another key issue Nelson highlights is seed recycling, a crucial aspect of sustainable farming. “When you recycle seeds too much, they get tired,” he explains. For improved varieties, Nelson recommends recycling seeds no more than three times to maintain the health of the crop. “I recycle mine only twice. The local seeds can be recycled up to 20 times, but improved varieties don’t perform as well after a few cycles.” 

Climate change is one of the biggest challenges for Nelson’s farming practices, but he remains hopeful. He believes that installing an irrigation system would help mitigate the effects of erratic rainfall and improve his yields. His willingness to try new techniques and experiment with new varieties shows his determination to find solutions in the face of adversity. 

Nelson is optimistic that his trials with ground nut, sorghum, and millet will encourage other farmers to adopt improved varieties, increase seed production and lead to greater productivity in his village and beyond. Through programs like the AVISA project—supported by CIMMYT and NaSARRI—farmers like Nelson are gaining access to better seeds, growing more resilient crops, and improving food security in their communities. 

Atubandike: Breaking down gender barriers in Zambia’s agricultural advisory services

A digital champion trained by CIMMYT in climate-smart agricultural practices, shares her knowledge with her community (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Zambia’s agricultural sector has long grappled with significant gender disparities, particularly in rural areas where women often face unique barriers to accessing essential agricultural information. Despite playing a critical role in food production, women remain significantly underrepresented as agricultural extension agents, a trend that persists not only in Sub-Saharan Africa (SSA) but also globally. Changing this narrative demands a coordinated effort from government, non-governmental organizations (NGOs), the private sector and communities to challenge deep-rooted stereotypes about women’s roles and capabilities in agriculture.[1]

The Atubandike approach, a key part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, addresses these challenges head on. Through initiatives focusing on gender-inclusive seed systems and agricultural advisories on climate-smart agricultural (CSA) practices, Atubandike is actively working to increase women’s representation among Zambia’s agricultural advisors. By equipping communities with inclusive advisory services and training women and men digital champions, Atubandike is paving the way for a more equitable agricultural future.

This blog delves into the gender biases uncovered during recent community consultations organized by the AID-I Atubandike team in Zambia’s Southern Province across various rural districts, held in November 2023, as well as July 2024.[2] These consultations, aimed at addressing gender and youth stereotypes in agriculture, highlighted Atubandike’s initiatives to reshape the agricultural landscape for women and marginalized groups.

Community dialogues reveal deep-rooted gender biases in advisory access and spring up encouraging perspectives for female advisors

Staying true to the name, Atubandike—meaning “Let’s Chat” in Tonga—the AID-I team implementing the initiative, facilitated community discussions with over 1,700 farmers in Zambia’s Southern Province to explore underlying gender challenges in agriculture. Through these conversations, deep-seated gender biases emerged as a significant barrier. Many female agricultural advisors contend with cultural stereotypes that undermine their leadership and technical skills. As one participant noted, “Women are mostly seen as subordinates to men, so it is only natural that female agricultural advisors are viewed as less capable.” Such remarks highlight the difficult path women often tread to establish their authority in agricultural roles. Unfortunately, this bias isn’t limited to men; some female farmers also expressed a preference for male advisors, sharing the belief that “a fellow woman cannot provide valuable information.”

Women participating during a focus group discussion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Studies on agricultural extension services confirm that  gender disparities in advisory roles severely  limit women farmers’ access to timely, high-quality  information in SSA and other developing regions. This, in turn, impedes their ability to boost productivity and provide for their families. [3] Agricultural Advisory Services (AAS) are often designed with men as the primary beneficiaries, overlooking the need to make services more accessible and relevant to women. The dominance of male extension agents further exacerbates this issue, especially in societies where cultural norms restrict interactions between women and men outside their immediate family. These societal norms reinforce traditional gender roles, undermining the effectiveness of women as agricultural advisors. As a result, women are often excluded from opportunities that would enable them to fully participate in, and benefit from, agricultural development. This exclusion not only limits their potential but also perpetuates poverty and inequality.

On a positive note, a more nuanced perspective also emerged during the discussions. Some community members recognized the unique strengths that female advisors bring to their work. As one participant observed, “Female advisors are more careful and easier to talk to,” noting that women often prioritize technical knowledge, while men may base advice more on personal experience. This insight provides a glimmer of hope: with increased exposure and trust, farmers could become more receptive to female advisors, recognizing their effectiveness alongside their male colleagues.

