After a visit to CIMMYT headquarters, germplasm bank and maize nutritional quality laboratory, the Indonesian Agency for Agricultural Research and Development is increasing cooperation in maize and wheat research with CIMMYT. Read more here.
Ensuring the access of small-scale farmers to products and potential benefits from genetic engineering (GE) technologies for agriculture will require concerted investment and research by public institutions worldwide and particularly in low- and middle-income countries.
This was a key conclusion of a new review paper describing cutting-edge GE applications that offer exciting options to enhance the disease and pest resistance of important food crops and the ecological sustainability of cropping systems.
The technologies include gene editing (site-specific changes to DNA in a genome), gene drives (greatly enhancing or reducing frequency of genes that affect insect or pathogen reproduction), and synthetic biology (re-design or construction of biological devices, for example chromosomes or organelles).
Authored by international experts in policy, socioeconomics, and biological science, the new paper outlines potential uses of the technologies, particularly to address problems that affect resource-poor farmers or consumers, such as the viruses that attack cassava, the Striga weed that is a parasite of maize, or the fungal pathogen of groundnut that produces deadly toxins.
A weak capacity for research and development in many countries, combined with a small and declining public investment, raises questions about those nations’ ability to develop and deliver high-quality GE technologies or realize their benefits.
“The concern is that farmers not served by leading companies, who are developing the technologies, will be unable to obtain new, resistant crop varieties or other products of these technologies,” said Kevin Pixley, director of the genetic resources program of the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new paper.
The technologies have already proven effective for controlling bacterial, fungal, and viral plant pathogens, as well as insects that transmit them. For example, GE approaches to control cassava brown streak disease and cassava bacterial blight—for which there are few or no known sources of resistance in cassava itself—appear on track to produce resistant versions of cassava.
Future gene drive technologies that can be kept within specific areas and reversed if needed may offer ways to control insects that carry plant diseases or weeds that damage crops, and synthetic biology could someday create plants that are immune to invading viruses.
Institutional forces (arrows) alter the balance of public vs private research / development investments and the relative emphasis on low vs high value crops, factors that help determine who benefits (resource-poor vs wealthy farmers?) from the application of advanced technologies in crop breeding. (Figure: Nancy Valtierra/CIMMYT)
“The private sector is likely to invest mainly in major crops and major traits that will bring them profits, so work on minor, perennial, clonal, or staple food crops of lower-income countries may suffer,” said José Falck-Zepeda, senior research fellow and leader of the policy team in the program for biosafety systems of the International Food Policy Research Institute (IFPRI) and a co-author of the review paper.
Many countries are still deciding whether and how they will regulate new GE products. The new paper explains how key factors including the cost and complexity of complying with biosafety regulations will shape the potential distribution of the technologies and products, determining which institutions undertake the related research and, as a result, which traits and crops are studied.
Civil society concerns regarding GE technologies and how or by whom they are deployed add important considerations to the complex questions surrounding the use of GE products.
“Realizing the potential of GE crops will require investments and policies for research, intellectual property regimes, and regulatory frameworks,” say the authors, “and societies must also address legitimate concerns about their responsible stewardship, agroecological sustainability, and equitable access to associated benefits.”
An open-access version of the full paper is available online: https://doi.org/10.1146/annurev-phyto-080417-045954
Pixley, K.V., J.B. Falck-Zepeda, K.E. Giller, L.L. Glenna, F. Gould, C.A. Mallory-Smith, D.M. Stelly, and C.N. Stewart. 2019. Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit? Annu. Rev. Phytopathol 57:8.1–8.24.
The Indonesian delegation visited CIMMYT’s germplasm bank. (Photo: Alfonso Cortés/CIMMYT)
A delegation of the Indonesian Agency for Agricultural Research and Development (IAARD) visited the International Maize and Wheat Improvement Center (CIMMYT) to reaffirm their research partnership. Led by the Director General of IAARD, Fadjry Djufry, a group of Indonesian researchers and leaders visited CIMMYT on August 28 and August 29.
CIMMYT and IAARD have collaborated on research since 1981, when an Indonesian researcher participated in CIMMYT trainings. Since 1995, CIMMYT has worked with Indonesia through joint research and donations of inbred lines. CIMMYT has helped the Indonesian Cereals Research Institute (ICERI) in establishing infrastructure for a drought-tolerant nursery and has sponsored ICERI researchers to attend international scientific meetings. The CIMMYT-organized Asian Maize Biotechnology Network supported a satellite molecular laboratory for ICERI.
The Director General of IAARD, Fadjry Djufry (left), and the Director General of CIMMYT, Martin Kropff, signed a memorandum of understanding. (Photo: Alfonso Cortés/CIMMYT)
During the visit, the Indonesian delegation signed a memorandum of understanding with CIMMYT. Visitors also attended presentations on CIMMYT’s progress and strategy, toured the germplasm bank, visited the maize nutrition quality lab, and did a field visit to learn about sustainable intensification and climate change adaptation.
