Technical assistant Tigist Masresra examines breeding trials at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)
After declining for nearly a decade to around 770 million, in the last three years the number of hungry people has shot up to more than 850 million. At the same time, erratic weather and crop pests and diseases are ruining harvests, intensifying farmers’ risks, and threatening local and global food security.
In an article for Rural 21, I describe how plant breeding has changed over the last four decades and which methods the international research community is developing to master present and future challenges.
Family farmers produce more than 80% of the world’s food, but often have the least amount of access to support.
As the UN Decade of Family Farming launched on May 29, 2019, I talked with Trevor Nicholls, CEO of the Centre for Agriculture and Bioscience International (CABI), on this topic.
On an article published on the Economist Intelligence Unit’s Food Sustainability Index blog, we propose six key actions that can help family farmers thrive in the coming decade:
Invest in women and youth: Make family farming work for all
Attract young farmers into tech-smart farming
Make climate-resilient crops more accessible
Share practical plant health advice with family farmers
Help family farmers diversify and grow more from less land
Translate national and global goals into practical farming support
The indigenous peoples who lived in central and southern Mexico thousands of years ago developed a resilient intercropping system to domesticate some of the basic grains and vegetables that contribute to a healthy diet.
Today, small farmers in roughly the same areas of Mexico continue to use this flexible system called “milpa” to grow chili, tomatoes, beans, squashes, seasonal fruits and maize, which are essential ingredients of most Mexican dishes.
An analysis of the Mexican diet done in the context of a recent report by the EAT – Lancet Commission found that Mexicans are eating too much animal fat but not enough fruits, vegetables, legumes and wholegrains. As a result, a serious public health issue is affecting Mexico due to the triple burden of malnutrition: obesity, micronutrient deficiency and/or low caloric intake. The study also urges Mexico to increase the availability of basic foodstuffs of higher nutritional value produced locally and sustainably.
Although changing food consumption habits may be hard to achieve, the traditional diet based on the milpa system is widely regarded as a healthy option in Mexico. Although nutritional diversity increases with the number of crops included in the milpa system, its nutritional impact in the consumers will also depend on their availability, number, uses, processing and consumption patterns.
Unfortunately, milpa farmers often practice slash-and-burn agriculture at the expense of soils and tropical rainforests. For that reason, it is also important to address some of the production-side obstacles on the way to a healthier diet, such as soil degradation and post-harvest losses, which have a negative effect on agricultural productivity and human health.
The International Maize and Wheat Improvement Center (CIMMYT) engages in participatory field research and local capacity-building activities with farmers, local partners and authorities to foster innovation and to co-create strategies and procedures that help farmers produce food sustainably.
Francisco Canul Poot in his land. (Photo: CIMMYT)
These efforts led Francisco Canul Poot, a milpa farmer from the Yucatan Peninsula, to adopt conservation agriculture concepts in his milpa and to stop burning soil residues since 2016. As a result, his maize yield grew by 70%, from 430 to 730 kg per hectare, and his income increased by $300 dollars. 15 farmers sharing property rights over communal land have followed his example since.
These outstanding results are encouraging more farmers to adopt sustainable intensification practices across Mexico, an important change considering that falling levels of nitrogen and phosphorus content in Mexican soils may lead to a 70 percent increase in fertilizer use by 2050.
By implementing a sustainable intensification project called MasAgro, CIMMYT contributes, in turn, to expand the use of sustainable milpa practices in more intensive production systems. CIMMYT is also using this approach in the Milpa Sustentable Península de Yucatán project.
At present, more than 500 thousand farmers have adopted sustainable intensification practices — including crop diversification and low tillage — to grow maize, wheat and related crops on more than 1.2 million hectares across Mexico.
While in Australia, Matthew Morell, director general of IRRI, and I spoke to Devex about the limits of agricultural research to solve food crises in a fast-changing environment.
If we take care of our soils, our soils will take care of us. (Photo: Shashish Maharjan/CIMMYT)
On December 5, we celebrate World Soil Day. This year the theme is “Be the solution to soil pollution.” Most of you may not have been aware that such a day even existed or perhaps even question the reason why the world even dedicates an entire day to celebrate soil. The authors of this article are soil scientists; we have devoted our professional careers to studying soil. Perhaps we are biased, but we use this opportunity to enlighten readers with a greater appreciation for the importance of this thin layer of our planet we call soil.
Humankind has a conflicting relationship with soil. In English, “dirt” and “dirty” are synonyms for unclean, calling a man or a woman “dirty” is a terrible insult. A baby’s dirty diapers are said to be “soiled.” But if we dig deeper into human consciousness, we find a different story.
