Skip to main content

Bridging the communication gap in genetic improvement tools in agriculture

The Africa Biennial Biosciences Communication (ABBC 2023) Symposium, held in Nairobi, Kenya, provided a platform for experts, scientists, policymakers and stakeholders to discuss the evolution of genetic improvement tools in agriculture and the critical role that communication plays in ensuring these advancements are aligned with societal needs. The theme of the symposium, “Evolution of Genetic Improvement Tools in Agriculture: Is Communication Matching Up?” sparked insightful discussions and revelations regarding the intersections of technology, communication and sustainability.

Biotechnology underpins sustainable agriculture by providing potential solutions that enable agricultural systems to better address underlying health, livelihood and nutrition challenges. The quest for innovative and tech-enabled options for sustainable agriculture offers valuable lessons contributing to long-term food security. For example, through the applications of genome editing technologies, nutritional enhancements and reduced reliance on agrochemicals are both possible.

A case study presentation by Kevin Pixley, director of the Dryland Crops Program (DCP) and interim director of the Global Wheat Program, “How will communication about new breeding tools impact the development of sustainable food systems and one health-focus on crop science,” detailed how communication plays a vital role in informing consumers and society at large about the positive impacts that new breeding tools can have by contributing to sustainable food systems.

Kevin Pixley speaks during the panel discussion at the ABBC 2023 symposium in Nairobi. (Photo: Marion Aluoch/CIMMYT)

Transparent communication builds trust and impacts consumers’ ability to make informed decisions regarding genome-edited or other products. “In order to communicate effectively, we need to be transparent and provide information that consumers are seeking,” Pixley said. “Understanding their questions and concerns is the first step.” He gave examples of communication challenges, discussed various levels of transparency and urged for proactive approaches to communicate the benefits of genetic improvement technologies. Pixley further pointed out that the credibility of the communicator plays a crucial role in shaping public perception and emphasized the importance of tailoring communication to different cultural contexts and audiences.

During the panel discussion, “Systems thinking toward sustainable food/feed supply and one health. What is the role of communication?” experts from various fields, discussed the interconnectedness of food systems, human and animal health, the environment and communication. Acknowledging the complexity of the interconnected food production and consumption cycle, Pixley suggested that a holistic approach is necessary and called for a paradigm shift towards a thriving agricultural ecosystem.

The discussions delved into the role of communication in promoting economic, social and environmental sustainability solutions. The dialogue revealed the importance of involving farmers, policymakers and development partners to ensure holistic solutions.

Miscommunication and misinformation were also addressed, with the speakers recognizing the need to address perceived risks and demonstrate the safety and benefits of genetic advancements. Also discussed was the importance of simplicity and tailored messaging for various stakeholders, including policymakers, farmers and consumers.

In conclusion, the panelists agreed that effective communication is essential to realize the potential benefits offered by biotechnologies.

Mithika Linturi, cabinet secretary for Agriculture and Livestock Development, engages with the DCP team at CIMMYT’s exhibition stand. (Photo: Marion Aluoch/CIMMYT)

At the sorghum festival, Pixley and the DCP team showcased CIMMYT’s efforts in sorghum breeding and genetic improvement. They underscored the collaborative work with NARES partners and emphasized the importance of co-designing, co-developing and co-implementing projects to ensure sustainability and shared ownership. “A successful program requires collaboration, sharing resources and building sustainable networks,” said Pixley. “Our efforts are driven by the collaboration of various stakeholders.” The symposium also witnessed CIMMYT showcasing millet and sorghum at the exhibition, where the DCP team engaged with many participants.

All these discussions demonstrated the critical role that communication plays in shaping the trajectory of genetic improvement tools in modern agriculture. Transparent, culturally sensitive and proactive communications are essential to achieve social license for novel technologies, such as genome editing, to contribute to sustainable food systems, improved farmers’ livelihoods and food security for farmers and consumers.

Exploring alternative solutions: the case for synthetic mulch in a changing world

Food security remains elusive for most smallholder farmers reliant on rainfed crop production, given the erratic rainfall patterns induced by climate change in Southern Africa. Among others, conservation agriculture (CA) is a concept often considered to be effective to adapt to these erratic rainfall patterns, enabling farmers to cope better with the prolonged dry spells that are characteristic of the semi-arid regions in Zimbabwe.

Conservation agriculture essentially involves three key pillars, namely, reduced soil disturbance, the use of crop rotations or intercrop associations, and the provision of permanent soil cover. The soil-cover component often requires the use of previous crop residues or other organic materials as a surface mulch. However, local farmers consider this task to be the most laborious aspect of implementing CA, which poses a significant challenge to its widespread uptake.

Collecting insights on influence of synthetic mulch. (Photo: CIMMYT)

Traditionally, farmers are advised to use organic mulch, such as maize residues, for soil cover. However, in most communal areas, there is a growing scarcity of organic mulches as they are predominantly used as livestock feed in mixed crop-livestock farming systems. Ironically, semi-arid regions that benefit from the use of crop residues as soil cover are also regions where the residues are the scarcest due to competing uses as livestock feed or as firewood. These competing interests pose a dilemma, as it is essential to cover the soil while also necessary to feed the animals. In neighboring countries like Malawi, maize residues are also used as fuel for firewood, further increasing the demand. It is clearly important, therefore, to develop alternative solutions to address this pressing issue.