After CIMMYT director general Martin Kropff gave an overview of CIMMYT, the IAARD delegation presented their work and innovations to increase maize and wheat production. Indonesian researchers have released high yielding maize varieties, functional maize varieties and hybrid maize varieties. Farmers are intercropping maize, rice and soybeans. Post-harvest technology, mechanization and mapping have contributed to maize productivity.
The Indonesian delegation and CIMMYT discussed possible opportunities for collaboration. (Photo: Alfonso Cortés/CIMMYT)
IAARD also outlined its strategy to contribute to the government’s target of food self-sufficiency to become the world’s food basket by 2045.
IAARD suggested future collaboration with CIMMYT to help achieve this goal, including working together on research and development of improved maize and wheat, a double haploid for maize, water management, climate-smart agriculture and data management for genetic resources.
Indonesian researchers did a field visit to learn about sustainable intensification and climate change adaptation. (Photo: Alfonso Cortés/CIMMYT)
Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state. (Photo: Marcia MacNeil/CIMMYT)
In a new study, scientists have found that genome segments from a wild grass are present in more than one in five of elite bread wheat lines developed by the International Maize and Wheat Improvement Center (CIMMYT).
Scientists at CIMMYT and other research institutes have been crossing wild goat grass with durum wheat — the wheat used for pasta — since the 1980s, with the help of complex laboratory manipulations. The new variety, known as synthetic hexaploid wheat, boosts the genetic diversity and resilience of wheat, notoriously vulnerable due to its low genetic diversity, adding novel genes for disease resistance, nutritional quality and heat and drought tolerance.
The study, which aimed to measure the effect of these long-term efforts using state-of-the-art molecular technology, also found that 20% of CIMMYT modern wheat lines contain an average of 15% of the genome segments from the wild goat grass.
“We’ve estimated that one-fifth of the elite wheat breeding lines entered in international yield trials has at least some contribution from goat grass,” said Umesh Rosyara, genomic breeder at CIMMYT and first author of the paper, which was published in Nature Scientific Reports. “This is much higher than expected.”
Although the synthetic wheat process can help bring much-needed diversity to modern wheat, crossing with synthetic wheat is a complicated process that also introduces undesirable traits, which must later be eliminated during the breeding process.
“Many breeding programs hesitate to use wild relatives because undesirable genomic segments are transferred in addition to desirable segments,” said Rosyara. “The study results can help us devise an approach to quickly eliminate undesirable segments while maintaining desirable diversity.”
CIMMYT breeding contributions are present in nearly half the wheat sown worldwide, many of such successful cultivars have synthetic wheat in the background, so the real world the impact is remarkable, according to Rosyara.
“With this retrospective look at the development and use of synthetic wheat, we can now say with certainty that the best wheat lines selected over the past 30 years are benefiting from the genes of wheat’s wild relatives,” he explained. “Even more, using cutting-edge molecular marker technology, we should be able to target and capture the most useful genes from wild sources and better harness this rich source of diversity.”
Modern breeders tread in nature’s footsteps
The common bread wheat we know today arose when an ancient grain called emmer wheat naturally cross-bred with goat grass around 10,000 years ago. During this natural crossing, very few goat grass genes crossed over, and as a result, current bread wheat is low in diversity for the genome contributed by goat grass. Inedible and considered a weed, goat grass still has desirable traits including disease resistance and tolerance to climate stresses.
Scientists sought to broaden wheat’s genetic diversity by re-enacting the ancient, natural cross that gave rise to bread wheat, crossing improved durum wheat or primitive emmer with different variants of goat grass. The resulting synthetic wheats were crossed again with improved wheats to help remove undesirable wild genome segments.
Once synthetic wheat is developed, it can be readily crossed with any elite wheat lines thus serving as a bridge to transfer diversity from durum wheat and wild goat grass to bread wheat. This helps breeders develop high yielding varieties with desirable traits for quality varieties and broad adaption.
CIMMYT is the first to use wheat’s wild relatives on such a large scale, and the synthetic derivative lines have been used by breeding programs worldwide to develop popular and productive bread wheat varieties. One example, Chuanmai 42, released in China in 2003, stood as the leading wheat variety in the Sichuan Basin for over a decade. Other synthetic derivative lines such as Sokoll and Vorobey appear in the lineage of many successful wheat lines, contributing crucial yield stability — the ability to maintain high yields over time under varying conditions.
The successful, large-scale use of genes from wheat’s wild relatives has helped broaden the genetic diversity of modern, improved bread wheat nearly to the level of the crop’s heirloom varieties. This diversity is needed to combat future environmental, pest, and disease challenges to the production of a grain that provides 20% of the calories consumed by humans worldwide.
This work was supported by the CGIAR Research Program on Wheat (WHEAT) and Seeds of Discovery (SeeD), a multi-project initiative comprising MasAgro Biodiversidad, a joint initiative of CIMMYT and the Ministry of agriculture and rural development (SADER) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project; the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT); and a computation infrastructure and data analysis project supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). CIMMYT’s worldwide partners participated in the evaluation of CIMMYT international wheat yield trials.
