Skip to main content

A switch to success

Halima Bibi stands on her field in the district of Malda, West Bengal, India.
Halima Bibi stands on her field in the district of Malda, West Bengal, India.

In recent years, due to increasing demand and financial advantage, maize is gaining importance as a significant cash crop in West Bengal, India.

Halima Bibi is one of the farmers who embraced the possibilities of the crop. All the hard work she put into maize cultivation paid off when she learnt that she would receive the Krishi Karman Prize, awarded by India’s Ministry of Agriculture, for best maize production for the year 2017-2018. “I couldn’t believe my ears when officials from the state agriculture department told me that I had won the award,” Bibi excitedly shared.

As most other farmers in the district of Malda, Bibi and her husband Zakir Hossain were growing rice in their 10-bigha (3.3-acre) land, but life was still a struggle for the couple and their two children, trying to make ends meet.

Life took a turn for Bibi and her family when she observed field activities of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project and she realized the importance of no-till maize cultivation. In 2015, she hired a zero-till multi-crop planter and sowed maize in her land. Since then, there was no looking back.

“When I learnt about the high demand for maize, we started cultivating the crop on half of our land, but gradually shifted to growing maize across our entire 10 bighas,” Bibi said. “The agriculture department helped me a lot.”

Rewarding productivity

Sefaur Rahman, a researcher and assistant director of agriculture in the district of Malda, predicted a dramatic growth in maize cultivation in West Bengal in the coming years, because farmers are now aware of the crop’s increased productivity, profitability and cost efficiency.

Through the SRFSI project, the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR) have reached out to a large number of smallholder farmers, especially marginalized women, to promote conservation agriculture and other sustainable techniques that make farming more profitable. In West Bengal, the project team has worked in partnership with Uttar Banga Krishi Viswavidyalaya agricultural university and the West Bengal Department of Agriculture, among others.

In the 2017-18 crop season, Bibi produced 16,800 kg of maize from her land. She initially invested 20,000 rupees ($280) per acre, which led to a net profit of 150,000 rupees ($2,113) in total.

A quick lesson learned, the right decision at the right time, and a lot of hard work led Bibi to win the Krishi Karman Prize. These awards are given to the best performing states for raising the country’s food grain production. Taking to Twitter, the Chief Minister of West Bengal, Mamata Banerjee, expressed her satisfaction. “I am happy to share that West Bengal has been selected once again for Krishi Karman Award by Govt. of India for the year 2017-18, primarily for maize production,” she said.

As Bibi’s story confirms, embracing conservation agriculture techniques is the way to reap maximum benefits and profits from the farm. In this case, the zero-till cultivation of maize paved a new road towards self-sufficiency and sustainability for the farmers of West Bengal.

Screening cycle for deadly MLN virus set to begin in Kenya in January 2020

Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)
Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)

The maize lethal necrosis (MLN) artificial inoculation screening site in Naivasha, Kenya, will begin its phenotyping (screening/indexing) cycle of 2020 at the beginning of January 2020, which will continue in four other intervals throughout the year. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.

In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley, with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.

MLN was first discovered in Kenya in 2011 and quickly spread to other parts of eastern Africa. The disease causes premature plant death and unfilled, poorly formed maize cobs, which can lead to up to 100% yield loss in farmers’ fields.

CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm — for hybrid, inbred and open pollinated varieties — against MLN in a quarantined environment.

This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 200,000 accessions — more than 300,000 rows of maize — from more than 15 multinational and national seed companies and national research programs.

Partners can now plan for annual MLN phenotyping (screening/indexing) during 2020 with the schedule below. The improved and streamlined approach for MLN phenotyping should enable partners to accelerate breeding programs to improve resistance for MLN for sub-Saharan Africa.

2020 annual phenotyping (indexing/screening) schedule:

When the seeds are available  Planting period (planned) MLN Screening / Indexing
December Second week of January MLN Indexing
March Second week of April MLN Screening
June Second week of July MLN Indexing
August Second week of September MLN Screening
October Second week of November MLN Indexing

More information about the disease and resources for farmers can be found on CIMMYT’s MLN portal.

Please note that it can take up to six weeks to process imports and clear shipments.

For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:

L.M. Suresh
Tel.: +254 20 7224600 (direct)
Email: l.m.suresh@cgiar.org

CIMMYT–Kenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041–00621
Nairobi, Kenya.

Nurture soil as our food and climate insurance

Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.

“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.

Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.

While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”

Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)

Good for the soil and good for the farmer

“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”

Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.

“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.

Climate mitigation or resilience?

There is growing recognition of the importance of soils in our quest for sustainability.

Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.

The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.

“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.

The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”

“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.

“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.

Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.

“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.

December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.