For Hindus, the Panchtatva defines the universal laws of life. Everything, including life, is composed of five basic elements: Akash, space or sky; Vayu, air; Jal, water; Agni, fire; and Prithvi, earth or soil. In the Judeo-Christian tradition, the first two human beings on the planet were Adam and Eve. In Hebrew, the original language of the Bible’s Old Testament, the name Adam means “earth” or “soil” and Eve means “life.” These images and symbols portray that human life originally derived from soil.
It gets even deeper: The English terms “human” and “humanity” are rooted in the Greek word “humus,” the fertile black topsoil.
When we use the words “soil” and “dirt” as derogatory terms, we literally define ourselves as soil. Soil is important and here are a few reasons why.
Soil is absolutely critical for the survival of our species and of all living life on the planet. Over 90 percent of all food produced in the world comes from soil and a greater percentage of the world’s freshwater passes through soil.
Arguably, climate change is the greatest threat to our species. Despite mitigation efforts by the global community, soil is frequently forgotten. However, soil holds roughly two and a half times the amount of carbon held in the atmosphere and in all of the plants and animals combined.
Soil is also the greatest reservoir of biodiversity on the planet. In one pinch of soil, there are over 1 billion individual organisms and 1 million unique species, most of which we know almost nothing about. In one handful of soil, there are more living organisms than the total number of human beings that have ever walked on the planet. As all of our antibiotics have been derived from soil microorganisms, the secrets to fighting all kinds of diseases are just under your feet.
In Nepal, soil is deeply interrelated with culture. From birth to death, Nepalese use soil in many rituals: naming ceremonies, birthday celebrations, soiling on Ashar 15, local healing and medicine, etc.
The government of Nepal has set ambitious targets for increasing the levels of organic matter in soil. This is essential to ensure that the soils that have sustained Nepali civilization for centuries will continue to sustain future generations. We need to encourage farmers and land managers in Nepal to maintain terracing on steeply sloped lands to protect against soil erosion. It is also important to appropriately use agrochemicals, such as pesticides and inorganic fertilizers, to improve soil health and crop productivity.
Soil has been polluted by heavy metals, effluents from chemical industries, indiscriminate use of agrochemicals, urbanization without proper planning, networking of roads without considering the carrying capacity of the soil and other factors. So let’s not overlook the importance of soil. We need to value the cleansing properties of soil, particularly riverine soils, and prevent these areas from continuing as the dumping grounds and sewers of Kathmandu and other cities.
On this day, the day when we celebrate soil, take a moment to look under your feet and marvel at the beauty and complexity of soil.
If we take care of our soils, our soils will take care of us.
Samjhana Khanal surveys heat-tolerant maize varieties in Ludhiana, India, during a field day at the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
KATHMANDU, Nepal — I feel humbled and honored to have been chosen for the 2018 MAIZE-Asia Youth Innovators Award. I want to thank my father and brother for never clipping my wings and letting me fly high. I want to thank my mother, who despite having no education, not being able to read or write a single word, dreamed of having a scientist daughter. Everyone has a story and this is mine.
Due to my family’s poverty and the hardships faced during the civil war in Nepal, I had to leave school at grade 5 and was compelled to work as child labor in a local hotel to meet my family’s daily needs. I remember those difficult months where I used to cry every day, as the hotel was right across from the school and I wanted to study so badly but I was deprived from education due to my family’s condition. My life changed when a mountain climber staying at the hotel heard my story and generously decided to pay my school fees. I would go on to graduate top of my class.
Everyone has challenges. It is my dream to dedicate my life to fight the greatest challenge of all: hunger.
The amount of undernourished people in the world has been increasing. According to the Food and Agriculture Organization of the United Nations (FAO), over 820 million people face chronic food deprivation. Many of these people live in developing countries, including my home country, Nepal. About 6 million people, which is about 23% of Nepal’s population, are undernourished. Moreover, half of children under the age of five suffer from malnutrition in Nepal.
Increasing agricultural production, gender equity and awareness is crucial to meet sustainable development goals by 2030. As an agricultural student, I chose to focus on maize-based systems, as maize is a staple food crop and a major component of feed and fodder for farm animals. It is the second major crop in Nepal after rice — first in the hill region of Nepal — and can be a backbone for food security and a good source of income for resource-poor farmers.
Demand for maize is growing in Nepal, but production has remained stagnant. This is partly due to lack of knowledge on proper nutrient management and fertilizer use. In addition, due to the economic situation in Nepal, many men have been forced to migrate to find work and support their families, which has led to an increased “feminization” of agriculture. However, female farmers frequently have less access to information and resources that would help them to increase yields.