For more information, or to arrange interviews with the researchers, please contact:
About the CGIAR Research Program on Wheat
The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.
Two hybrid wheat varieties that are resistant to stem rust disease are set to be released to Kenyan farmers later this year. Mandeep Randham, wheat breeder and geneticist at International Maize and Wheat Improvement Center said that the two varieties, ‘Kenya Jacana’ and ‘Kenya Kasuku’ have high yields and resistant to stem rust disease known as U99. Read more here.
At the African Green Revolution Forum 2019, global and African leaders come together to develop actionable plans that will move African agriculture forward. This year, the forum is taking place in Ghana on the week of September 3, 2019, under the theme “Grow digital: Leveraging digital transformation to drive sustainable food systems in Africa.” Participants will explore the practical application of the emerging elements of the digital era such as big data, blockchain, digital IDs, drones, machine learning, robotics, and sensors.
CIMMYT’s work in this area is showcased in a new leaflet entitled “Data-driven solutions for Africa: Using smart tools to combat climate change.” The leaflet highlights innovations such as crowdsourced crop disease tracking and response systems in Ethiopia, low-cost imaging tools to speed up the development of hardier varieties, and combining geospatial data with crop models to predict climate change and deliver personalized recommendations to farmers.
A new publication highlights the diverse ways in which CIMMYT’s research is propelling the digital transformation of agriculture in Africa.
Speaking at the conference attended by 2,000 delegates and high-level dignitaries, CIMMYT Director General Martin Kropff will give the keynote remarks during the session “Digital innovations to strengthen resilience for smallholders in African food systems” on September 3. This panel discussion will focus on how the data revolution can support African smallholder farmers to adapt quickly challenges like recurrent droughts or emerging pests, including the invasive fall armyworm. The Global Resilience Partnership (GRP), the Food and Agriculture Organization of the United Nations (FAO), CABI, and the Minister of Agriculture of Burkina Faso will be among the other panelists in the session.
The same day, CIMMYT will also participate to an important “Agronomy at scale through data for good” panel discussion with speakers from the Bill & Melinda Gates Foundation, research organizations and private companies. The session will highlight how digital agriculture could help deliver better targeted, site-specific agronomic advice to small farmers.
During the forum, the CIMMYT delegation will seek collaborations in other important drivers of change like gender transformation of food systems and smallholder mechanization.
They will join public sector leaders, researchers, agri-preneurs, business leaders and farmers in outlining how to leverage the growth in digital technologies to transform food systems and agricultural livelihoods in Africa.
Maximino Alcalá de Stefano working at CIMMYT’s wheat international nurseries. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) sadly notes the passing of Maximino Alcalá de Stefano, former head of the center’s Wheat International Nurseries service, on August 27. He was 80 years old.
Fondly known as “Max” by friends and colleagues, Alcalá worked at CIMMYT from 1967 to 1992, coordinating wheat international nurseries during the late 1960s and early 1970s. The job included organizing nursery shipments to over 100 partners worldwide each year and collating, analyzing, and sharing results from the nurseries grown.
Maximino Alcalá de Stefano passed away at the age of 80 in Houston, Texas, USA. (Photo: Alcalá family)
The printed international nursery report featured an introductory section that described the nurseries, the locations, the statistical analyses used, and an overview of the performance of the breeding lines tested, which comprised the best CIMMYT materials but also germplasm from other sources. The report also carried tables with full data from each location as well as summary tables.
“Max was instrumental in preparing and distributing the printed nursery results, now made available online but which continue to provide crucial input for breeding by CIMMYT and partners,” said Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program. “He also helped start the international nursery database.”
A native of Mexico, Alcalá completed a bachelor’s in Science at the Universidad Autónoma Agraria Antonio Narro in 1964 and a master’s at Texas A&M University in 1967. Alcalá pursued doctoral studies in wheat breeding at Oregon State University under the guidance of renowned OSU researcher Warren E. Kronstad, finishing in 1974.
Maximino Alcalá de Stefano (second from right) worked closely with Nobel Prize winner Norman Borlaug (third from left). In the photo, a group of CIMMYT Scientists during a visit to Nepal in 1978. (Photo: CIMMYT)
His professional experience prior to CIMMYT included appointments at Mexico’s National Institute of Agricultural Research (INIA) and in the national extension services.
Later in his career, Alcalá supported wheat training at CIMMYT and helped coordinate visitors services at CIMMYT’s experimental station near Ciudad Obregón, in Mexico’s Sonora state.
The CIMMYT community sends its deepest sympathies and wishes for peace to the Alcalá family.
Rural areas in Africa are facing unprecedented challenges. From high levels of rural-urban migration to the need to maintain crop production and food security under the added stress of climate change, rural areas need investment and support. The recent Africa Food Security Leadership Dialogue brought together key regional actors to discuss the current situation as well as ways to catalyze actions and financing to help address Africa’s worsening food security crisis under climate change.