Agricultural solutions to tackle humanity’s climate crisis

More than 11,000 scientists signed on to a recent report showing that planet Earth is facing a climate emergency and the United Nations warned that the world is on course for a 3.2 degree spike by 2100, even if 2015 Paris Agreement commitments are met.

Agriculture, forestry, and land-use change are implicated in roughly a quarter of global greenhouse gas emissions.

Agriculture also offers opportunities to mitigate climate change and to help farmers — particularly smallholders in developing and emerging economies who have been hardest hit by hot weather and reduced, more erratic rainfall.

Most of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while meeting the rising demand for food and, where possible, reducing emissions.

Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Climate-resilient crops and farming practices

53 million people are benefiting from drought-tolerant maize. Drought-tolerant maize varieties developed using conventional breeding provide at least 25% more grain than other varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average. These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people in the continent. One study shows that drought-tolerant maize can provide farming families in Zimbabwe an extra 9 months of food at no additional cost. The greatest productivity results when these varieties are used with reduced or zero tillage and keeping crop residues on the soil, as was demonstrated in southern Africa during the 2015-16 El Niño drought. Finally, tolerance in maize to high temperatures in combination with drought tolerance has a benefit at least twice that of either trait alone.

Wheat yields rise in difficult environments. Nearly two decades of data from 740 locations in more than 60 countries shows that CIMMYT breeding is pushing up wheat yields by almost 2% each year — that’s some 38 kilograms per hectare more annually over almost 20 years — under dry or otherwise challenging conditions. This is partly through use of drought-tolerant lines and crosses with wild grasses that boost wheat’s resilience. An international consortium is applying cutting-edge science to develop climate-resilient wheat. Three widely-adopted heat and drought-tolerant wheat lines from this work are helping farmers in Pakistan, a wheat powerhouse facing rising temperatures and drier conditions; the most popular was grown on an estimated 40,000 hectares in 2018.

Climate-smart soil and fertilizer management. Rice-wheat rotations are the predominant farming system on more than 13 million hectares in the Indo-Gangetic Plains of South Asia, providing food and livelihoods for hundreds of millions. If farmers in India alone fine-tuned crop fertilizer dosages using available technologies such as cellphones and photosynthesis sensors, each year they could produce nearly 14 million tons more grain, save 1.4 million tons of fertilizer, and cut CO2-equivalent greenhouse gas emissions by 5.3 million tons. Scientists have been studying and widely promoting such practices, as well as the use of direct seeding without tillage and keeping crop residues on the soil, farming methods that help capture and hold carbon and can save up to a ton of CO2 emissions per hectare, each crop cycle. Informed by CIMMYT researchers, India state officials seeking to reduce seasonal pollution in New Delhi and other cities have implemented policy measures to curb the burning of rice straw in northern India through widespread use of zero tillage.

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

Measuring climate change impacts and savings

In a landmark study involving CIMMYT wheat physiologists and underlining nutritional impacts of climate change, it was found that increased atmospheric CO2 reduces wheat grain protein content. Given wheat’s role as a key source of protein in the diets of millions of the poor, the results show the need for breeding and other measures to address this effect.

CIMMYT scientists are devising approaches to gauge organic carbon stocks in soils. The stored carbon improves soil resilience and fertility and reduces its emissions of greenhouse gases. Their research also provides the basis for a new global soil information system and to assess the effectiveness of resource-conserving crop management practices.

CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT's experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Managing pests and diseases

Rising temperatures and shifting precipitation are causing the emergence and spread of deadly new crop diseases and insect pests. Research partners worldwide are helping farmers to gain an upper hand by monitoring and sharing information about pathogen and pest movements, by spreading control measures and fostering timely access to fungicides and pesticides, and by developing maize and wheat varieties that feature genetic resistance to these organisms.

Viruses and moth larvae assail maize. Rapid and coordinated action among public and private institutions across sub-Saharan Africa has averted a food security disaster by containing the spread of maize lethal necrosis, a viral disease which appeared in Kenya in 2011 and quickly moved to maize fields regionwide. Measures have included capacity development with seed companies, extension workers, and farmers the development of new disease-resilient maize hybrids.

The insect known as fall armyworm hit Africa in 2016, quickly ranged across nearly all the continent’s maize lands and is now spreading in Asia. Regional and international consortia are combating the pest with guidance on integrated pest management, organized trainings and videos to support smallholder farmers, and breeding maize varieties that can at least partly resist fall armyworm.

New fungal diseases threaten world wheat harvests. The Ug99 race of wheat stem rust emerged in eastern Africa in the late 1990s and spawned 13 new strains that eventually appeared in 13 countries of Africa and beyond. Adding to wheat’s adversity, a devastating malady from the Americas known as “wheat blast” suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area and threatening to move quickly throughout South Asia’s vast wheat lands.

