Skip to main content

Money-making machines

A new small-mechanization pilot initiative launched in July is equipping farmers with the business and technical skills they need to provide mechanization services to communities in six wards of Masvingo district, Zimbabwe.

With funding from the Swiss Agency for Development and Cooperation (SDC) managed by the United Nations World Food Program (WFP), the International Maize and Wheat Improvement Center (CIMMYT) is leading implementation of the pilot in collaboration with Kurima Machinery and the Zimbabwe Agriculture Development Trust (ZADT), who are supporting the technical training and financial management, respectively.

Anchored on a strong business model, 15 farmers have signed up to become service providers and invested an initial deposit of $500 to access the mechanization package comprising a two-wheel tractor and trailer, a direct planter and a maize cob sheller. Through a “lease-to-own” credit facility, eligible service providers will have 24 months to pay the remaining balance for the set of equipment.

“This approach addresses re-payment challenges in past interventions, where equipment was distributed without a firm commitment from the service providers and without putting in enough effort to establish a viable business,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “An advantage of this new form of financial commitment by the service providers is that it guarantees full participation and a change in their perception towards farming as a business.

Since 2013, smallholder farmers in Zimbabwe have been exposed to the benefits of combining small-mechanization with conservation farming systems to improve productivity — land preparation, planting and harvesting to achieve higher yields while reducing production costs. Besides making farming tasks more efficient for individuals, this set of equipment can be used to provide critical services to other farmers in their wards.

The two-wheel tractor can have various implements attached to it for services such as planting, transportation and shelling. It can also be used to run other important implements such as water pumps, mills or threshers.

This mechanization pilot therefore presents an additional pathway out of poverty and into sustainable production and income generation at household level, while boosting the local economy and rural employment in Masvingo district.

Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Training for local service provision

Eligible service providers were recently invited to attend a one-week specialized business and technical training course at Gwebi Agricultural College, just outside of Harare. The training package consisted of two main components: business management; and two-wheel tractor operation, maintenance and repair.

Elliot Zvovovo, a participating service provider, explains how the balanced training approach equipped him fully with all the knowledge and skills he needs to run his business. “I learned different ways of record keeping, managing income and treating my clients professionally,” he says.

“On the machinery side, I learned about of all the parts of a two-wheel tractor and practiced assembling the engine so that maintenance and repair will be easy for me.”

Julius Shava, another participating service provider, agrees, adding that knowing how to maintain the two-wheel tractor and troubleshooting will also minimize costs of hiring external mechanics to attend to faults. “I realized the importance of routine checks for oil and water levels, how to crank-start the tractor and hitch the planter all by myself.”

Supporting agricultural extension in line with service providers is critical to mainstreaming transformational change in rural areas. As such, seven local extension officers — key partners in the implementation of small-mechanization activities — were also invited to participate in the training.

“The training proved to be very effective, particularly the emphasis on mastering business principles and on the technical side, integrating service providers’ existing knowledge of conservation farming with small-mechanization,” says Canaan Zhakata, an extension officer for Ward 15.

Through the practical sessions, all service providers have now learned how to operate a two-wheel tractor, calibrate the direct planter for seed and fertilizer rates and use the sheller — giving them full technical skills and knowledge,” explains Dorcas Matangi, a research associate at CIMMYT.

The certification they have received will increase farmers’ confidence as they return to Masvingo to commence service delivery, with continued on-site support from their local extension officers. “Once we return to Masvingo, we can assist the new service providers by monitoring their service delivery to ensure full compliance with the technical requirements for operating the machinery,” says Tsvakai Dumbu, an extension officer for Ward 17.

A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A profitable business for the local economy

This mechanization pilot is poised for success as it draws on existing positive results gained by the women and youth service providers in western Zimbabwe, who are running successful mechanized enterprises following the recently completed Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

“During a recent seed fair, we heard of a youth group in Makonde that is making up to $7,000 just from maize shelling services,” says Zvovovo. “Knowing that it takes just one day to shell up to three tons of maize with the sheller, I now know that reaching such an income is achievable.”

This pilot will prove that there is scope for small-mechanization to expand on productivity through the two-wheel tractor, trailer and sheller, as shown in other parts of eastern and southern Africa. It will explore leverages on the opportunities and demand for services in Masvingo.