Heads of state, ministers of agriculture and finance, heads of international institutions and regional economic commissions, Nobel laureates, and eminent scientists took part in the dialogue in Kigali, Rwanda, on August 5 and 6, 2019.
This high-level meeting was convened by core partners including the African Union Commission (AUC), the African Development Bank (AfDB), the Food and Agriculture Organization of the United Nations (FAO), the International Fund for Agricultural Development (IFAD), and the World Bank.
The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, participated in a session entitled “Leveraging science to end hunger by 2025”, where he discussed the challenges to adapt Africa’s wheat sector to climate change, and what CIMMYT is doing to help. Demand for wheat is growing faster than any other commodity, and sub-Saharan Africa has tremendous potential to increase wheat production. People in Africa consume nearly 47 million tons of wheat a year. However, more than 80% of that — 39 million tons— is imported and used for human consumption, costing the countries billions of dollars. Kropff discussed the great strides CIMMYT has made in supporting wheat production on the continent despite biological challenges such as Ug99, a dangerous strain of wheat rust native to east Africa.
“The potential for wheat production in Africa is tremendous; existing varieties already realize very high yields but poor agronomic practices often result in low yields,” Kropff said. “The challenges we have to tackle together are as much in reshaping policies in favor of wheat and develop the wheat market and surrounding infrastructure. Africa’s environment is friendly for wheat production, but it needs the right supporting policies to develop a sustainable wheat market.”
Kropff highlighted Ethiopia’s case. “Ethiopia has decided to become self-sufficient in wheat by 2025. CIMMYT is already talking to the government and working with the national system to assure the best varieties and technologies will be used. We are ready to do this with every single African nation that is interested in producing quality wheat.”
Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)
Climate change is also posing dire threats to maize, a key staple crop in sub-Saharan Africa.
We talked to Cosmos Magorokosho, CIMMYT researcher and project leader of the Stress Tolerant Maize for Africa (STMA) project, who attended the dialogue, on what CIMMYT can do to better support farmers in Africa’s rural communities.
How can projects such as Stress Tolerant Maize for Africa contribute to protecting food security in Africa in the face of climate change?
Stress-tolerant maize varieties can contribute by cushioning farmers against total crop failures in case of drought and heat stress, among other stresses during the growing season. In addition, stress-tolerant varieties can also yield well under good growing conditions, therefore benefiting farmers both during difficult growing seasons as well as those seasons when conditions are favorable for maize growth.
What can be done to support rural areas and smallholder farmers in Africa to improve food security?
Rural areas and smallholder farmers need support with climate resilient crop varieties, supporting agronomic practices, environment conserving farming practices, labor and drudgery- reducing farm operations, access to affordable finance, and rewarding markets for their produce.
What role can international research organizations such as CIMMYT play in this?
International agricultural research can unlock the potential of small holder farmers through the generation of new appropriate technologies, testing and helping farmers adopt those technologies, refining and fine tuning of new technologies, as well as scaling up and out of farmer-demanded technologies. International agriculture research can influence policy across and within borders, political divide, religion, ecologies, and diversity of farmers.
What would it take for CIMMYT to effectively move science from the lab and package it into solutions that can be disseminated and adopted by majority of small family farms in Africa?
CIMMYT should keep and broaden its engagement with farmers, policy makers, and continue with capacity enhancement of partners to reach scale and bring new cutting-edge smallholder-farmer appropriate technologies to farmers’ fields in the shortest possible timeframe.
Wheat is Afghanistan’s number-one staple crop, but the country does not grow enough and must import millions of tons of grain each year to satisfy domestic demand.
Despite the severe social and political unrest that constrain agriculture in Afghanistan, many farmers are growing high-yielding, disease resistant varieties developed through international, science-based breeding and made available to farmers as part of partnerships with national wheat experts and seed producers.
These and other findings have emerged from the first-ever large-scale use of DNA fingerprinting to assess Afghanistan farmers’ adoption of improved wheat varieties, which are replacing less productive local varieties and landraces, according to a paper published yesterday in the science journal BMC Genomics.
The study is part of an activity supported between 2003 and 2018 by the Australian Department of Foreign Affairs and Trade, through which the Agricultural Research Institute of Afghanistan and the International Maize and Wheat Improvement Center (CIMMYT) introduced, tested, and released improved wheat varieties.
“As part of our study, we established an extensive ‘reference library’ of released varieties, elite breeding lines, and Afghan wheat landraces,” said Susanne Dreisigacker, wheat molecular breeder at CIMMYT and lead author of the new paper.
“We then compared wheat collected on farmers’ fields with the reference library. Of the 560 wheat samples collected in 4 provinces during 2015-16, farmers misidentified more than 40%, saying they were of a different variety from that which our DNA analyses later identified.”
Wheat is the most important staple crop in Afghanistan — more than 20 million of the country’s rural inhabitants depend on it — but wheat production is unstable and Afghanistan has been importing between 2 and 3 million tons of grain each year to meet demand.