In both cases, quick international responses such as the Borlaug Global Rust Initiative, have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)
A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)

Partners and funders of CIMMYT’s climate research

A global leader in publicly-funded maize and wheat research and related farming systems, CIMMYT is a member of CGIAR and leads the South Asia Regional Program of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

CIMMYT receives support for research relating to climate change from national governments, foundations, development banks and other public and private agencies. Top funders include CGIAR Research Programs and Platforms, the Bill & Melinda Gates Foundation, Mexico’s Secretary of Agriculture and Rural Development (SADER), the United States Agency for International Development (USAID), the UK Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Cornell University, the German aid agency GIZ, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors to Window 1 &2.

Scaling out climate-smart agriculture in southern Africa

The United Nations Framework Convention on Climate Change estimates that temperatures in Africa are set to rise significantly in coming years, with devastating results for farmers. Some regions could experience two droughts every five years, and see drastic reductions in maize yields over the next three decades.

Research demonstrates that climate-smart agriculture (CSA) is good method of mitigating the effects of climate change, for both farmers and the planet. Associated practices, which increase soil moisture levels and soil biodiversity have been shown to decrease soil erosion by up to 64%. They also have the potential to increase maize yields by 136% and incomes in dry environments by more than twice as much.

However, adoption rates remain low in some of the countries which stand to benefit the most, such as Malawi, Zambia and Zimbabwe, where the adoption of complete conservation agriculture systems is currently at 2.5%.

A new series of infographics describes some of the farming constraints will have to be addressed in order to scale climate-smart agricultural practices successfully in the region, taking into account both benefits and challenges for farmers.

Download the infographics:

Can we scale out Climate-Smart Agriculture? An overview.

Feasibility study of Climate-Smart Agriculture for rural communities in southern Africa: the approach.

Identifying the two best-bet CSA options to test.

A perfect storm: climate change jeopardizes food security in Malawi, Zambia and Zimbabwe.

Benefits and challenges of climate-smart agriculture for farmers in southern Africa.

Gender-sensitive climate-smart agriculture in southern Africa.

There is a strong business case for scaling out CSA in Malawi, Zambia and Zimbabwe.

Corn Fed: A Tortilla Revolution in Queens

Food entrepreneur Jorge Gaviria had the idea to small-scale farmers one by one who had surplus corn, buy it from them at market price and then import it to the United States. He partnered with CIMMYT to build up relationships with farmers, working out intricate systems that would determine fair prices and ensure that they were only buying surplus corn.

Read more here.

US Under Secretary of Agriculture ready for further cooperation with CIMMYT

The US delegation stands for a group photo next to the sculpture of Norman Borlaug at the global headquarters of CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)
The US delegation stands for a group photo next to the sculpture of Norman Borlaug at the global headquarters of CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)

The existence of the International Maize and Wheat Improvement Center (CIMMYT) marks one of the longest and strongest bilateral relationships between Mexico and the United States of America. Beginning with a pilot program sponsored by the Mexican government and the Rockefeller Foundation in the 1940s, it would officially become CIMMYT in 1966, with many examples of strong collaboration between both countries throughout over 50 years of history.

United States Under Secretary of Agriculture for Trade and Foreign Agricultural Affairs Ted McKinney and dozens of other U.S representatives were officially introduced to this legacy when they visited CIMMYT on November 8, 2019.

The director of the Genetic Resources program, Kevin Pixley (left), gives a tour of the recently remodelled Germplasm Bank museum to US Under Secretary McKinney (second from left). (Photo: Eleusis Llanderal/CIMMYT)
The director of the Genetic Resources program, Kevin Pixley (left), gives a tour of the recently remodelled Germplasm Bank museum to US Under Secretary McKinney (second from left). (Photo: Eleusis Llanderal/CIMMYT)

“This is a place I’ve wanted to visit for a very long time,” McKinney stated as he first laid eyes on the CIMMYT offices, “the historical CIMMYT.”

After photos and a quick tour of the museum, McKinney talked to CIMMYT Director General Martin Kropff over Skype. They bonded over their respect for Norman Borlaug and his legacy, especially as McKinney had known him and later his granddaughter Julie personally while the two men worked at Dow Agrosciences.

Kropff gave a presentation on CIMMYT’s impact on agriculture in the United States. McKinney was amazed at how much of CIMMYT’s wheat research benefits farmers in the United States, and expressed enthusiasm for further cooperation. “We’re ready, willing and able to help in any way,” he stated.

The director of the Integrated Development program and regional representative for the Americas, Bram Govaerts, presented on CIMMYT’s work with the United States. Mark Rhoda-Reis, Bureau Director of the Wisconsin Department of Agriculture, was pleased to learn that CIMMYT has been working with the University of Wisconsin-Madison on drought-tolerant maize.