“Since I embarked on my journey in conservation agriculture back in 1998, the matter of residues has been a topic of discussion. It is imperative that we walk the talk and develop practical solutions to meet the needs of farmers who rely on residues to feed their animals. One potential solution we are exploring is the use of synthetic mulches to cover the soil. By employing this method, we can cover the soil, apply fertilizer, and hopefully witness a positive impact. We certainly must develop synthetic materials that can be used sustainably as surface mulches in the semi-arid environments where organics are most scarce yet most needed,” stated Isaiah Nyagumbo, regional cropping systems agronomist.

To test such innovations, some water-conservation experiments were established in Buhera and Mutoko, Zimbabwe, during the last two seasons, and the results have been encouraging.

“I am grateful to work with the CIMMYT team on these water conservation trials, and I hope they continue. Before the trials, we were using organic mulch, but after using the synthetic approach and comparing it with organic mulches and none at all, we are seeing so many positive results. But there are challenges we can’t escape, including affordability. But I have seen higher yield returns this year as I harvested close to 15 by 50kgs of maize,” said Nyawasha, a farmer from Mutoko, Zimbabwe, ward 16.

Further detailed studies to understand these systems have also been established in the current dry season at the CIMMYT campus in Harare, to test the effectiveness of these synthetic mulches under conditions of severe moisture stress. The different treatments include clear synthetic mulch, black synthetic mulch, organic mulch and no mulch. So far, for the maize crop now at flowering stage, the growth and yield are strikingly better in plots under the synthetic mulches compared with the organic and no mulch plots. This clearly shows the importance of finding viable alternatives. The crop with synthetic mulches also developed much faster, all the way from crop emergence.

Exploring the tied-ridging system

In these trials, mulching treatments are being tested in conventionally tilled plots, CA basins (pfumvudza basins) and under the tied-ridging system. Tied ridging has been developed in Zimbabwe for use by smallholder farmers since the 1980s and is well known for its effectiveness in reducing sheet erosion and water run-off. This system employs ridges 15–20 cm high, with crossties in the furrows at 1–2 m intervals that trap rainwater and prevent runoff and soil erosion. However, in a typical rainfed system, poor germination challenges can arise when planting on top of these ridges due to excessive drying of moisture from the raised ridges. Furthermore, during prolonged dry spells, the exposed ridges tend to cause crops to wilt more than flat-planted conventional crops. To address these issues, scientists at CIMMYT in Zimbabwe are also exploring innovative ways to improve the tied-ridging system through ways that minimize water loss through direct soil evaporation.

“This has been one of the shortcomings of the tied-ridging system, and we need ways to overcome this excessive moisture evaporation. Once the water has gone into the soil, it should only leave through plant uptake and not be wasted through direct soil evaporation,” said Nyagumbo.

Integrating synthetic mulch into the tied-ridge system. (Photo: CIMMYT)

One approach being considered is incorporating mulch into the system to reduce evaporation and ensure that captured water is retained. The results are evident in the vibrant greenery of the plants with mulch compared with those without. Observing the number of plants with tassels and silk, it is clear that the plots with clear synthetic material have faster growth and reach maturity sooner compared with the plots with black synthetic mulch.

“My outlook on the use of synthetic mulch on ridges is that they are much more effective, as it makes the soil very loose for good aeration to the plant and encourages high growth rate. I noticed that plants germinated in three days and the little water provided will directly benefit the plant without escaping. I am encouraged to continue doing this tied ridge approach using synthetic material,” said Nyekete, a farmer in Buhera, Zimbabwe, ward 7.

While exploring various options, it has also been important to prioritize and focus on one aspect at a time. The initial focus has been on maize residue, as it is a valuable resource for both soil cover and livestock feed. However, the scarcity of maize residue poses a significant challenge for many farmers, especially in regions like Buhera, Mberengwa and Shurugwi, where animals consume all available resources. Placing maize residues in open fields is not a very viable solution, as freely roaming livestock will just consume it. Fencing or creating structures to protect the residues from livestock also requires substantial effort and resources, thereby making this mulching a daunting task for farmers.

Food for thought

While the challenges faced in providing mulch for conservation agriculture are multifaceted, there is a growing need to develop innovative solutions that address the scarcity of organic mulch and explore alternative methods such as synthetic coverings. By continuously adapting and refining our practices, we can ensure the sustainability of agriculture in this region and improve the livelihoods of farmers.

Global Conference on Sustainable Agricultural Mechanization: efficiency, inclusiveness, and resilience

CIMMYT participated in the inaugural Global Conference on Sustainable Agricultural Mechanization, organized by the Food and Agriculture Organization of the United Nations (FAO) from September 27-29, 2023. The gathering provided space for focused dialogues to prioritize actions and strengthen technical networks for sustainable development of agricultural mechanization.

Bram Govaerts, CIMMYT director general, presented a keynote address on September 27 regarding climate change and mechanization. As a global thought leader and change agent for climate resilient, sustainable and inclusive agricultural development, CIMMYT has many specific initiatives centered on mechanization for facilitating machine innovations and scaling-up improved farming practices for sustainability and farmer competitiveness.

Bram Govaerts delivered a keynote address. (Photo: CIMMYT)

Collaboration is a hallmark of CIMMYT’s endeavors in mechanization, including a strong partnership with local governments across Latin America, Africa and Asia, and international cooperation agencies, supporting the Green Innovations Centers installed by GIZ-BMZ and working on accelerated delivery models together with USAID, in Malawi, Zimbabwe and Bangladesh, to name only a few. Further, local value chain actor engagement is crucial and necessary in this work to connect farmers with viable solutions.