Over half of the population lives below the poverty line, with high rates of malnutrition. A key development aim in Afghanistan is to foster improved agronomic practices and the use of high quality seed of improved wheat varieties, which together can raise yields by over 50%.
“Fungal diseases, particularly yellow rust and stem rust, pose grave threats to wheat in the country,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR) and co-author of the present paper. “It’s crucial to know which wheat varieties are being grown where, in order to replace the susceptible ones with high-performing, disease resistant varieties.”
Varietal adoption studies typically rely on questionnaires completed by breeders, extension services, seed producers, seed suppliers, and farmers, but such surveys are complicated, expensive, and often inaccurate.
“DNA fingerprinting resolves uncertainties regarding adoption and improves related socioeconomic research and farm policies,” Huttner explained, adding that for plant breeding this technology has been used mostly to protect intellectual property, such as registered breeding lines and varieties in more developed economies.
This new study was commissioned by ACIAR as a response to a request from the Government of Afghanistan for assistance in characterizing the Afghan wheat gene bank, according to Huttner.
“This provided the reference library against which farmers’ samples could be compared,” he explained. “Accurately identifying the varieties that farmers grow is key evidence on the impact of introducing improved varieties and will shape our future research
Joint research and development efforts involving CIMMYT, ACIAR, the Food and Agriculture Organization (FAO) of the United Nations, the International Centre of Agricultural Research in Dry Areas (ICARDA), French Cooperation, and Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) and Agricultural Research Institute (ARIA) have introduced more than 400 modern, disease-resistant wheat varieties over the last two decades. Nearly 75% of the wheat grown in the areas surveyed for this study comes from these improved varieties.
“New sequencing technologies are increasingly affordable and their cost will continue to fall,” said Dreisigacker. “Expanded use of DNA fingerprinting can easily and accurately identify the wheat cultivars in farmers’ fields, thus helping to target breeding, agronomy, and development efforts for better food security and farmer livelihoods.”
For more information, or to arrange interviews with the researchers, please contact:
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.
About ACIAR
As Australia’s specialist international agricultural research for development agency, the Australian Centre for International Agricultural Research (ACIAR) brokers and funds research partnerships between Australian scientists and their counterparts in developing countries. Since 1982, ACIAR has supported research projects in eastern and southern Africa, East Asia, South and West Asia and the Pacific, focusing on crops, agribusiness, horticulture, forestry, livestock, fisheries, water and climate, social sciences, and soil and land management. ACIAR has commissioned and managed more than 1,500 research projects in 36 countries, partnering with 150 institutions along with more than 50 Australian research organizations.
About Afghanistan’s Ministry of Agriculture, Irrigation and Livestock
The Ministry of Agriculture, Irrigation and Livestock (MAIL) of the Islamic Republic of Afghanistan works on the development and modernization of agriculture, livestock and horticulture. The ministry launches programs to support the farmers, manage natural resources, and strengthen agricultural economics. Its programs include the promotion and introduction of higher-value economic crops, strengthening traditional products, identifying and publishing farm-tailored land technologies, boosting cooperative programs, agricultural economics, and export with marketing.
Anani Bruce, maize entomologist at the International Maize and Wheat Improvement Center (CIMMYT) since 2013, is intensively engaged in an expert partnership supporting African maize farmers’ stand against deadly insect pests, especially fall armyworm and stem borers.
A moth species native to the Americas, fall armyworm was detected in Nigeria in 2016 and in less than three years has overrun sub-Saharan Africa’s maize growing regions. At its larval stage, it feeds on leaves and ears, causing annual harvest losses whose value can exceed $6 billion.
Bruce and his colleagues are rushing to develop maize varieties that feature native genetic resistance to fall armyworm and to arm farmers with locally suited control measures. Finding and strengthening native resistance in maize against the pest is a key pillar of integrated pest management.
“The fall armyworm is so challenging that there’s no single, easy fix,” said Bruce, who earned a PhD in Entomology at the International Centre of Insect Physiology and Ecology (ICIPE) and Kenyatta University, Kenya, in 2008. “We are testing and promoting an integrated management approach which, along with host plant resistance, includes biological control, habitat management, good agronomic practices, safe chemicals, bio-pesticides, and botanical controls.”
“The costs and complexities of such practices are daunting, but farmers can learn if you help them and there is little alternative right now, given that maize is sub-Saharan Africa’s number-one staple food,” Bruce explained.
According to the scientist, breeding is also laborious, because potentially resistant maize plants must be tested under controlled, heavy infestations of insects and this is allowed only in net houses.
“Net houses don’t provide enough room to grow the large number of maize lines needed for rapid and effective breeding progress,” Bruce said. “Even so, we have promising leads on sources of moderate resistance from maize populations developed by CIMMYT in Mexico in the 1980s-90s.”