The US Under Secretary of Agriculture for Trade and Foreign Agricultural Affairs, Ted McKinney (center), speaks during one of the sessions at CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)

The group then split off into two groups for tours of the wheat fields and the CIMMYT germplasm bank.  The delegation participated in a series of roundtable discussions on various topics such as climate change, sustainable agri-food systems, and the delegates’ objectives and needs related to agriculture in their respective states. A frequent topic was the dilemma of a public with a growing fear of technology, though technology is indispensable in the growth of the science of agriculture. “Research and education is the future of agriculture,” said one of the representatives.

The director of the Genetic Resources program, Kevin Pixley (center), shows some of the genetic materials at CIMMYT's Germplasm Bank to US Under Secretary McKinney (top-left). (Photo: Eleusis Llanderal/CIMMYT)
The director of the Genetic Resources program, Kevin Pixley (center), shows some of the genetic materials at CIMMYT’s Germplasm Bank to US Under Secretary McKinney (top-left). (Photo: Eleusis Llanderal/CIMMYT)

At the closing of their visit, the delegation was eager to spread their newfound knowledge about CIMMYT’s work and legacy. “I’m just so impressed with the work done here… the representation of all the countries in this facility is outstanding!,” said Chris Chin, Director of the Missouri Department of Agriculture.

“I was blown away. [CIMMYT] is so valuable to every country in the world,” stated Ignacio Marquez, a representative from the Washington State Department of Agriculture.

Ethiopia, great mobilization against wheat rust

To protect crops, a rapid alert system has been developed which is able to predict the spread of wheat rust and warns policy makers and farmers allowing timely and targeted interventions.

The project involved a multidisciplinary team – biologists, meteorologists, agronomists, IT and telecommunications experts – and the system was developed by the University of Cambridge, the Met Office of Great Britain, the Ethiopian Agricultural Research Institute (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).

At the base of it all is the data. Read more here.

Kanwarpal Dhugga awarded top honor in science

Kanwarpal S. Dhugga, a Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT) who specializes in biotechnology, has been elected a Fellow of the American Association for the Advancement of Science (AAAS), Section on Biological Sciences, in recognition of his invaluable contributions to science and technology.

Announced by AAAS on November 26, 2019, the honor acknowledges among other things Dhugga’s leading research on plant cell wall formation, with applications including their role in lodging resistance and in producing high-value industrial polymers in maize and soybean, and the assimilation, transport, and metabolism of nitrogen in plants.

“I consider this a special honor,” said Dhugga, who leads CIMMYT’s research in biotechnology with a focus on editing genes for disease resistance in maize and wheat. He has published in high-impact scientific journals including Science, the Proceedings of the National Academy of Sciences (USA), Plant Cell, Molecular Plant, Plant Biotechnology Journal, Plant Physiology and others.

AAAS Fellows are elected each year by their peers serving on the Council of AAAS, the organization’s member-run governing body. Scientists who have received this recognition include the inventor Thomas Edison (1878), anthropologist Margaret Mead (1934), and popular science author Jared Diamond (2000), as well as numerous Nobel laureates. The election of Dhugga doubles the tally of AAAS fellows at CIMMYT, the other one being Ravi P. Singh, Distinguished Scientist and Head of Global Wheat Improvement.

“Kanwarpal merits CIMMYT’s wholehearted congratulations for this prestigious recognition of his standing in science,” said Kevin Pixley, director of CIMMYT’s Genetics Resources program, to which Dhugga belongs. “I’m humbled and grateful to count him as a member of our team.”

Dhugga identified the gene for an enzyme that propels the chemical reactions to produce guar gum, a cell wall polymer that is a dominant component of the edible kernel of the coconut. (Photo: Allen Wen/CIMMYT)
Dhugga identified the gene for an enzyme that propels the chemical reactions to produce guar gum, a cell wall polymer that is a dominant component of the edible kernel of the coconut. (Photo: Allen Wen/CIMMYT)

A native of Punjab in India, Dhugga has a M.Sc. in Plant Breeding from Punjab Agricultural University and a Ph.D. in Botany (Plant Genetics) from the University of California, Riverside. He was introduced to membrane protein biochemistry and cell wall synthesis during his postdoctoral research at Stanford University in the laboratory of Peter Ray. Prior to joining CIMMYT in 2015, Dhugga worked at DuPont Pioneer (now Corteva) from 1996 to 2014.

In addition to scientific excellence, Dhugga counts among his achievements prominent international, public-private partnerships, such as the one he led between DuPont Pioneer and the Australian Centre for Plant Functional Genomics to explore new avenues to improve plant nitrogen use efficiency and reduce culm (stalk) lodging in cereals from 2004 to 2014. He continues to explore opportunities to secure funds for undertaking joint work with the collaborators from that period, thanks to the relationships fostered then. One of the scientists in his current group actually completed his Ph.D. under that collaboration.