A female farmer shares her experience during a CIMMYT visit to her village where farmers were discussing gender youth and social inclusion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

In some settings, women farmers even prefer female advisors, feeling more comfortable discussing issues and having a greater sense of shared experiences. According to a study conducted in Mozambique, women farmers were more likely to be reached as well as learn when agricultural content was delivered by female advisors. [4] This highlights the potential impact of gender-sensitive approaches in improving the efficacy and accessibility of advisory services for women.

Achieving equal footing for women in AAS requires addressing a broader range of barriers. This not only entails efforts to recruit and retain women in these roles but also providing equal opportunities for education and training, as well as developing explicit policies to safeguard women advisors from gender-based discrimination.

Breaking barriers: How Atubandike is transforming AAS

The goal of the Atubandike approach is to identify, understand and dismantle entrenched gender barriers in agriculture. By adopting an innovative and inclusive strategy, this initiative equips both men and women with the tools they need to become digital champions and agricultural advisors, playing pivotal roles in their communities. With a deliberate focus on increasing female representation, Atubandike ensures that at least 50% of these champions are women, amplifying their visibility and influence in the sector.

Central to Atubandike is its emphasis on community engagement through a feedback-driven process. This approach facilitates open dialogue among community members, urging them to confront existing social biases and develop practical solutions. Through these discussions, the initiative fosters collective action aimed at promoting gender equity and social inclusion. Additionally, Atubandike provides comprehensive training on gender, diversity, and inclusion, equipping its digital champions not only with technical knowledge but also with the skills required to challenge and navigate gender biases effectively.

One of the initiative’s most transformative elements is its focus on diverse role models. By ensuring that half of its village-based digital champions are women, Atubandike boosts their digital literacy, agricultural expertise, and standing as leaders and role models within their communities.[5] These women are featured prominently in digital content and on talk shows, reshaping perceptions of women as agricultural leaders and breaking down longstanding negative narratives that have historically sidelined them.

Sustaining Atubandike’s momentum: Community-driven support for female advisors

Community members balanced the discussions by proposing valuable insights and strategies to overcome the deeply rooted stereotypes that challenge female agricultural advisors. Raising community awareness about the value of female advisors emerged as a crucial approach to fostering their acceptance. As one participant emphasized, “More training on gender norms is essential so that the community can become more open-minded.” Others argued that establishing trust in female advisors from the outset could empower them as agents of change: “If we begin by placing our trust in female agricultural advisors, we can encourage other communities to do the same.”

Community leaders were urged to facilitate meetings to address any disrespect toward agricultural advisors, irrespective of gender. A farmer emphasized the necessity of mutual respect, stating, “The community should be encouraged to work cooperatively with their agricultural advisors.”

Participants also highlighted that agricultural advisors must actively demonstrate their competence to build trust. In one community, it was stressed that both female and male advisors “must practice the agricultural technologies they promote so that people can have faith in their competence.” Additionally, participants suggested that advisors wear uniforms to clearly distinguish their professional roles, signaling their commitment to serving the community in an official capacity.

A model for inclusive agricultural development

Atubandike transcends the role of a conventional agricultural advisory initiative; it stands as a beacon of inclusive development, extending its impact across Zambia and setting a model for the region. By delving into the roots of gender bias and driving practical, community-led solutions, Atubandike aligns with the AID-I project’s mission of “delivering with a difference.” Through empowering female digital champions and fostering dialogues on social equity, Atubandike demonstrates that meaningful change is both attainable and sustainable. As a testament to AID-I’s dedication to equitable innovation and resilience, Atubandike is not only reshaping gender norms in Zambia but is also establishing itself as a blueprint for inclusive impact across Southern Africa’s agricultural landscape.

[1] BenYishay, A., Jones, M., Kondylis, F., & Mobarak, A. M. (2020). Gender gaps in technology diffusion. Journal of development economics, 143, 102380.

[2] The informed consent statement and methodology used in the community conversations are available upon request m.fisher@cgiar.org.

[3]Bill & Melinda Gates Foundation. (2020). Gender and agricultural advisory services. https://www.gatesgenderequalitytoolbox.org/wp-content/uploads/BMGF_AG-Advisory-Services-Brief_web.pdf

[4] Kondylis, F., Mueller, V., Sheriff, G., & Zhu, S. (2016). Do female instructors reduce gender bias in the diffusion of sustainable land management techniques? Experimental evidence from Mozambique. World Development, 78, 436-449.

[5] Lecoutere, E., Spielman, D. J., & Van Campenhout, B. (2023). Empowering women through targeting information or role models: Evidence from an experiment in agricultural extension in Uganda. World Development, 167, 106240.