Since my undergraduate degree, I have carried out research on nutrient management in maize in the Eastern Terai region of Nepal, particularly focusing on women, to increase the maize production and income of smallholder farmers. My research involved the use of Nutrient Expert, a dynamic nutrient management tool based on site-specific nutrient management principles, to increase maize production and enhance soil quality without negatively affecting the environment. Regional fertilizer recommendations are often too broad and cannot take into account the soil quality of individual farmers’ field, as it varies greatly among fields, seasons and years. Applying the incorrect amount of fertilizer is costly to farmers and can negatively affect the environment and crop yields.
The Nutrient Expert app rapidly provides farm-specific fertilizer recommendations for nitrogen, phosphorus and potassium for crops in the presence or absence of soil testing results, contributing to dynamic nutrient management, increased productivity and net returns from crops for farmers. In the meantime, it helps to decrease the nitrogen and phosphorous leaching from the soil into rivers, which protects the water ecosystem both in wetlands and oceans. This technology is sustainable because it optimizes the use of nutrients in the soil for higher productivity and prevents the overuse of fertilizer. It decreases the farmer’s cost of production and is environmentally friendly. Further, my research showed that Nutrient Expert helped farmers to produce 86.6% more maize grain than their previous fertilizer practice.
Proper nutrient management is just one of the challenges facing agriculture today. To address these challenges and to create a world without hunger it is extremely important to work with and include young people. Effective extension tools to train and motivate young minds in research and create more interest in maize-based systems and farming is necessary for the overall adoption and proper utilization of improved varieties and technologies.
Samjhana Khanal was recently awarded the 2018 MAIZE-Asia Youth Innovators Award from the CGIAR Research Program on Maize (MAIZE) in the category of “Change Agent” for her research on the productivity and profitability of hybrid maize in Eastern Terai, Nepal. Using Nutrient Expert, a decision support tool, individual maize farmers can get specific soil nutrition and fertilizer recommendations, resulting in higher grain yield, productivity and profits.
An agricultural graduate, Khanal has founded and co-founded several local social organizations in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger. Her organizations support more than 285 households with community microfinance, help resource-poor farmers and assist women farmers.
The MAIZE-Asia Youth Innovators Awards aim to celebrate youth participation in maize-based agri-food systems and are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).
The Director General of CIMMYT, Martin Kropff (left), and the Chair of the MAIZE Independent Steering Committee, Michael Robinson (right), present Samjhana Khanal with the 2018 MAIZE-Asia Youth Innovator Award in the category of Change Agent. (Photo: Manjit Singh/Punjab Agricultural University)
B.M. Prasanna and I joined colleagues at the 13th Asian Maize Conference and stressed the need for continued funding for maize research, keeping in mind climate change and the challenge of the insatiable fall armyworm, which spread to India this year.
Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.
NAIROBI (Kenya) — Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.
These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.
As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.
The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.
At CIMMYT, one of the research questions we were interested in was “Why are plant population densities in farmers fields usually well below recommended rates?” From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.
What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmers’ field conditions differ, as does their capacity to invest in expensive fertilizers.
To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.
Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.
Hello, Big Data!
As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.
In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.
Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).
Most of the agro-dealers and extension workers have kept the app for future use.
The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.
The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.
TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).
Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)
In the last two decades, Africa has taken a leap forward in the development and adoption of agricultural innovations. We have seen an increased use of improved seed, appropriate technologies and agricultural machinery, all adapted to the specific needs of African farmers.
As leaders gather at the African Green Revolution Forum this month, it is time to discuss the best way to take this progress even further, so small farmers across the continent can reap the benefits of sustainable intensification practices and produce more food.
How can we spread access to these technologies and resources and put them into the hands of Africa’s half a billion farmers? How can we best align the efforts of governments, agribusiness and academia? How can we unlock Africa’s agricultural potential and achieve the Malabo Declaration to end hunger by 2025?
It all starts with a seed. Access to quality seed – that stands up to drought, resists diseases and pests, and has nutritional value – helps family farmers adapt to climate change. Bundled with sustainable agronomic practices and technologies, these seeds have the power to unleash an economic shift that could lift millions of Africans out of poverty.
To make this happen, a strong seed system is imperative. Local seed companies need adequate and reliable foundation seed, as well as access to elite germplasm they can include in their own breeding programs. They also want to use new hybrid varieties and improve their certified seed production. Only then they will be able to sell low-cost improved seed to smallholders with low purchasing power and limited market access.
Climate-resilient seeds
The negative effects of climate change have been felt throughout Africa, particularly for maize farmers. The staple for more than 200 million resource-poor people, maize crops have increasingly been affected by changing climate conditions.