CIMMYT has a long history of leading projects aimed at mechanizing the agricultural efforts of smallholder farmers, including the successful MasAgro Productor in Mexico and FACASI (farm mechanization and conservation agriculture for sustainable intensification) in East and South Africa. At present, the Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project is working towards to improve access to mechanization and reduce labor drudgery while stimulating the adoption of climate-smart/sustainable intensification technologies. The project engages deeply with the private sector in Zimbabwe and South Africa to ensure long-term efficacy.

The Scaling Out Small Mechanization in the Ethiopian Highlands project was active from 2017 to 2022 and increased access for smallholder farmers to planting and harvesting machines. Farmers using two-wheel tractors furnished by the project reduced the time needed to establish a wheat crop from 100 hours per hectare to fewer than 10 hours. CIMMYT’s work was in partnership with the Africa-RISING program led by the International Livestock Research Institute (ILRI) in Ethiopia.

“At CIMMYT, we work knowing that mechanization is a system, not only a technology,” said Govaerts. “Sustainable mechanization efforts require infrastructure like delivery networks, spare parts and capacity development. Working with local partners is the best way to ensure that any mechanization effort reaches the right people with the right support.”

Read these stories about CIMMYT’s efforts to support equal access to agricultural mechanization and scaling up within local contexts.

One-minute science: Mechanization for agriculture

Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYT’s mechanization work is context specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.

New generation of farmers adopts mechanization, making farming more productive and profitable

Working with the Cereal Systems Initiative for South Asia (CSISA), CIMMYT is leading mechanization efforts in Northern India. Combined with sustainable agriculture, the next generation of farmers now have access to tractors, seeders and other tools that are increasing yield and reducing back-breaking labor.

Gangesh Pathak with his father at the custom hiring center which provides custom hiring services to smallholder farmers in the region. (Photo: Vijay K. Srivastava/CIMMYT)

A promising partnership

The delivery of row seeders from India to Benin demonstrates a new path to sustainable South-South business relationships. Developed in India in an iterative design process with farmers, portable row seeders have been a great success. Working with GIC, CIMMYT facilitated a technology and materiel transfer of the portable row seeders to Benin.

A farmer pulls a row seeder in Benin, West Africa. (Photo: CIMMYT)

Solar powered dryers boost peanut production in Togo

Peanuts thrive as a crop in Togo and other West Africa countries, but post-harvest is threatened by aflatoxins, so the entire crop needs to dry. Traditionally, farmers, often women, have dried the peanuts in the open air, subject to weather and other pests. However, CIMMYT, working with GIC, has introduced solar-powered dryers, which speeds up the drying process by a factor of four.

Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

A business model for mechanization is providing hope in Burkina Faso

Working with partners in Burkina Faso, CIMMYT is facilitating smallholder mechanization with a model of cascading effects: one farmer mechanizing can then use their skills and eqBMZuipment to help their neighbors, leading to community-wide benefits.

Pinnot Karwizi fills a mechanized sheller with dried maize cobs. (Photo: Matthew O’Leary/CIMMYT)

Visit our mechanization page to read stories about ongoing mechanization initiatives.

Curiosity and persistence have walked the path with me

For the sixth installment of the ongoing seminar series on women’s leadership—Catalysts of Change: Women Leaders in Science—CIMMYT had the opportunity to interact with Ismahane Elouafi, Executive Managing Director of CGIAR. This session was held when Ismahane was Chief Scientist at the Food and Agriculture Organization (FAO).

At the outset, Bram Govaerts, Director General of CIMMYT, introduced Ismahane as a strong advocate for diversifying into neglected and underutilized crops and rethinking the food system as a whole. “She is an early advocate for resilience and inclusion from a human and biological perspective, is internationally known for promoting the use of non-fresh water in agriculture, and empowering women in science,” he said.

From fighter pilot to agricultural scientist

Ismahane outlined her career trajectory—her initial fascination with the sciences, particularly in biology and genetics, during school; how her military training in Morocco to become the nation’s first female fighter pilot had to be aborted, prompting her to pursue a new career; her subsequent enrollment in an agricultural college, as other specialized institutions did not have available seats; and how, despite the hiccups, she went on to obtain a Master’s degree in Genetics and Plant Breeding, followed by a Ph.D. in Genetics.

“I do not succumb easily to discouragement, certainly not to prejudice or naysayers,” she stated. “Curiosity and perseverance have consistently guided me over the past 25 years of my career.”

Diverse background leads to diverse thinking

Ismahane describes herself as a mother of two wonderful children, a Moroccan who immigrated to Canada, an Arab Muslim woman, and a passionate advocate for genetics.

Coming from a family of six daughters, she noted that discrimination or favoritism played no role in her upbringing. “My parents encouraged our curiosity and instilled in us a love for learning and sharing knowledge,” she said. Ismahane selected her fellowship opportunities with ICARDA and CIMMYT due to their international exposure, which enabled her to move from laboratory to laboratory and university to university, allowing her to explore new technologies and engage in global projects.

In each setting, she learned more than just science. “I learned how to deal with people, appreciate diverse cultures, languages, and food.” She stressed the importance of learning new languages and how learning Spanish opened doors for her in Latin America. “Not understanding each other makes us defensive, leading to problems in the world,” she told her audience.

More scientists needed in management

At a point in her life when she wanted to settle down and have a family, Ismahane migrated to Canada—what she calls “a new chapter.” In Canada, she got a chance to work with the federal government in Ottawa and gained experience in science management. “It made me look at science differently—how budgets are allocated, how performance is measured, how to work with different stakeholders. This was a big learning curve for me,” she said, adding that if we want science to be heard and used in policy and budget decisions, we need more scientists in management. “You can’t let lawyers and finance people run the shop.”