As part of science outreach he has guided the research of many graduate students in Australia, Canada, India, and the US, a country of which he is also a citizen, and helped make high-quality education accessible to the underprivileged, including establishing a private school in his ancestral village in the state of Punjab in India.

The 2019 Fellows will receive rosette pins in gold and blue, colors symbolizing science and engineering. (Photo: AAAS)
The 2019 Fellows will receive rosette pins in gold and blue, colors symbolizing science and engineering. (Photo: AAAS)

Dhugga has also been successful as a principal or co-principal investigator in attracting significant funding for scientific research from public agencies such as the US Department of Energy, the US National Science Foundation, USAID, and the Australian Research Council. Part of his current research is supported by a grant from the Bill & Melinda Gates Foundation. At DuPont Pioneer he was the recipient of two separate, highly competitive research grants to carry out high-risk, discovery research outside of the area of the assigned company goals.

Among his research endeavors, Dhugga highlights a breakthrough he made in the area of cell wall biosynthesis under a discovery research grant from DuPont Pioneer. He identified the gene for an enzyme that propels the chemical reactions to produce guar gum, a cell wall polymer that is also used in industrial products from shampoos to ice cream and is a dominant component of the coconut kernel. The results were published in Science. On a basic level, this provided biochemical evidence for the first time for the involvement of any of the genes from the large plant cellulose synthase gene family in the formation of a cell wall polymer. Dhugga also confides that whenever he flies over coconut plantations anywhere, he gets butterflies in his stomach at the thought that he was the first one to know how simple molecules made a complex matrix that became the edible kernel of the coconut.

“That study constituted a prime example of the power of cross-disciplinary research in answering a longstanding fundamental question in plant biology,” he said. “Assaying enzymes involved in the formation of cell wall polymers is extremely difficult. The approach we used — identify a candidate gene by combining genomics with biochemistry and then express it in a related species lacking the product of the resulting enzyme to demonstrate its function — was subsequently applied by other scientists to identify genes involved in the formation of other key plant cell wall polymers.”

Dhugga will receive a pin as a token of his election as Fellow in an AAAS ceremony in Seattle, Washington, USA, on February 15, 2020.

New publications: Understanding changes in farming systems to propose adapted solutions

A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)
A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)

Farming systems are moving targets. Agricultural Research and Development (R&D) must understand where they come from and where they are going to offer solutions that are adapted. This is one of the main objectives of the Trajectories and Trade-offs for Intensification of Cereal-based systems (ATTIC), project funded by the CGIAR Research Program on Maize (MAIZE) and implemented by the International Maize and Wheat Improvement Center (CIMMYT) and the Farming System Ecology group at Wageningen University & Research.

A recent study led by Yodit Kebede — who obtained her PhD last year under the ATTIC project — examined the drivers of change affecting smallholder farming in southern Ethiopia, farmer’s responses to these changes, and consequences for agricultural landscapes.

As in many parts of the developing world, small farms in southern Ethiopia have become smaller. Population increase and urban expansion have been major drivers of this change. Population has been increasing over 3% annually in Ethiopia, the second most populated country in Africa. Grazing areas and forests were converted to cropland, putting stress on the availability of livestock feed and fuelwood.

Farmers responded to these changes through three broad trajectories: diversification — mixed cropping and intercropping, particularly for the smallest farms —, specialization — often in high-value but non-food crops — and consolidation — maintenance or increase of farm area. Each of these trajectories has its own specific R&D needs, although farms following a consolidation trajectory are often favored by R&D programs. The same three trajectories can be identified in many rural areas where rural transformation has not taken place yet, in Africa and elsewhere in the developing world.

The loss of grassland and forest produced a landscape more susceptible to erosion and loss of soil fertility. However, all outcomes from these landscape changes may not be negative. Another study conducted by the same authors in the same study area demonstrated that an increasingly fragmented agricultural landscape may lead to increased pest control by natural enemies.

While aiming to mitigate against negative outcomes from landscape changes — for example, land degradation — policies should be careful not to inadvertently reduce some of the positive outcomes of these changes, such as increased pest control. As concluded by the study, “a better understanding of interlinkages and tradeoffs among ecosystem services and the spatial scales at which the services are generated, used, and interact is needed in order to successfully inform future land use policies”.