To address this challenge, the International Maize and Wheat Improvement Center (CIMMYT) is developing a breeding pipeline of maize varieties, which are deployed by small and medium-sized local agribusinesses. Working in partnership with national governments, private companies and nonprofits, CIMMYT has so far released nearly 300 climate-resilient maize varieties, adapted to the different agroecologies in Africa.
Despite severe El Nino-induced droughts, farmers growing new maize varieties that withstand heat and drought have yielded twice as much as those with common commercial varieties, helping them ensure household food security. In Ethiopia, the estimated economic value of increased maize production due to climate-resilient varieties reached almost $30 million.
In other cases, biofortified food crops are helping to improve nutrition and fight ‘hidden hunger’, by adding micronutrients to people’s diets. For example, nutritious orange maize containing higher amounts of vitamin A is already growing in several southern African countries, preventing children from stunting and losing eyesight.
Modern seed production technologyis providing African seed companies with efficient and affordable ways to develop quality seed and get it to farmers.
Through strong public-private partnerships, the amount of climate-resilient maize grown by African farmers has more than doubled over the last eight years, benefiting an estimated 53 million people. The increased volumes of improved seed reaching farmers now is encouraging, but far from adequate.
When innovation meets collaboration
Traditionally, new varieties can take up to 20 years to reach farmers, but new technologies are helping to speed up the breeding process. Data from flying drones loaded with cameras and other sensors can cut the time to monitor crop health from days to minutes.
The establishment of the region’s first double haploid facility in Kenya reduces the cost and time for breeding work – it enables rapid development of homozygous maize lines and fast-tracks the release of new varieties. It was essential in the emergency response to the deadly Maize Lethal Necrosis, as breeders could release new varieties in just three years, instead of seven. The facility, open to public and private breeders, is currently being used to develop maize varieties that could resist the fall armyworm pest.
New types of small agricultural machines are helping to increase productivity, save time and reduce farmers’ workload. For example, two-wheel tractors allow smallholders to farm with more precision, conserve valuable resources and, ultimately, produce more. Renting agricultural equipment and providing mechanization services is also becoming a way for young entrepreneurs in rural areas to earn a living while giving access to powerful farming tools to family farmers who could not afford them otherwise.
Last June, representatives from dozens of African seed companies and national agricultural research institutions convened in Zimbabwe to establish the International Maize Improvement Consortium (IMIC) in Africa, similar to those already operating in Asia and Latin America. The consortium offers a systematic way to identify and share pre-release maize germplasm, which partners can use in their own breeding.
To address all these issues and democratize access to agricultural innovation, collaboration is crucial. Through past experience, we have learned that partnerships need to be more ambitious and that knowledge needs to be shared across borders. Any new solution must incorporate the expertise and action of national extension systems, private sector companies and other relevant stakeholders.
Donors need to consider long-term funding mechanisms that can operate at a regional and global scale.
Let’s build on the existing success and take it even further. Together, we can build robust seed systems and equip African farmers with the technology they need to envision a safe and sustainable future.
Martin Kropff is the director general of CIMMYT and Stephen Mugo is CIMMYT’s regional representative in Africa.
While traveling through Africa and stopping at CIMMYT’s regional offices, I had the pleasure of meeting the President of Zimbabwe, Emmerson Mnangagwa, and discussing ways of enhancing agricultural productivity in the face of erratic rains expected in the 2018-19 farming season.
CIMMYT’s director general Martin Kropff (right) greets the president of Zimbabwe, Emmerson Mnangagwa, at Munhumutapa Offices in Harare. (Picture by Tawanda Mudimu)
Women at a maize mill in Ethiopia. (Photo: P. Lowe/CIMMYT)
It’s been four years since African leaders met in Equatorial Guinea to commit themselves to boosting agricultural growth across the continent. This is an important way to create real change in Africa. During the gathering, all the African Union’s heads of state signed the Malabo Declaration. It offered a blueprint for Africa’s agricultural sectors, to be achieved by 2025.
For example, the declaration called for at least 10% of any nation’s public expenditure to be allocated to agriculture and rural development. It also set out plans for increasing countries’ food security by intensifying agriculture in a way that didn’t destroy the environment.
There has been some progress in attaining these goals, as a recent status report conducted by the African Union Commission shows. But there’s still a great deal of work to be done.
The report shows that in 2015 and 2016 only ten of the 47 signatory states reached or exceeded the target of 10 percent investment in public expenditure in agriculture and rural development. These are Malawi, Ethiopia, Angola, Egypt, Sudan, Mauritania, Mali, Senegal, Burkina Faso and Equatorial Guinea. Some other countries had invested as little as 0.6 percent of public expenditure in these crucial sectors. Only 20 of the 47 signatories are on track to meet the declaration’s goals by 2025.