After moving across different management roles, she realized that her calling was international development. “It took me going to Canada, being part of Canada’s systems and bureaucracy, and learning science management to realize that my heart lies in international development using science, tech, and innovation.”

She also shared insights about her strategic work at FAO, which aimed to achieve the “four betters”—better production, better nutrition, better environments, and better life, leaving no one behind. “For me, leaving no one behind and having a better life for everybody based on agriculture is very important,” she shared.

In a follow-up interview with Andrea Gardeazabal, Monitoring, Evaluation, and Learning Manager – ICT for Agriculture at CIMMYT, Ismahane shared some challenges of being a woman leader or scientist in a male-dominated field.

“They are the same challenges as those of being a good scientist: finding the right subject, securing the right resources, and having the right partners. But for women, particularly young women, you also have to prove yourself in a new place,” she said.

Her advice to younger women in science was: “You have to like what you’re doing or move on. By moving, you grow. There are so many opportunities, and so much to do. Hence, be in a place that you like. Believing in what you do and enjoying it makes the difference.”

Changes needed to make research organizations more inclusive

Ismahane shared that organizational policies aimed at supporting women must address the fundamental biological needs of women, allowing them to fulfill their roles as mothers and maintain their families. For that, a robust support system within the workplace is essential.

“In all sectors, but more in science and agriculture, we need positive discrimination,” she said. She explained that this does not imply selecting women who lack qualifications; rather, it means providing opportunities for qualified women to enter and excel in these fields. “It will be necessary to maintain such measures for the next 50 to 70 years to promote a more balanced workforce, because right now the numbers are not encouraging at all, particularly when you go into senior management,” she said. “We need to put in place policies that encourage women to continue in their careers,” she added.

Key insights about building resilient and sustainable agri-food systems

Ismahane pointed out how historically the agricultural sector has focused on a limited number of species because of economic restraints, which rendered the agriculture sector susceptible to climate change and a contributor to the problem. “Transformation of the agri-food system is a must—it’s not optional. We must create a system that is more resilient, sustainable, inclusive, and efficient,” she emphasized.

Ismahane also pointed out how the logistics of moving agricultural commodities globally often do not make sense and can worsen greenhouse gas emissions. “Currently, data related to commodity transport and emissions are largely controlled by multinational companies, who rarely share this information,” she said. Leveraging traceability to assess the carbon footprint of commodities can promote responsible trading and support local and regional production, she explained.

The floor then opened for audience Q/A.

Click here to watch the seminar video or visit our website.

The world must act to avert a climate-induced food shortage, cautions Cary Fowler. CIMMYT has a strategy to strengthen agrifood systems.

Erratic climate patterns, global and regional conflicts, biodiversity degradation, and insufficient funding for agricultural research pose a serious risk to meeting global food production goals by mid-century, according to Cary Fowler, the U.S. special envoy for food security.  

The world must produce 50-60% more food by 2050 to nourish a growing population. Yet global crop yields are projected to drop between 3-12% over the same period. Wheat yields in Africa and South Asia, two regions with the fastest growing and youngest populations, are expected to decline by 15% due to global warming. Food systems have also been disrupted by the Russia-Ukraine conflict and the COVID-19 pandemic, raising food and fertilizer prices, and exacerbating regional instability.   

Maize vendor at village market in Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Fowler cites inadequate government funding for plant breeding programs as a contributor to an ineffective response to introducing improved climate-adaptable staple crops. “With the state of current affairs, we are on our way to failing to feed the world by century’s end,” said Fowler.  

Science and Innovation for a Food and Nutrition Secure World: CIMMYT’s 2030 Strategy 

Global peace and development efforts will demand a cross-sector and coordinated response. Through its 2030 Strategy, CIMMYT has laid out a robust series of investments in crop systems innovation, partnership, and sustainable development, to advance more resilient food systems. The 2030 Strategy consolidates CIMMYT’s target areas through three pillars: Discovery, SystemDev, and Inc. These pillars focus on research and innovation, systems approach, and strong partnerships and advocacy efforts with the private and government sectors to address an emerging food crisis. 

“Our 2030 Strategy places research, innovation and partnership at the center of facing the challenges of the 21st century to solve tomorrow’s problems today—for greater food security and the prosperity of smallholder farmers. As we implement work plans, CIMMYT is proud of the achievements it has seen through projects in sub-Saharan Africa, our contribution to influential policy reports, and continued praise for our agri-development initiatives in Latin America. All these feats will help us deliver on and expand our efforts to reach our 2030 vision,” said Bram Govaerts, CIMMYT director general.  

CIMMYT remains prominent in developing sustainable solutions for farmers and policy actors  

CIMMYT has achieved important progress in Eastern and Southern Africa. Projects such as the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub have brought together regional seed partners, government agencies, and CGIAR Research Centers, to reduce fertilizer prices, boost resilience to drought and pests, and facilitate market access for smallholders.  

In the recent SPG Coalition report, CIMMYT featured prominently as a leading organization in climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management. This report informs researchers, non-governmental organizations and private sector partners in agrifood and climate policy development.  

A CIMMYT staff member gives a farmer training session in Boiragee, Bangladesh. (Photo: S. Mojumder Drik/CIMMYT)

MasAgro, a research-for-development initiative, has received praise by international organizations and governments as an exemplary program for sustainable development in Latin America. Over 500,000 farmers in Mexico have adopted hardy maize or wheat varieties and resource-conserving agricultural practices. To maximize on the experience of MasAgro, CIMMYT has partnered with a CGIAR initiative: AgriLAC Resiliente. This initiative aims to bolster the competitiveness and sustainability of agrifood systems to respond to forced migrations in Central and South America which are worsened by regional food insecurity and conflict.  