Cover image: An extension officer from Masvingo district drives a two-wheel tractor during a training for service providers and extension officers at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Molecular breeding speeds development of better seeds

To adequately confront rapidly changing plant pests and diseases and safeguard food security for a growing population, breeders — in collaboration with their partners — have to keep testing and applying new breeding methods to deliver resilient seed varieties at a much faster rate using minimal resources. Molecular markers are essential in this regard and are helping to accelerate genetic gains and deliver better seed to smallholders across sub-Saharan Africa in a much shorter timeframe.

Progress made so far in molecular plant breeding, genetics, genomic selection and genome editing has contributed to a deeper understanding on the role of molecular markers and greatly complemented breeding strategies. However, phenotyping remains the single most costly process in plant breeding, thus limiting options to increase the size of breeding programs.

Application of molecular markers increases the ability to predict and select the best performing lines and hybrids, prior to selection in the field. “This enables breeders to expand the size of a breeding program or the populations they work on using the same amount of resources,” says Manje Gowda, a maize molecular breeder at the International Maize and Wheat Improvement Center (CIMMYT).

“There are three stages in the use of molecular markers: discovery, validation and deployment,” he explains. “At the discovery phase, the objective is to find molecular markers associated or tightly linked with the trait of interest, while also assessing whether the trait is more complex or easier to handle with few markers for selection.”

The molecular markers identified at the discovery stage are validated in independent bi-parental or backcross populations, and the marker trait associations — which are consistent across different genetic backgrounds and diverse environments — are then moved to the deployment stage. Here, they are considered for use in breeding either as part of marker assisted selection or forward breeding, marker assisted back crossing and marker assisted recurrent selection.

Screening for resistance markers

CIMMYT scientists have discovered several marker trait associations for crop diseases including maize lethal necrosis (MLN), maize streak virus (MSV), corn rust and turcicum leaf blight. All these trait-associated markers have been validated in biparental populations.

For MLN, after screening several thousands of lines, researchers identified a few with resistance against the viral disease, namely KS23-5 and KS23-6. These lines were obtained from synthetic populations developed by Kasetsart University in Thailand and serve as trait donors. Researchers were able to use these as part of forward breeding, producing doubled haploid (DH) lines by using KS23-6 as one parent and screening for the presence of MLN resistance genes.

“This screening helps eliminate the lines that may carry susceptible genes, without having to phenotype them under artificial inoculation,” says Gowda. “These markers are also available to all partners to screen for MLN resistance, thereby saving on costs related to phenotyping.”

Scientists also used these MLN resistance markers to introgress the MLN resistance into several elite lines that are highly susceptible to the disease but have other desirable traits such as high grain yield and drought tolerance. The marker-assisted backcrossing technique was used to obtain MLN resistance from the KS23-5 and KS23-6 donor lines. This process involves crossing an elite, commercial line — as a recurrent parent in the case of CIMMYT elite lines — with a donor parent line (KS23) with MLN resistance. These were then backcrossed over two to three cycles to improve the elite line carrying MLN resistance genes. In the past three years, more than 50 lines have been introgressed with the MLN resistance gene from KS23-6 donor line.

Aida Zewdu Kebede, a PhD student at the University of Hohenheim, sits next to an experimental plot for doubled haploid maize in Agua Fría, Mexico. (Photo: Thomas Lumpkin/CIMMYT)
Aida Zewdu Kebede, a PhD student at the University of Hohenheim, sits next to an experimental plot for doubled haploid maize in Agua Fría, Mexico. (Photo: Thomas Lumpkin/CIMMYT)

An impetus to breeding programs

“The work Manje Gowda has been carrying out is particularly important in that it has successfully moved from discovery of valuable markers and proof-of-concept experiments to scalable breeding methods which are being used effectively,” says CIMMYT Trait Pipeline and Upstream Research Coordinator Mike Olsen. “Enabling routine implementation of molecular markers to increase selection efficiency of breeding programs in the context of African maize improvement is quite impactful.”

At CIMMYT, Gowda’s team applied genomic selection at the early stage of testing the breeding pipeline for different product profiles. “The objective was to testcross and phenotype 50% of the Stage One hybrids and predict the performance of remaining 50% of the hybrids using molecular markers,” Gowda explains.

The team have applied this strategy successfully each year since 2017, and the results of this experiment show that selection efficiency is the same as when using phenotypic selection, but using only 32% of the resources. From 2021 onwards, the aim is to use the previous year’s Stage One phenotypic and genotypic data to predict 100% of the lines. This will not only save the time but improve efficiency and resource use. The previous three-year Stage One historical data is helping to reduce the phenotyping of lines from 50% to 15%, with an increase in saving resources of up to 50%.