There’s no doubt that investment in agriculture can empower economic transformation in the region. But money alone can’t solve Africa’s agricultural problems. International collaboration is key. And it can yield real results, as a project we’re involved in has proved.
The project has relied on multidisciplinary teams of both local and international researchers from the International Maize and Wheat Improvement Centre, The University of Queensland and the Association for Strengthening Agricultural Research in East and Central Africa. Ethiopia, Kenya, Malawi, Mozambique and Tanzania’s departments of agriculture are also involved.
The collaborative effort has meant that it’s been possible to address multiple constraints. These include low crop productivity, poor market access, environmental degradation, and social inequalities. The project had a strong value chain focus. This involves linking – among others – farmers, agribusinesses, traders and policy makers. The result has been improved productivity. We’ve also seen reduced climate risks and improved soil fertility and soil conservation among highly vulnerable smallholder farmers in five East and Southern African countries.
Initiatives like these can help translate the Malabo Declaration from mere document to reality.
Great gains
The Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Programme is led by the International Maize and Wheat Improvement Centre. It is funded by the Australian government. Researchers from Australia and the participating African countries have worked together with researchers from the centre.
The project was set up in 2010 in response to major concerns about food security across the eastern and southern Africa regions. So far, 258,393 smallholder farmers in Ethiopia, Kenya, Malawi, Mozambique and Tanzania have benefited from our activities. We expect this number to increase to 600,000 by 2020.
To date, up to 91 percent of the targeted farmers have adopted at least one of sustainable intensification practices the project promotes. These practices include using drought tolerant maize non-GMO varieties; the rotation of maize and legumes; and intercrops, where a legume is sown into a standing maize crop.
Yields have increased between 30 and 60 percent across the five countries because these practices and associated technologies were adopted.
We don’t only work directly with farmers. It’s important to develop skills and capacity in crop and soil management, market development, resource conservation, gender issues and project management and evaluation.
One key resource here has been the Australia Awards Scholarships. These give people from developing countries the chance to undertake undergraduate or postgraduate studies at Australian institutions. So far this award has supported 65 master’s and doctoral candidates.
Once they return to their countries, these graduates can contribute to solving the complex problems of achieving food security and eliminating poverty. They apply modern research tools, inform policy, train others and even provide leadership in their original institutions.
Harnessing potential
The Malabo Declaration is a useful document against which to measure progress. It offers countries clear targets. It sets metrics against which they can monitor their success. This will help countries to achieve many of the UN’s Sustainable Development Goals by 2030 – including those related to agriculture and food security.
The work of the Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Programme offers an insight into how these goals can be met.
Countries must develop a better understanding of constraints and opportunities so they can massively scale out more productive, efficient and sustainable farm practices. They also need to develop markets, value chains and supporting policies and institutions. And crucially, continued collaborations will be necessary to increase the continent’s capacity in science, extension, policy, institutions, governance and leadership.
These must be priorities to harness Africa’s agricultural potential and spur economic growth.
This article orinally appeared on The Conversation. For the full article, click here.
The declining area sown to wheat worldwide, together with stockpiling by China, is masking significant risk in global wheat markets, experts at Agriculture and Horticulture Development Board (AHDB) in the UK caution.
“Less area sown means a higher dependence on yield to meet demand and thus a greater reliance on good weather, which is out of our control,” said Amandeep Kaur Purewal, a Senior Analyst in AHDB’s Market Intelligence Cereals and Oilseeds team, speaking in a recent interview with the International Maize and Wheat Improvement Center(CIMMYT).
“If there is a production issue—say, drought or a serious pest or disease outbreak in a key wheat growing country—then wheat stocks may not be as accessible as recent, bearish headlines suggest,” Kaur Purewal added. “Bear in mind that the world’s number-one wheat producer, China, is not exporting surplus wheat at the moment, so China’s wheat won’t really be available for the markets.”
Established in 2008 and funded by farmers , growers and others in the supply chain, AHDB provides independent information to improve decisions and performance in UK agriculture.
In “Global wheat: The risks behind the records,” a report published by AHDB in February 2018, Kaur Purewal and colleagues suggest that, despite an unprecedented run of surplus global wheat production in the last four years, there is a relatively small cushion for large-scale importers to fall back upon, if imports become harder to obtain.