Science and innovation powered by partnership can deliver a food secure world  

Climate change undoubtedly threatens global peace and agrifood systems. With over 130 countries depending on food imports, today’s hyper-connected world demands collaborative partnership across all sectors to build up shockproof food systems. Through a grassroots approach to research and innovation, the CIMMYT 2030 Strategy is built upon decades of applied science which has impacted communities around the world, to continue influencing policy, pioneering innovations, and advocating for the development of a food secure future.  

Steering towards success

The inaugural Rwanda National Seed Congress, which took place in Kigali on July 31 and August 1, 2023, marked a significant milestone for the country’s seed industry. Themed “Private Sector Strategic Roadmap for the Seed Industry 2030”, the event brought together key stakeholders from the government, public, and private sectors to address challenges and opportunities in the national seed value chain.

Discussions centered around pertinent issues concerning the seed sector in general, with a particular focus on the Rwandan National Seed Strategic Roadmap. This document, which was developed through consultations with various stakeholders, provides a comprehensive plan to steer the industry towards success and sustainable growth.

“Enhancing and managing the seed system is a complex endeavor that requires the collaboration of various stakeholders,” said Chris Ojiewo, CGIAR Seed Equal Initiative lead. “This is where public-private partnerships come in as a valuable tool for nurturing the growth and expansion of the seed industry.”

Chris Ojiewo, CGIAR Seed Equal Initiative lead, presented at the inaugural National Seed Congress in Rwanda. (Photo: NSAR Congress)

During a presentation entitled Public-private Partnership: A Tool for Development and Strengthening of the Seed Sector, Ojiewo highlighted the growing importance of collaboration and partnerships in the current seed system. He emphasized that the processes and elements that shape the seed sector are complex and extensive, making it too much for any one organization—whether public or private—to handle alone.

The way forward

During the congress, several key recommendations were proposed  to increase the potential of the seed industry. The government was encouraged to seek accreditation with major seed industry quality organizations, such as the International Seed Testing Association (ISTA) and Organization for Economic Co-operation and Development (OECD) certification schemes, while adopting International Union for the Protection of New Varieties of Plants (UPOV) to establish an improved regulatory environment conducive to industry growth.

The empowerment of the National Seed Association of Rwanda (NSAR) as an advocate and facilitator for the seed industry was also highlighted as an essential measure. The government’s support in enabling the seed association to become increasingly self-regulatory is seen as crucial to the industry’s growth over the next seven years, with private seed industry players developing internal systems to ensure compliance with rules and regulations.

Another key recommendation for increasing sustainable improved seed use in Rwanda was the use of Public-Private Partnerships (PPPs), which will play a critical role in promoting the country as a seed production and trade investment destination.

Ojiewo emphasized the importance of such partnerships, noting that “PPPs have the potential to transform the seed industry by leveraging the strengths of different organizations.” He further highlighted that in addressing the challenges of global food security and sustainable development, the way forward becomes clear through collaboration, innovation, and a shared commitment to advancing agricultural progress through collaborative efforts.

The congress also focused on attracting affordable financing to scale up investments throughout the seed value chain. It was considered essential to involve industry financial players in the development of optimal financing structures to support the expansion of the industry.

As a result of the successful event, plans have already been made for the second National Seed Congress in 2024. Scheduled to take place in Kigali on July 29 and 30, 2024, the next event aims to build on the achievements of the first congress and further drive the growth of Rwanda’s seed industry.

CGIAR’s Seed Equal Initiative helps farmers by providing them with better seeds that are nutritious, preferred in the market, and that can withstand climate change. These varieties have been carefully developed to exhibit significant genetic advancements, ultimately benefiting farmers. It also makes sure that women and other marginalized groups have fair access to these seeds.

Catalyzing smallholder farming in Mexico

Scientists from CIMMYT, founded in Mexico in 1966, have pursued decades of participatory research with Mexico’s smallholder maize farmers to improve their local varieties for traits like yield and insect resistance, while preserving their special grain quality, as well as testing and promoting zero-tillage and other resource-conserving farming practices.

Farmer Maria Luisa Gordillo Mendoza harvests a plot of maize grown with conservation agriculture techniques in her field in Nuevo México, Chiapas. (Photo: Peter Lowe/CIMMYT)

Smallholder farm operations account for more than 80% of all farms worldwide and produce roughly 35% of the world’s food, according to FAO census data and follow-up studies.

An estimated two-thirds of the Mexico’s farmers are smallholders, typically working challenging agroecologies scattered across the country’s mountainous terrain and applying generations-old subsistence practices to grow low-yielding local maize varieties.

Ancient milpa multicropping systems can lift up the present and future

The milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — has a millennial history in the Americas and can furnish a vital supply of food and nutrients for marginalized, resource-poor communities.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to a CIMMYT-led study in the western highlands of Guatemala, an isolated and impoverished region, reported in Nature Scientific Reports in 2021.

But milpas are typically grown on much smaller areas than a hectare, so households cannot depend on this intercrop alone to satisfy their needs. A solution? Customized milpas that merge farmers’ age-old wisdom and practices with science-based innovation.