Read the full study:
Drivers, farmers’ responses and landscape consequences of smallholder farming systems changes in southern Ethiopia

See more recent publications by CIMMYT researchers:

  1. Estimation of hydrochemical unsaturated soil parameters using a multivariational objective analysis. 2019. Lemoubou, E.L., Kamdem, H.T.T., Bogning, J.R., Tonnang, H. In: Transport in Porous Media v. 127, no. 3, p. 605-630.
  2. Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform : diversity, quality control and molecular breeding. 2019. Raatz, B., Mukankusi, C., Lobaton, J.D., Male, A., Chisale, V., Amsalu, B., Fourie, D., Mukamuhirwa, F., Muimui, K., Mutari, B., Nchimbi-Msolla, S., Nkalubo, S., Tumsa, K., Chirwa, R., Maredia, M.K., He, Chunlin In: Genetic Resources and Crop Evolution v.66, no. 3, p. 707-722.
  3. Deep blade loosening increases root growth, organic carbon, aeration, drainage, lateral infiltration and productivity. 2019. Hamilton, G.J., Bakker, D., Akbar, G., Hassan, I., Hussain, Z., McHugh, A., Raine, S.R. In: Geoderma v. 345, p. 72-92.
  4. Maize crop nutrient input requirements for food security in sub-Saharan Africa. 2019. Berge, H.F.M. ten., Hijbeek, R., Loon, M.P. van., Rurinda, J., Fantaye, K. T., Shamie Zingore, Craufurd, P., Heerwaarden, J., Brentrup, F., Schröder, J.J., Boogaard, H., Groot, H.L.E. de., Ittersum, M.K. van. In: Global Food Security v. 23 p. 9-21.
  5. Primary hexaploid synthetics : novel sources of wheat disease resistance. 2019. Shamanin, V., Shepelev, S.S., Pozherukova, V.E., Gultyaeva, E.I., Kolomiets, T., Pakholkova, E.V., Morgounov, A.I. In: Crop Protection v. 121, p. 7-10.
  6. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. 2019. Baudron, F., Zaman-Allah, M., Chaipa, I., Chari, N., Chinwada, P. In: Crop Protection v. 120 p. 141-150.
  7. Predicting dark respiration rates of wheat leaves from hyperspectral reflectance. 2019. Coast, O., Shahen Shah, Ivakov, A., Oorbessy Gaju, Wilson, P.B., Posch, B.C., Bryant, C.J., Negrini, A.C.A., Evans, J.R., Condon, A.G., Silva‐Pérez, V., Reynolds, M.P. Pogson, B.J., Millar A.H., Furbank, R.T., Atkin, O.K. In: Plant, Cell and Environment v. 42, no. 7, p. 2133-2150.
  8. Morphological and physiological responses of Guazuma ulmifolia Lam. to different pruning dates. 2019. Ortega-Vargas, E., Burgueño, J., Avila-Resendiz, C., Campbell, W.B., Jarillo-Rodriguez, J., Lopez-Ortiz, S. In: Agroforestry Systems v. 93 no. 2 p. 461-470.
  9. Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. 2019. Kishii, M., Huerta-Espino, J., Hisashi Tsujimoto, Yoshihiro Matsuoka. In: Genetic Resources and Crop Evolution v. 66, no. 4, p.  909-920.
  10. Comparative assessment of food-fodder traits in a wide range of wheat germplasm for diverse biophysical target domains in South Asia. 2019. Blummel, M., Updahyay, S.R., Gautam, N.R., Barma, N.C.D., Abdul Hakim, M., Hussain, M., Muhammad Yaqub Mujahid, Chatrath, R., Sohu, V.S., Gurvinder Singh Mavi, Vinod Kumar Mishra, Kalappanavar, I.K., Vaishali Rudra Naik, Suma S. Biradar., Prasad, S.V.S., Singh, R.P., Joshi, A.K. In: Field Crops Research v. 236, p. 68-74.
  11. Comment on ‘De Roo et. al. (2019). On-farm trials for development impact? The organization of research and the scaling of agricultural technologies. 2019. Wall, P.C., Thierfelder, C., Nyagumbo, I., Rusinamhodzi, L., Mupangwa, W. In: Experimental Agriculture v. 55 no. 2 p. 185-194.
  12. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. 2019. Singh, D., Xu Wang, Kumar, U., Liangliang Gao, Muhammad Noor, Imtiaz, M., Singh, R.P., Poland, J.A. In: Frontiers in Plant Science v. 10 art. 394.
  13. Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. 2019. Jat, S.L., Parihar, C.M., Singh, A.K., Hari S. Nayak, Meena, B.R., Kumar, B., Parihar M.D., Jat, M.L. In: Field Crops Research v. 236, p. 96-110.
  14. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. 2019. Sandhu, O.S., Gupta, R.K., Thind, H.S., Jat, M.L., Sidhu, H.S., Singh, Y. In: Agricultural Water Management v. 219 p. 19-26.
  15. Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo‐gangetic plains of India. Kumar, V., Gathala, M.K., Saharawat, Y.S., Parihar, C.M., Rajeev Kumar, Kumar, R., Jat, M.L., Jat, A.S., Mahala, D.M., Kumar, L., Hari S. Nayak, Parihar M.D., Vikas Rai, Jewlia, H.R., Bhola R. Kuri In: Soil Use and Management v. 35, no. 2, p. 303-313.
  16. Increasing profitability, yields and yield stability through sustainable crop establishment practices in the rice-wheat systems of Nepal. 2019. Devkota, M., Devkota, K.P., Acharya, S., McDonald, A. In: Agricultural Systems v. 173, p. 414-423.
  17. Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub-Saharan Africa. 2019. Das, B., Atlin, G.N., Olsen, M., Burgueño, J., Amsal Tesfaye Tarekegne, Babu, R., Ndou, E., Mashingaidze, K., Lieketso Moremoholo |Ligeyo, D., Matemba-Mutasa, R., Zaman-Allah, M., San Vicente, F.M., Prasanna, B.M., Cairns, J.E. In: Euphytica v. 215, no. 4, art. 80.
  18. On-farm trials as ‘infection points’? A response to Wall et al. 2019. Andersson, J.A., Krupnik, T.J., De Roo, N. In: Experimental Agriculture v. 55, no. 2 p. 195-199.
  19. Doing development-oriented agronomy: Rethinking methods, concepts and direction. 2019. Andersson, J.A., Giller, K.Ehttps://repository.cimmyt.org/handle/10883/20154. In: Experimental Agriculture v. 55, no. 2, p. 157-162.
  20. Scale-appropriate mechanization impacts on productivity among smallholders : Evidence from rice systems in the mid-hills of Nepal. 2019. Paudel, G.P., Dilli Bahadur KC, Rahut, D.B., Justice, S., McDonald, A. In: Land Use Policy v. 85, p. 104-113.