“Likely linked to China’s efforts to become self-sufficient in wheat, since 2007/08 the country has increased its stockpile by 225 percent, giving it a 64 percent share of the 138 million ton increase in global wheat stocks over this period,” Kaur Purewal observed. “This and the recent, huge global harvests for maize have saturated grain markets and pressured prices, driving the price of wheat futures to historic lows.”
According to the AHDB report, prices for wheat futures have been relatively stable, but if yields fall and production declines, greater price volatility may return.
“It’s important to remain aware of the market forces and read the news,” she said, “but in the case of the wheat stocks-to-use ratio, which measures how much stock is left after demand has been accounted for, the headlines may not be providing a true reflection.”
Hans-Joachim Braun, director of CIMMYT’s global wheat program, called the AHDB report an “eye opener.”
“This resonates with the cautionary message ofthe landmark 2015 studyby Lloyd’s of London, which showed that the global food system is actually under significant pressure from potential, coinciding shocks, such as bad weather combined with crop disease outbreaks,” Braun said.
“Price spikes in basic food staples sorely affect the poor, who spend much of their income simply to eat each day,” Braun added. “CIMMYT and its partners cannot let up in our mission to develop and share high-yielding and nutritious maize and wheat varieties, supported by climate-smart farming practices. In an uncertain world, these help foster resilience and stability for food systems and consumers.”
A maize field is inundated by a flash flood in southern Bangladesh. (Photo: M. Yusuf Ali/CIMMYT)
Do you ever contemplate climate change over your morning cup of coffee?
Probably not. But perhaps it is time that you did.
The tropical storms that recently hit the U.S. and Caribbean in quick and brutal succession have brought the impacts of climate change closer to home for many of us in the developed world. Hurricane Maria decimated Puerto Rico, wiping out nearly 80 percent of the value of the country’s crops. One of these major exports is coffee. A major industry, a lifeline for farmers, and the breakfast staple you may take for granted, swept away.
Storms like Maria, which seem to be fuelled by climate change, and are an indication of the kind of extreme weather events the world will have to contend with in the future. They won’t only devastate homes and cripple countries’ infrastructure, they will have a serious and long term effect on our global food supply.
Many parts of the developing world have been experiencing the brunt of these climate change impacts for decades. With fragile food systems at the mercy of the increasingly erratic weather – they stand to lose a lot more than those of us with the resilience to bounce back. They have fewer options to recover and need urgent help.
A predicted 150 million to two billion people are migrating to escape conflict, poverty, hunger, and extreme weather events. To make matters worse, food production continues to emit greenhouse gases, contributing to the overall change in climate and perpetuating this vicious cycle.
World leaders must surely have seen this coming.
The Paris Climate Agreement in 2015 recognized agriculture as a sector where action is needed, to protect food and farming from the worst climate impacts. A vast majority of countries have formulated ambitious plans to tackle these issues on the ground. Yet two years on the price tag for inaction is climbing into the hundreds of millions.
Only by backing climate action in agriculture can our global food system have a fighting chance. This week’s climate change conference in Bonn – that several US governors will attend in the absence of the Trump administration – will be the ideal time to step this action up. The solutions are out there – farmers, governments, scientists and the private sector are putting them into practice around the world every day.
Soybeans damaged by a flash flood. (Photo: Shah-Al-Emran/CIMMYT)
Climate-proof crops
In Zimbabwe, where farmers pin their hopes on reliable rainfall, droughts pose a constant threat to crops and livelihoods. Hunger looms large for the poorest farmers. In this setting, drought-tolerant maize varieties are a lifesaver. Farmers who planted drought-tolerant varieties have substantially increased their output and incomes; researchers estimate that this is equivalent to more than nine months of food at no additional cost. Scientists are also breeding varieties that can contend with hotter climates – these maize seeds are increasingly in demand by farmers.
Fighting pests
Changing climates create favourable conditions for new pests and diseases. Now affecting more than 30 African countries, the fall armyworm is wrecking staple crops and compromising the food and nutritional security of millions of people. Recently, a coalition has initiated an emergency response to this looming threat, building on decades of experience managing pests and diseases. The strategy centers around the needs of smallholder farmers, who often cannot afford costly chemical insecticides. Potential responses include low-cost and environmentally safer pesticides, simple and effective on-farm practices like intercropping maize with beans, biological control (which deploys other organisms or plants to attack the pest), and improving resistance of vulnerable crops. Better monitoring and surveillance will help countries mobilize responses well ahead of time.
Insurance when disaster strikes
Even the most drought-tolerant and pest-resistant crops and livestock are vulnerable to prolonged droughts, erratic rainfall and extreme weather events. New insurance products geared towards smallholder farmers can help them recover their losses, and even encourage farmers to invest in climate-resilient innovations. In the most flood-prone state of Bihar in India, a new insurance scheme based on satellite data is set to pay out to up 60 percent of farmers that purchased policies, offering some hope to rebuild livelihoods washed away during the monsoon season.