An example is planting fruit trees — guava, avocado, mango, peaches, or lime among others — among milpa crops in lines perpendicular to hill slopes. The practice was tested and promoted in the Los Tuxtlas region of the state of Veracruz by Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) and the Colegio de Postgraduados (ColPos) and has been refined by farmers in other areas through CIMMYT-led innovation networks.

Planted milpa crops in lines perpendicular to the slope on a steep hillside in Chiapas, Mexico. (Photo: Peter Lowe/CIMMYT)

In Los Tuxtlas the practice provided added income and nutrition, dramatically reduced erosion, improved land and water-use efficiency by around 50%, and boosted soil health and fertility.

In the state of Puebla and other parts of South and southwestern Mexico, milpa-fruit tree intercrops have worked well on steep hillsides. In the state of Oaxaca, for example, versions of the practice have notably improved farming by indigenous communities in the Mixe and Mazateca regions, supported by outreach of the Mexican Agency for the Sustainable Development of Hillsides (AMDSL), a partner in a CIMMYT research hub in the region.

Research by AMDSL and CIMMYT on smallholder plots in two Oaxaca municipalities where farmers have been combining milpas with peach and avocado production and conservation agriculture practices for more than a decade found that cropping diversification, together with use of zero tillage and keeping crop residues on the soil rather than removing or burning them, raised total yearly crop outputs by as much as 1.7 tons per hectare and reduced farmers’ risk of catastrophic crop losses due to droughts or other climate extremes.

Blue maize pleases diners and delivers profits

Farmers’ local maize varieties yield less than hybrids but are still grown because they provide ideal grain quality for traditional foods, as well as marketable stalks and leaves to feed farm animals and maize husks for wrapping tamales, to name a few products.

Building on longstanding partnerships with INIFAP and the Autonomous University of Chapingo (UACh) to improve local varieties and preserve maize genetic diversity in Mexico, CIMMYT breeders have recently developed improved blue maize hybrids and open-pollinated varieties.

Sought by restauranteurs worldwide for its flavor and beauty, blue maize grain normally comes from native varieties grown by smallholder farmers on small plots with low yields and variable quality.

The new CIMMYT varieties are derived from traditional Guatemalan, Mexican, and Peruvian landraces and feature higher yields, more consistent grain quality, and enhanced resistance to common maize diseases, offering smallholders and other Mexican farmers a profitable product for the country’s booming restaurant industry and for export chains.

Selection of corn varieties for the state of Morelos, Mexico. (Photo: ACCIMMYT)

Parental inbred lines of the new hybrids have been distributed to private and public partners, who are developing their own hybrids and OPVs in Mexico. CIMMYT continues to test the new hybrids under various farming systems to ensure they produce stable yields when grown in farmers’ fields.

Data driven extension

Using cutting-edge data systems, CIMMYT has leveraged information from nearly 200,000 plots representing more than 26,000 hectares across diverse agroecologies to offer Mexican farmers — including smallholders — site-specific recommendations that make their farming systems more productive, resilient, and sustainable. The initiative was supported by MasAgro, an integrated development partnership of Mexico and CIMMYT during 2010-21 and funded by Mexico’s Secretariat of Agriculture and Rural Development (SADER).

Smallholder Mexican farmers adopt resource-conserving innovations: slowly and in bits

Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.

Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.

“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”

Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)

Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.

They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.

“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”

Advancing more sustainable farming in Mexico

Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.

CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El BatĂĄn, Mexico. (Photo credit: CIMMYT)

CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.

  • Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. “We’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
  • With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil beds
. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
  • Farmers in the Milpa Sustentable project in the YucatĂĄn Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of YucatĂĄn. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
  • CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer MarĂ­a MartĂ­nez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
  • With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario GuzmĂĄn Manuel of San Francisco ChindĂșa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”

A Mexican farm research program gains praise and interest for use abroad

Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known as “MasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Tlaltizapan Experimental Station in Morelos, Mexico is used through the winter for drought and heat trials and through the summer for yield-trials and biofortification. (Photo: Alfonso Cortés/CIMMYT)

As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.

The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.

MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.

State-level partners sign on to MasAgro

Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.

MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)

CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.

An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.

Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.

Acclaim and interest abroad for MasAgro

MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:

Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
  • The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
  • The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
  • The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
  • During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
  • Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgro’s farmer outreach component.
  • MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.

Moving out and beyond

In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.

Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.

Farmer Marilu Meza Morales harvests her maize in ComitĂĄn, Mexico. (Photo: Peter Lowe/CIMMYT)

As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.

“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.

The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “
is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”

SPG Coalition: CIMMYT is a leading organization for climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management

The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.

In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.

CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.

Nutrient-use efficiency and fertilizer management

While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.

Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)

In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.

The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.

The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.

Climate-smart maize breeding 

Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.

Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)

CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.

The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.

“The SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. It’s also an important reminder to assess our strong points and where more investment and collaboration is needed,” said Bram Govaerts, CIMMYT director general.

Atlas crucial to strengthen Nepal’s capacity to cope with climate change

Nepal, like other South Asian nations, faces significant environmental challenges, including climate change and air pollution. The impacts of climate change in Nepal are profound, with species moving to higher elevations, glaciers melting and an increase in extreme precipitation events. Despite only contributing a fraction of global greenhouse gas emissions, Nepal ranks fourth on the Global Climate Risk Index. This vulnerability is attributed to the country’s unique geographical features, characterized by remarkable topographical variation spanning from 60 to 8,848 meters within just 190 kilometers from North to South. In addition to economic challenges and micro-climates, Nepal is highly susceptible to the consequences of climate change, particularly in the mid-and far-western hills and mountains.