A case of switching environments and specialties
A native of Togo, a small West African country between Benin and Ghana, Bruce said he was first interested in studying mechanical engineering but did not get the opportunity at the University of Lomé, Togo, where he did his master’s studies in agronomy. A mentor instead suggested he pursue entomology, and he followed this up at the International Institute of Tropical Agriculture (IITA) in Cotonou, Benin, where he undertook research on stem borers as a part of his master’s thesis.
“Surprisingly, I found many parallels with mechanical engineering,” said Bruce, who is based at CIMMYT’s office in Kenya. “There is a vast number and diversity of insect species and their roles and interactions in natural systems are incredibly complex, just as occurs between components in mechanical systems.”
When Bruce moved to ICIPE under the African Regional Postgraduate Program in Insect Science (ARPPIS), he needed to add English to his native French and local languages, but said his first major cultural shock was actually dietary.
“In West Africa we usually eat our maize paste with a sauce,” he explained,” but when I sat down to eat in Kenya, I found that the maize paste called ugali was eaten only with milk or meat, a combination known as nyama choma.”
Despite that and other cultural differences, Bruce said he quickly acclimatized to his new work and study setting in eastern Africa.
Nursing maize’s enemies
At CIMMYT, Bruce provides technical backstopping for national research partners to rear maize stem borers and the fall armyworm, as part of breeding improved maize varieties with insect-pest resistance and other relevant traits.
“Special expertise and conditions are required to raise, transport, and apply the eggs or young larvae properly on experimental maize plants, so that infestation levels are as uniform as possible and breeders can identify genetically resistant plants,” Bruce said.
He has also worked with gene constructs from the bacteria known as Bacillus thurigiensis (Bt). When inserted into maize, the constructs bestow the crop with resistance against stem borer species.
“We have plans to deploy Bt maize in selected countries in eastern and southern Africa, but we are awaiting the resolution of regulatory hurdles,” he explained.
Bruce credits Fritz Schulthess, former IITA and ICIPE entomologist, with providing special inspiration and support for his studies and professional development.
“Fritz believes in sharing his scientific experience with upcoming scientists and in speaking his thoughts in black and white,” Bruce said. “He is a workaholic scientist who will review your paper even past midnight and expects your response before 6 am.”
Access to affordable quality seed is one of the prerequisites to increase agricultural production and improve the livelihoods of Nepali farmers. However, there are significant challenges to boost Nepal’s seed industry and help sustainably feed a growing population.
Six years ago, Nepal launched its National Seed Vision 2013-2025. This strategic plan aims at fostering vibrant, resilient, market-oriented and inclusive seed systems in public-private partnership modalities, to boost crop productivity and enhance food security.
The Nepal Seed and Fertilizer (NSAF) project, led by the International Maize and Wheat Improvement Center (CIMMYT), is supporting the government to enhance national policies and guidelines, and private seed companies to build competitive seed businesses and hybrid seed production.
General view of a hybrid maize field from Lumbini Seed Company, a NSAF project partner, in Nepal’s Bhairahawa district. (Photo: Subhas Sapkota)
Quality seed can increase crop yield by 15-20%. However, there are critical challenges hindering the growth of Nepal’s seed industry. Existing seed replacement rate for major cereals is low, around 15%. About 85% of Nepali farmers are unable to access recently developed improved seeds — instead, they are cultivating decades-old varieties with low yield and low profits. Some of the factors limiting the development of seed systems are the high cost of seed production and processing, the limited reach of mechanization, and the low use of conservation agriculture practices.
The demand for hybrid seeds in Nepal is soaring but research in variety development is limited. Most of the country’s supply comes from imports.
In collaboration with the Nepal Agricultural Research Council (NARC), the NSAF project team is working with seed companies and cooperatives to scale hybrid seed production of maize, tomato and rice. Through this project, CIMMYT collaborated with the Seed Quality Control Center (SQCC) and national commodity programs of the NARC to draft the first hybrid seed production and certification guidelines for Nepal to help private seed companies produce and maintain standards of hybrid seeds.
Extension and promotion activities are essential to bring improved seed varieties to farmers. Standard labelling and packaging also needs to be strengthened.
Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, explained the importance of seed stakeholders’ collaboration to achieve the National Seed Vision targets. (Photo: Bandana Pradhan/CIMMYT)
A joint effort
CIMMYT and its partners organized a two-day workshop to review the progress of the National Seed Vision. The event attracted 111 participants from government institutions, private companies and development organizations engaged in crop variety development, seed research, seed production and dissemination activities.
In the opening remarks, Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, addressed the seed sector scenario and its challenges. He stressed the importance of collaboration among seed stakeholders to meet the targets of the National Seed Vision in the next six years.
During the technical sessions, Madan Thapa, Chief of the SQCC, analyzed the current status of the National Seed Vision and highlighted the challenges as well as the opportunities to realize it.
Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) emphasized the importance of private sector engagement and other support areas to strengthen seed production and marketing of open-pollinated varieties and hybrids.
Seed systems specialist AbduRahman Beshir shares CIMMYT’s experiences in hybrid testing and seed business promotion in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Tara Bahadur Ghimire, Principal Scientist at NARC, gave an overview of the status of NARC varieties, source seed and resource allocation.