Do smallholders get the right seed and inputs from their agrodealer?

Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)
Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)

Many Tanzanian smallholder farmers fail to produce even 1 ton of maize grain per hectare. To improve crop yields, a farmer needs the right seeds and complementary inputs, including inorganic fertilizer. The “right” inputs will depend upon what his or her geographical location and farming system are. How many farmers have access to such inputs and advice? What is the distribution of agrodealers in rural areas? What do they stock, and at what prices?

The International Maize and Wheat Improvement Center (CIMMYT) recently carried out a survey of agrodealers in Uganda and Tanzania to answer such questions related to the last-mile delivery of seeds and other agronomic inputs.

This is a joint initiative from two projects — Taking Maize Agronomy to Scale in Africa (TAMASA) and Strengthening product profile-based maize breeding and varietal turnover in Eastern and Southern Africa — funded by the Bill & Melinda Gates Foundation and USAID.

For the study, CIMMYT teams interviewed 233 agrodealers in Uganda and 299 agrodealers in Tanzania. The survey started in September 2019, just before the main maize planting season, and covered five districts in each country, in both easy-to-reach and remote areas.

The study focuses particularly on two types of agricultural inputs: maize seeds — similar to an earlier survey done this year in Kenya — and fertilizer.

Are agrodealers catalyzers of varietal turnover?

For maize seed, researchers looked at which varieties are available at the agrodealer and how do they decide on what to stock.

Agrodealers were also asked to report the key selling attribute of the different varieties they had in store whether it was yield, drought tolerance, maturity level or another marketing characteristic like pricing or packaging. Such information will give some better insights for CIMMYT’s maize breeding team about perceived differences along the seed value chain on key attributes and product profiles.

For example, a new variety in Uganda that was tolerant to maize lethal necrosis (MLN), was mainly promoted as a double cobber and not as MLN tolerant. And unlike in Uganda, there was no “cheap variety” option available in Tanzania, according to the agrodealers interviewed for the study, although high seed prices were often mentioned as the main barrier for seed purchases.

Better understanding how retailers select their varieties could help improve varietal turnover, a key indicator of how fast CIMMYT’s research reaches out farmers.

Besides their own role, it is also interesting to see how agrodealers perceive external challenges to influence farmer adoption of improved varieties. In Uganda, agrodealers saw counterfeit seed and government free seed distributions to farmers as the main challenges for their business, issues that were not frequently mentioned in Tanzania.

Understanding input market characteristics

Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)
Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)

The use of fertilizer is very low in sub-Saharan Africa, around 8-12 kg per hectare, twenty times less than Western standards. Fertilizer access and affordability have been cited as key factors in the low rates of uptake.

The study may shed some new light on this, as it looks at what types of fertilizer is available to farmers at agrodealer shops, and what drives sale and prices. Researchers will examine whether there is a competition effect and how transport costs or subsidies impede the growth of the fertilizer market.