Photo: (Neil Palmer/CIAT and CCFAS)

To tackle these challenges, Nepal has taken proactive measures by implementing various adaptation strategies. Key initiatives include the National Adaptation Program of Action (NAPA), National Adaptation Plan (NAP 2021-2050), Agriculture Development Strategy (ADS-2015-2035) and the Green, Resilient, & Inclusive Development (GRID) plan. These initiatives have played vital roles in building resilience. Nepal has also launched the Climate-Smart Village program at the local level in all seven provinces, offering grassroots training on carbon and energy efficiency, biodiversity conservation and water management practices. Another notable achievement is the ‘The Himalayan Climate and Water Atlas,’ which utilizes data from five major river basins and historical climate records to project future climate hazards and extreme events.

Furthermore, Nepal developed the National Climate Change Policy (NCCP) in 2019, prioritizing eight thematic areas including agricultural and food security. The Vulnerability and Risk Assessment Report by the Ministry of Environment (2021) has also examined vulnerability and risks in eight thematic areas and one cross-cutting area for the preparation and implementation of the National Adaptation Plan. This report not only assesses the various dimensions (exposure, sensitivity, adaptive capacity, and risk) of climate change impacts across multiple sectors but also offers a range of adaptation options to address the adverse effects.

To successfully implement and translate the NCCP into action, it is crucial to identify where and how to invest. By aligning with the Atlas of Climate Adaptation in South Asian Agriculture (ACASA), Nepal reaffirms its commitment to addressing the intersection of agriculture and the environment. By leveraging the Atlas, Nepal will expedite its efforts to mitigate the impacts of climate change on agriculture, with a comprehensive understanding of various dimensions of risks and vulnerability. The Atlas will provide a detailed breakdown of risks specific to different commodities, enabling the development of effective mitigation and adaptation solutions.

By complementing ongoing efforts to manage risks and enhance adaptation strategies, the Atlas will serve as a testament to Nepal’s determination to strengthen its capacity to cope with climate change. It will make an invaluable contribution to climate change adaptation technologies, assisting government entities at all levels in formulating effective policy guidelines. By integrating research findings, indigenous knowledge, and cutting-edge technologies, the Nepal Agricultural Research Council (NARC) firmly believes that the Atlas represents another crucial step towards implementing a holistic approach to mitigate and adapt to the negative impacts of climate change on agriculture.

Piece by Dhruba Raj Bhattarai, executive director, Nepal Agricultural Research Council (NARC), Nepal

Bangladesh to improve risk characterization at a granular level with Atlas

Bangladesh is one of the most climate-vulnerable countries in the world. The climate risks are negatively impacting the country’s agricultural sector, which constitutes nearly 12% of the country’s GDP. Additionally, 40% of the country’s workforce rely on agriculture for a major portion of their income (BBS, 2021-22).

Despite these challenges, Bangladesh has demonstrated remarkable economic growth by strategically investing in climate resilience and disaster preparedness over the years. The country has gained global recognition as a leader in these areas, driving its overall development. However, escalating climate risks continue to pose threats to Bangladesh’s progress, particularly impacting the most vulnerable segments of society and jeopardizing the nation’s growth trajectory.

Photo: (Harikhali in Paigachha/CCAFS)

In response to these challenges, Bangladesh has made concerted efforts to develop climate adaptation strategies. A significant milestone was the launch of the GCA Global Hub on locally led adaptation by the Honorable Prime Minister Sheikh Hasina in 2022. This groundbreaking initiative aims to support one million climate-vulnerable migrants in Bangladesh. The government has also formulated policies, plans and programs to combat the impacts of climate change. The Bangladesh Climate Change Strategy and Action Plan (BCCSAP), formulated in 2009 and updated in 2022, focuses on six thematic areas, with five and six emphasizing adaptation and mitigation, respectively. Another important initiative is the Bangladesh Delta Plan 2100, prepared in 2017, which categorizes the entire country into six hotspots. To safeguard the agricultural sector from climate change, Bangladesh has also developed vulnerability Atlases such as the ‘Bangladesh Climate and Disaster Risk Atlas: Volume 1 & 2’ and the ‘Climate Adaptation Services Bangladesh (Haor region).’

While significant progress has been made in risk mapping, there is room for improvement. For instance, the current Atlases operate at the district level, and there is immense potential to downscale them to the upazila (sub-district) level to achieve enhanced granularity. Additionally, transforming the Atlases from report format to a more interactive and user-friendly online one would be beneficial.

The Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project aligns with the goals of BCCSAP, focusing on location-specific climate change adaptation and mitigation strategies in agricultural production. The Atlas will play a crucial role in quantifying localized climatic risks, assessing their impacts on agriculture today and in the future, and identifying key adaptation options to mitigate these risks. This knowledge will strengthen Bangladesh’s food security and reduce its vulnerability to climatic risks.

The Bangladesh Agricultural Research Council (BARC) will actively utilize the Atlas, leveraging agro-geospatial data to expedite decision-making processes. BARC will further leverage its expertise in geospatial tools, crop zoning information systems, GIS-based mobile apps, climate information databases and drought monitoring systems, further combined with the knowledge base of Atlas to ensure informed and evidence-based actions. Moreover, collaborating with ACASA to develop an advanced and interactive online Atlas expands the country’s scope and fosters stakeholder participation, enabling informed decision-making and refined risk characterization at a granular level.