Fall Armyworm on maize in Nigeria. (Photo: G. Goergen/IITA)
Sustaining food security while reducing emissions
It is imperative to reduce agriculture’s contribution to global emissions if we are to meet the global target of 1.5 degrees set out in the Paris Climate Agreement. But this has been one of the sticking points for UN climate negotiations on agriculture; some countries fear that mitigation actions could compromise food production. However, research undertaken by CGIAR and its partners has found that a middle ground is possible, where farmers adopt practices that improve productivity and resilience while also reducing emissions. In Vietnam and the Philippines, farmers are using water-saving approaches to growing rice, which happen to reduce harmful methane emissions by around 50%. It’s an easy win for farmers and also for the planet.
It is time that our global food and farming systems – so vital to our survival – get the attention they deserve. It shouldn’t take these disasters happening close to home (or the threat of an interruption in our coffee supply) for our leaders to take action.
The hard-won gains in global food security are already sliding into reverse, with farmers at the front lines of future climate change. The UN climate talks offer the opportunity for global policy and financing to catch up to the needs already expressed by countries. Anything less would be a catastrophe for farmers and for our collective future.
Elwyn Grainger-Jones is the Executive Director of CGIAR System Organization and Martin Kropff is the Director General of the International Maize and Wheat Improvement Center (CIMMYT).
Find the original article published by Reuters here.
Esnath Shaibu (left) on his farm in Malawi discussing resource allocation on his plots. Photo: C. Thierfelder/CIMMYT
LIWONDE, Malawi (CIMMYT) — Esnath Shaibu, a smallholder farmer from Matandika, southern Malawi was a host farmer with the International Maize and Wheat Improvement Center (CIMMYT) for seven years who helped the organization conduct research trials on sustainable agriculture intensification with support from the International Fund for Agricultural Development (IFAD).
Shaibu’s farm in Matandika, like most other farms in this area, is small and restricted to less than one hectare (ha) per household. Matandika is highly affected by the effects of climate change and a growing population is putting more pressure on dwindling land resources. Farmers have experienced more droughts in recent years which has affected food and nutritional security. Investment into soil conservation and maintaining soil fertility has therefore become critical.
A good proportion of Shaibu’s livelihood is generated from the land of his .3 ha research plot, which evaluates conservation agriculture (CA) systems in the environments and circumstances of Matandika.
The fields in Matandika are on hillsides and need to be seeded with as little disturbance as possible to avoid soil erosion and run-off. Farmers have also understood the value of crop residues and integrate legumes as intercrops in their fields to intensify their farming systems and increase diversification. Optimal plant spacing, early planting and precision application of fertilizers have been other good agriculture practices that farmers perfected in this area.
During the trials, Shaibu practiced a direct seeded CA method, intercropping maize and pigeonpea, and compared the results with conventional tillage practices just planting maize. Yields from Shaibu’s plots were increasingly stable under the CA system, as they proved to be more resilient against in-season dry-spells, drought and unevenly disturbed rainfalls which often fell at great intensity.
Shaibu graduated from the CA program in 2014, but continued to implement the same principles and practices on his own without CIMMYT’s interference or support.
When questioned about his rationale during a field visit in 2017, Shaibu said “we saw something good in it,” and his healthy looking crop spoke for itself.
Shibu’s case demonstrates that technology adoption is only successful if we as development practitioners work ourselves out of a job. He is a true adopter who has continued investing his own resources to produce a good maize crop on a significant proportion of his land by applying CA principles at highest standards. Shaibu has also converted other fields he owns to CA and continues to be an influential advocate in the community for the benefits of CA.
Farmers in Lushoto, in the Tanga region of Tanzania, are working with researchers to test different forage varieties like Brachiaria for yield and drought resilience. (Photo: Georgina Smith/CIAT)
The facts are startling. More than 2 billion people worldwide suffer from micronutrient deficiency – 795 million of whom are undernourished. The challenge to nutritiously and securely feed the growing population is further exacerbated by climate change which has led to extreme weather patterns and decreasing crop yields. With more than 10% of the world’s population living on less than $1.90 per day, the imperative to transform food systems in a way that simultaneously improves lives, livelihoods and the condition of natural resources is clear.