Georeferencing of interviewed agrodealers and farmer population mapping will help reveal the degree to which agrodealers are concentrated in particular areas, leaving other areas with relatively little local access to inputs. Project researchers will investigate how marketing conditions vary across such situation, examining, for instance, how input pricing strategies, selection and quality varies spatially. The team will also use data collected on fertilizer prices to further refine regional fertilizer profitability maps.

Such mapping exercises could help improve the relevance of extension advice. As an example, to tackle acid soils or phosphorus deficiency, could farmers find the recommended input, lime or appropriate P fertilizer at the right time and right price, so that it is profitable for them?

The detailed results of the study are expected in early 2020 to guide agronomic investments and policies for more functional input markets that drive a much-needed sustainable intensification of African smallholder agriculture.

Preventing post-harvest losses key to food security

According to the International Maize and Wheat Improvement Center, one of the key constraints to improving food and nutritional security in Africa is the poor post-harvest management that leads to between 14 percent and 36 percent loss of maize grain, thereby aggravating hunger.

Read more here.

Zimbabwe: Farmer Combats ‘Hidden Hunger’. . . Grows Biofortified Crops

Since 2015, Harvest Plus, through the Livelihoods and Food Security Programme (LFSP), has collaborated with the International Maize and Wheat Improvement Centre (CIMMYT), Department of Research and Specialist Services (DR&SS), and more than 30 national and international partners, in breeding biofortified crop varieties of vitamin A orange maize.

Read more here.

Investing in drought-tolerant maize is good for Africa

Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)
Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)

Zambia’s vice-president has recently called to reduce maize dominance and increase crop and diet diversification in his country. The reality is that maize is and will remain a very important food crop for many eastern and southern African countries. Diet preferences and population growth mean that it is imperative to find solutions to increase maize production in these countries, but experts forecast 10 to 30% reduction in maize yields by 2030 in a business-as-usual scenario, with projected temperature increases of up to 2.7 degrees by 2050 and important drought risks.

Knowing the importance of maize for the food security of countries like Zambia, it is crucial to help maize farmers get better and more stable yields under erratic and challenging climate conditions.

To address this, the International Maize and Wheat Improvement Center (CIMMYT) and its partners have been developing hundreds of new maize varieties with good drought tolerance across sub-Saharan Africa. Stakeholders in the public research and African seed sectors have collaborated through the Drought Tolerant Maize for Africa (DTMA) project and the Stress Tolerant Maize for Africa (STMA) initiative to develop drought-tolerant seed that also incorporates other qualities, such as nutritional value and disease resistance.

A groundbreaking impact study six years ago demonstrated that drought-tolerant maize significantly reduced poverty and food insecurity, particularly in drought years.

A new study from CIMMYT and the Center for Development Research (ZEF) in the main maize growing areas of Zambia confirms that adopting drought-tolerant maize can increase yields by 38% and reduce the risks of crop failure by 36%.

Over three quarters of the rainfed farmers in the study experienced drought during the survey. These farming families of 6 or 7 people were cultivating 4 hectares of farmland on average, half planted with maize.

Another study on drought-tolerant maize adoption in Uganda estimated also good yield increases and lower crop failure risks by 26 to 35%.

A balancing act between potential gains and climate risks

Drought-tolerant maize has a transformational effect. With maize farming becoming less risky, farmers are willing to invest more in fertilizer and other inputs and plant more maize.

However, taking the decision of adopting new farm technologies in a climate risky environment could be a daunting task. Farmers may potentially gain a lot but, at the same time, they must consider downside risks.

As Gertrude Banda, a lead farmer in eastern Zambia, put it, hybrid seeds have a cost and when you do not know whether rains will be enough “this is a gamble.” In addition to climate uncertainty, farmers worry about many other woes, like putting money aside for urgent healthcare, school fees, or cooking nutritious meals for the family.

Information is power

An additional hurdle to adoption is that farmers may not know all the options available to cope with climate risks. While 77% of Zambia households interviewed said they experienced drought in 2015, only 44% knew about drought-tolerant maize.

This inequal access to knowledge and better seeds, observed also in Uganda, slows adoption of drought-tolerant maize. There, 14% of farmers have adopted drought-tolerant maize varieties. If all farmers were aware of this technology, 8% more farmers would have adopted it.

Because farmers are used to paying for cheap open-pollinated varieties, they are only willing to pay half of the hybrid market price, even though new hybrids are performing very well. Awareness campaigns on the benefits of drought-tolerant maize could boost adoption among farmers.

According to the same study, the potential for scaling drought-tolerant maize could raise up to 47% if drought-tolerant varieties were made available at affordable prices at all agrodealers. Several approaches could be tested to increase access, such as input credit or subsidy schemes.

Read the full articles:
Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda

Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia

Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda

These impact studies were made possible through the support provided by the Bill & Melinda Gates Foundation and the US Agency for International Development (USAID), funders of the Stress Tolerant Maize for Africa (STMA) initiative.