Piece by Shaikh Mohammad Bokhtiar, Executive Chairman, Bangladesh Agricultural Research Council (BARC), Bangladesh

Adaptation Atlas is a positive step towards climate resilient agriculture

Photo: (IWMI/Nirmal Sigtia)

India holds an impressive record in agricultural production. We are among the largest producers of milk, pulses, tea, spices, cashew, jute and bananas. Additionally, we rank as the second-largest producer of wheat, rice, fruits and vegetables. Our agricultural sector has experienced notable growth, with production increasing from 3 to 127 times since the 1970s. We have also witnessed a substantial boost in agricultural productivity, with yields per hectare rising from 0.7 to 2.3 tons during the same period.

Despite these achievements, we face pressing challenges that threaten our agricultural landscape. Water scarcity, soil degradation, pest and disease outbreaks, and the intensifying impacts of climate change need urgent attention.

In India, we observe that minimum temperatures are rising faster than maximum temperatures. We also witness a more pronounced temperature increase during the rabi (winter) season than the kharif (monsoon) season. Rainfall is becoming more variable with increasing episodes of extreme rainfall. These climate risks increase our food and livelihood insecurity.

We need advanced technological interventions and optimized resource allocation to address these challenges. Our development path, “Amrit Kaal,” necessitates climate-friendly practices prioritizing low carbon, water, nitrogen and energy usage. To further realize this vision, adopting 5Ms based on better markets, regional planning for monsoons, improved mechanization, management of micro-irrigation and new fertilizers, and mainstreaming the insurance is pivotal.

India has undertaken research, development and policy initiatives to build resilience in our food production system. However, the growing challenges of climate extremes demand sustained global efforts. The Indian Council of Agricultural Research (ICAR) therefore, welcomes international collaboration to exchange experiences and knowledge in climate action. We believe that collective efforts and shared expertise will strengthen our adaptation strategies.

In this regard, the Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project can play a vital role. ICAR is glad to support ACASA and will deploy a team of young scientists to contribute to and benefit from this Adaptation Atlas. Furthermore, we are pleased to offer our website as a platform to host the Atlas, facilitating its broader utilization within our country. We thank the Borlaug Initiative in South Asia (BISA) and the Bill and Melinda Gates Foundation (BMGF) for initiating this project in India.

Together, let us pave the way toward a climate-resilient future for agriculture, safeguarding our farmers’ livelihoods and securing food for future generations.

Piece by Himanshu Pathak, Secretary (DARE) and Director General-Indian Council of Agricultural Research (ICAR), India

A new Climate Adaptation Atlas to safeguard South Asian agriculture

(Photo: Vinaynath Reddy/CCAFS)

Climate change is no longer a distant threat but a reality that profoundly affects our lives. Among the most vulnerable regions to climate change, South Asia stands out because it is home to over 100 million farmers and produces over 285 million metric tons of milled rice and 128 million metric tons of wheat (FAO 2020-21). Among 193 countries worldwide, South Asian countries rank in the top quarter for climate risk and are experiencing rising meteorological and climate-related disasters. These pose significant challenges to farmers and the 216 million people in South Asia living in extreme poverty (World Bank, 2018), further jeopardizing their food security and livelihoods.

Considering this, with support from the Bill & Melinda Gates Foundation, the Borlaug Institute for South Asia (BISA) is working with national agriculture research systems in South Asia to develop the Atlas of Climate Adaptation in South Asian Agriculture (ACASA).

The Atlas brings together spatially explicit South Asian data on the nature and evolving patterns of climate hazards. It will assess climate risks using gridded, village-scale analyses and through historical crop yield data and satellite signatures. The Atlas will consider the exposure of smallholder populations, farms and crop and livestock enterprises. It will assess the vulnerability or adaptive capacity of those populations and impacts on the region’s critical commodities. Importantly, the Atlas will provide a unique set of on-line tools and a portfolio of adaptation options to underpin better decisions regarding investments in agricultural technologies, climate information services, and policies. The project will also focus on building the capacity of concerned stakeholders such as multi-lateral agencies, government bodies, NGOs, and the private sector in the use of Atlas assets, through training materials, tutorials, and periodic workshops. This will enable informed investments and policy decisions to benefit 100 million farmers in South Asian region. For wider use, the Atlas will be embedded online as an open-source, web-enabled and interactive and dynamic tool for easy access by all concerned stakeholders.

Drawing on the expertise and experience of South Asian nations such as Bangladesh, India, Nepal, and Sri Lanka, which have suffered from extreme heat, prolonged droughts, and severe flooding in key crop-producing areas, ACASA represents an example of collaboration and knowledge exchange to reduce farmers’ risks and offer them ways to adapt.

BISA and CIMMYT are pleased to anchor this remarkable collaboration that leverages multi-disciplinary expertise and perspectives to address the complex challenges posed by climate change, linking the detailed characterization of climatic risks with mitigation technologies and policies to meet the needs of diverse stakeholders. The proposed work will contribute actively to the CIMMYT2030 Strategy where one of the 5 impact areas is centered around Climate adaptation and Mitigation. The entire strategy designs a path toward a Food and Nutrition Secure world through science and innovation in the midst of a global climate crisis.

Established in 2011 by CIMMYT and the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) is a non-profit international organization that applies advanced technologies to improve food systems and food security, nutrition, livelihoods, and the environment in South Asia, home to more than 300 million undernourished people.

More than machines

Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)

It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.

Over the past seven years, the German development agency Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.

Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.

Training the trainers

As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.

The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.

The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.

Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)

What will scale up in Ethiopia?

In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.

To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.

The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.

Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.

An unexpected outcome

What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.

About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.

The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.

This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.

The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.

Scaling up the future

Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.

And there’s more to come from the Scaling Scan as well.

Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.