Dila Ram Bhandari, former Chief of SQCC, led a discussion around the assumptions and expectations that arose while developing the National Seed Vision.
Technical leads of maize, rice, wheat and vegetables presented a road map on hybrid variety development and seed production in line with the National Seed Vision’s targets for each crop.
“A large quantity of hybrid seeds, worth millions of dollars, is being imported into Nepal each year,” explained AbduRahman Beshir, Seed Systems Lead of CIMMYT’s NSAF project. “However, if stakeholders work together and strengthen the local seed system, there is a huge potential in Nepal not only to become self-sufficient but also to export good quality hybrid seeds in the foreseeable future. Under the NSAF project we are witnessing a few seed companies that have initiated hybrid seed production of maize and tomato.”
In one of the exercises, workshop participants were divided in groups and examined different topics related to the realization of the National Seed Vision. They looked at genetic resources, hybrid and open-pollinated variety development, source seed production and supply, private sector engagement and marketing, seed extension and varietal adoption by farmers, seed quality control services, and roles of research partners and other stakeholders. The groups presented some of the major challenges and opportunities related to these topics, as well as recommendations, which will be documented and shared.
The outcomes of this mid-term review workshop will inform policy and guide the discussions at the upcoming International Seed Conference to be held in early September 2019.
In one of the breakout sessions, a group discusses challenges and recommendation to improve private sector engagement. (Photo: Bandana Pradhan/CIMMYT)
Regulating hybrid seed production
At the workshop, participants thoroughly discussed the draft hybrid seed production and certification guidelines, developed under the NSAF project.
The guidelines are the first of their kind in Nepal and essential to achieve the targets of the National Seed Vision, by engaging the private sector in hybrid seed production.
Hari Kumar Shrestha, CIMMYT’s Seed Systems Officer, and other seed experts from the SQCC presented the main features and regulatory implications of the guidelines.
After the workshop, the guidelines were sent to the National Seed Board for approval.
By 2012, young Bangladeshi mechanic Md Ole Ullah was working with the USAID funded Agricultural Mechanization and Irrigation Project, implemented by the International Maize and Wheat Improvement Center (CIMMYT), and International Development Enterprises (iDE Bangladesh). The new collaboration helped Ole develop the market for his locally-manufactured machines. Read more here.
A diverse group of agriculture, food security, environment and science journalists gathered in Saskatoon, Canada recently for an intensive course in innovative wheat research, interviews with top international scientists and networking with peers.
The occasion was the International Wheat Congress (IWC), which convened more than 900 wheat scientists and researchers in Saskatoon, in Canada’s biggest wheat-growing province, Saskatchewan, to discuss their latest work to boost wheat productivity, resilience and nutrition.
Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
The seven journalists were part of a group of 11 who won a competitive sponsorship offered by the CGIAR Research Program on Wheat (WHEAT). Seven journalists attended the conference, while another four followed the proceedings and activities from home. The ten-day immersive training included multiple daily press briefings with top scientists in climate change modeling and resilience testing, innovative breeding techniques, analysis and protection of wheat diversity and many more topics, on top of a full schedule of scientific presentations.
“The scientists were so eager to talk to us, and patient with our many questions,” said Nkechi Isaac, from the Leadership newspaper group in Nigeria. “Even the director general of [the International Maize and Wheat Improvement Center] CIMMYT spoke with us for almost an hour.”
“It was a pleasant surprise for me.”
The journalists, who come from regions as diverse as sub-Saharan Africa and East Asia, offered support and encouragement from their travel preparations though their time in Saskatoon and beyond — sharing story ideas, interview and site visit opportunities, news clips and photos through a WhatsApp group.
Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)
“It is really helpful to be connected to colleagues around the world,” said Amit Bhattacharya of the Times of India. “I know we will continue to be a resource and network for each other through our careers.”
The week wasn’t all interviews and note-taking. The journalists were able to experience Saskatchewan culture, from a tour of a wheat quality lab and a First Nations dance performance to a visit to a local wheat farm, and even an opportunity to see Saskatoon’s newest modern art gallery.
The media sponsorship at IWC aimed to encourage informed coverage of the importance of wheat research, especially for farmers and consumers in the Global South, where wheat is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day.
The group also spoke with members of the many coalitions that facilitate the collaboration that makes innovative wheat research possible, including the International Wheat Yield Partnership (IWYP), the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the G20-organized Wheat Initiative.
“This is the first time we’ve invested this heavily in journalist training,” said WHEAT program director Hans Braun. “We think the benefits – for the journalists, who gained a greater understanding of wheat research issues, and for developing country audiences, who will be more aware of the importance of improving wheat –– are worth it.”
Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)
A roundtable discussion with peers from Canadian news organizations and seasoned science communications professionals and a networking breakfast with CIMMYT scientists provided platforms for a candid exchange on the challenges and opportunities in communicating wheat science in the media.