Climate change presents a formidable challenge as one of the biggest constraints to improving food systems, food security and poverty alleviation around the world, especially for the world’s most vulnerable people. The impacts of climate change and poverty are closely interconnected as climate change impacts land availability, rainfall, and disease. With poor people disproportionately dependent on rainfed agriculture for their livelihoods, these communities are thus especially vulnerable to the impacts of climate change. The increasing frequency and intensity of climatic shocks impinges on their ability to sell an agricultural surplus, meaning less reinvestment in their farms and other livelihood activities, and less ability to purchase a nourishing diet.
The breakthrough Paris Climate Agreement of 2015, while far from perfect, represented an historic and ambitious new phase for climate action, and opened a door for the agricultural sector to take a leading role. “We recognize that the agricultural sector has a key role to play in increasing resilience to climate shocks. Food security, food production, human rights, gender, ecosystems and biodiversity were all explicitly recognized in the Paris agreement and these are issues at the core of our work,” according to Elwyn Grainger-Jones, Executive Director of the CGIAR System Organization.
Across Africa, Asia and Latin America, CGIAR and its partners are developing climate-smart technologies to help farmers adapt to climate change as well as mitigate agriculture’s contribution to climate change. The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) brings together the expertise in agricultural, environmental and social sciences to identify and address this nexus between agriculture and climate change. Innovations such as drought tolerant crops, agricultural insurance schemes and management practices for reducing greenhouse gas emissions are just a few of the technologies being developed by CGIAR.
In Africa, researchers from the International Maize and Wheat Improvement Center (CIMMYT) are working on drought tolerant maize which offers African farmers significant benefits, producing up to 30 percent more grain than conventional varieties under drought. Through beneficial partnerships with governments, private sector and local NGO’s, researchers have fast-tracked varietal releases and fostered competitive seed markets, allowing for widespread access to quality seed at an affordable price.
“A large percentage of resource-poor farmers and consumers live in tropical environments, which are most vulnerable to climate change. By providing research-based knowledge and tools, CGIAR helps farmers adapt, bringing food security and prosperity to these areas,” said Martin Kropff, CIMMYT’s director general and CGIAR System Organization Board Chair. “CGIAR-led research on drought tolerant maize has helped more than 5 million households in 13 countries become more resilient to climate change.”
Ruth Kamula, a community-based seed producer in Kiboko, Kenya, planted KDV-1, a drought tolerant (DT) seed maize variety developed with the Kenya Agricultural Research Institute (KARI) as part of CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project. “I am trying my hand at DT maize seed production because it will lift me and my family out of poverty. It is our lifeline during this time of drought,” she says. (Photo: Anne Wangalachi/CIMMYT)
In Vietnam, Bangladesh and the Philippines, researchers from the International Rice Research Institute (IRRI) are developing rice management techniques, known as alternate wetting and drying, in irrigated lowland areas which could save water and reduce greenhouse gas emissions while maintaining yields.
To ensure that agricultural innovation is developed where needed, CGIAR is prioritizing responsive, farmer driven technologies, particularly in relation to climate-smart solutions.
In Senegal, CGIAR-led research on digital advisory and climate information services are reaching farmers with improved seasonal forecasts via radio and SMS – information that is helping farmers adapt to climate change and improve resilience to climate shocks.
In India, researchers from CCAFS are establishing well-designed agricultural insurance schemes which will enhance resilience to climatic shocks and help protect farmers during bad harvests. CCAFS is also working in partnership with the World Business Council for Sustainable Development (WBCSD) to help major agribusiness companies improve their ability to trace, measure and monitor climate-smart agriculture progress, among others, by developing science-based indicators.
“The challenge we now have is how to take these innovations to scale, reaching millions rather than thousands of farmers. This requires a transformation in the way we partner and deliver our science, as well as targeting and bundling together climate-smart agriculture innovations,” outlined Kropff.
“We recognize that responding effectively to the challenges of climate change hinges on dramatic changes in the way we work,” continued Grainger-Jones. “We have a responsibility to foster paradigm shifts which can prepare us for the challenges we face.
At its core, CGIAR is committed to transforming agriculture and food systems that will enable the most vulnerable to better nourish their families and improve productivity and resilience.
“As the world’s largest agricultural research for development partnership, CGIAR is in a unique position to respond to the world’s most complex development challenges. We are committed to leading world class climate change science to increase resilience to sustain the planet’s fragile ecosystem,” reflected Grainger-Jones.
Elwyn Grainger-Jones, CGIAR System Organization Executive Director and Martin Kropff, Director General of CIMMYT and Board Chair of CGIAR System Organization recently participated in the: ‘Climate change research and partnerships for impact on food and nutritional security’ event during the opening of the new CGIAR Research Program on Climate Change and Food Security (CCAFS) office at Wageningen University in the Netherlands.