A common refrain was the importance of building relationships between scientists and media professionals – because wheat science offers dramatic stories for news audiences, and an informed and interested public can in turn lead to greater public investment in wheat science. The journalists and scientists in Saskatoon have laid a solid foundation for these relationships.
The sponsored journalists are:
Amit Bhattacharya: Senior Editor at The Times of India, New Delhi, and a member of the team that produces the front page of India’s largest English daily. He writes on Indian agriculture, climate change, the monsoon, weather, wildlife and science. A 26-year professional journalist in India, he is a Jefferson Fellow on climate change at the East-West Center, Hawaii.
Emmanuelle Landais: Freelance journalist based in Dakar, Senegal, currently reporting for Deutsche Welle’s radio service in English and French on the environment, technology, development and youth in Africa. A former line producer for France 24 in Paris and senior environment reporter for the daily national English newspaper Gulf News in Dubai, she also reports on current affairs for the Africalink news program, contributes to Radio France International’s (RFI) English service, and serves as news producer for the Dakar-based West Africa Democracy Radio.
Julien Chongwang: Deputy Editor, SciDev.Net French edition. He is based in Douala, Cameroon, where he has been a journalist since 2002. Formerly the editor of the The Daily Economy, he worked on the French edition of Voice of America and Morocco economic daily LES ECO, and writes for Forbes Africa, the French edition of Forbes in the United States.
Lominda Afedraru: Science correspondent at the Daily Monitor newspaper, Uganda, part of the Nation Media Group. A journalist since 2004, she also freelances for publications in the United States, UK, Kenya and Nigeria among others and has received fellowships at the World Federation of Science Journalists, Biosciences for Farming in Africa courtesy of University of Cambridge UK and Environmental Journalism Reporting at Sauti University, Tanzania.
Muhammad Amin Ahmed: Senior Correspondent, Daily Dawn in Islamabad, Pakistan. He has been a journalist for more than 40 years. Past experience includes working at the United Nations in New York and Pakistan Press International. He received a UN-21 Award from former U.N. Secretary General Kofi Annan (2003).
Muhammad Irtaza: Special Correspondent with Pakistan’s English daily The Nation at Multan. A 10-year veteran journalist and an alumnus of the Reuters Foundation, he also worked as a reporter with the Evansville Courier and Press in Indiana, United States. He is an ICFJ-WHO Safety 2018 Fellow (Bangkok), Asia Europe Foundation Fellow (Brussels), and a U.S.-Pakistan Professional Partnership in Journalism Program Fellow (Washington). He teaches mass communications at Bahauddin Zakariya University Multan.
Nkechi Isaac: Deputy Editor, Leadership Friday in Nigeria. She is also the head, Science and Technology Desk of the Leadership Group Limited, publishers of LEADERSHIP newspapers headquartered in Abuja, Nigeria. She is a Fellow of Cornell University’s Alliance for Science.
Reaz Ahmad: Executive Editor of the Dhaka Tribune, Bangladesh’s national English newspaper. A journalist for 30 years, he is a Cochran Fellow of the U.S. Department of Agriculture and an adjunct professor of University of Dhaka (DU) and Independent University, Bangladesh.
Rehab Abdalmohsen: Freelance science journalist based in Cairo, Egypt who has covered science, health and environment for 10 years for such websites as the Arabic version of Scientific American, SciDev.net, and The Niles.
Tan Yihong: Executive Deputy Editor-in-Chief, High-Tech & Commercialization Magazine, China. Since 2008, she has written about science particularly agriculture innovation and wheat science. She has attended several Borlaug Global Rust Initiative (BGRI) Technical Workshops. In Beijing, she helped organize a BGRI communication workshop and media outreach.
Tony Iyare: Senior Correspondent, Nigerian Democratic Report. For more than 30 years, he has covered environment, international relations, gender, media and public communication. He has worked as a stringer for The New York Times since 1992, and freelanced for the Paris-based magazine, The African Report and the U.N. Development Programme publication Choices. He was columnist at The Punch and co-authored a book: The 11-Day Siege: Gains and Challenges of Women’s Non-Violent Struggles in Niger Delta.
Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)
The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).
“Knowing which strain you have is critical information that can be incorporated into early warning systems and results in more effective control of disease outbreaks in farmer’s fields” said Dr. Dave Hodson, a rust pathologist at CIMMYT in Ethiopia and co-author of the paper “MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens.” Read more here.
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab developed by a team from the John Innes Centre (JIC), the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR). It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields.
Designed to be used without constant electricity and in varying temperatures, the suitcase-sized lab allows researchers to identify wheat rust to strain level in just 48 hours — something that used to take months using other tools.
The MARPLE team was recognized as Innovator of the Year for international impact in 2019 by the UK Biotechnology and Biological Sciences Research Council (BBSRC).
A new video from the John Innes Centre shows how the MARPLE Diagnostics kit will allow Ethiopia to quickly identify wheat rust strains, instead of sending samples to labs abroad.