For the commercial seed sector, integrating molecular marker-based quality control measures can help deploy high-quality seeds, an important factor for increasing crop yields. In sub-Saharan Africa, awareness on marker-based quality has improved due to increased scientist and breeder trainings at national agricultural research systems (NARS), seed companies and national plant protection organizations, as well as regulators and policymakers.

Currently, many NARS and private sector partners are making it mandatory to apply marker-based quality control to maintain high-quality seeds. Since NARS and small- and medium-sized seed companies’ breeding programs are smaller, CIMMYT is coordinating the collection of samples from different partners for submission to service providers for quality control purposes. CIMMYT staff are also helping to analyze quality control data and interpret results to sharing with partners for decision-making. For the sustainability of this process, CIMMYT is training NARS partners on quality control, from sample collection to data analyses and interpretation, and this will support them to work independently and produce high-quality seed.

Such breeding improvements have become indispensable in supporting maize breeding programs in the public and private sectors to develop and deliver improved maize varieties to smallholder farmers across sub-Saharan Africa.

A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)

Q&A: CGIAR investment has generated returns of 10 times the amount invested

Disclaimer: The views and opinions expressed in this article are those of Philip Pardey and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

Working with national agricultural research centers (NARS), CGIAR centers, including the International Maize and Wheat Improvement Center (CIMMYT), have played a pivotal role in staving off the last global food crisis, mainly through enhancing the yields of staple food crops like cereals.

A new report, commissioned by the Supporters of Agricultural Research (SoAR) Foundation and authored by experts from the University of California, Davis, the University of Minnesota and North Dakota State University shows that over the past five decades, CGIAR investment has generated returns of 10 times the amount invested.

We caught up with co-author Philip Pardey, a professor at the University of Minnesota and Director of the university’s GEMS Informatics Center, to discuss the report’s implications, the importance of collaboration between NARS and CGIAR, and why investment in agricultural research and development (R&D) is needed now more than ever.

According to the report, CGIAR investment has returned a benefit-cost ratio of 10:1. How does this compare to other government investments?

A benefit-cost ratio of 10:1 means that on average, a dollar invested today brings a future return equivalent to $10 in present-day value. This is high: any ratio over the threshold of 1:1 justifies investment.

This indicates that governments — and others who invest in CGIAR and related public food and agricultural R&D — would have profited society by doing more agricultural R&D compared with the investment opportunities normally available to them. Opportunities for investment in other national and global public goods, like education and infrastructure, might also have yielded very high returns, but there is no comparable evidence that those other opportunities yielded similar return on investments.

Drawing on the findings of this report, and other related work, we conclude that the economic evidence justifies at least a doubling of overall investments in public food and agricultural R&D.

The report shows evidence of massive underinvestment in agricultural research and development (R&D) in past years. Why is that?

As we show in the report, inflation adjusted CGIAR funding has declined sharply by around 25% in the past few years. There is nothing in the economic evidence that justifies this scaling back.

Some commentators have suggested that the easy gains from agricultural R&D have already been made and that the historical returns-to-research evidence is no longer representative of the returns to more recent R&D. However, the empirical evidence refutes that notion. For example, a 2019 study from Rao et al. showed that the contemporary returns of agricultural R&D are as high as ever.

What are the risks of continuing on this path of underinvestment in agricultural R&D?

In the second half of the 20th century, global food supply grew faster than demand and real food prices fell significantly, alleviating hunger and poverty for hundreds of millions around the world. Whether or not that pattern can be repeated in the first half of the 21st century will depend crucially on investments in agricultural R&D, including investments made through CGIAR.

Global demand for food is projected to grow by 70% from 2010 to 2050. Simply meeting that increased demand will call for transformative innovations in agriculture to adapt to a changing climate, combat co-evolving pests and diseases, and increase productivity of a fairly fixed land base and a shrinking supply of agricultural water. To make food abundant and affordable for the increasingly urban, poorest of the poor demands doing much more — and much better — than simply keeping up.  If adequate investments in agricultural R&D are absent, even the odds of keeping up look increasingly questionable.

Your report shows that returns are a joint effort between NARS and CGIAR. Can you elaborate on that?

The impact evidence we reviewed for our study made clear that the success of CGIAR research is inextricably intertwined with research undertaken by national programs. In fact, this national-international R&D connectedness makes it difficult to figure out what share of the overall benefits from research are attributable to CGIAR or national innovation systems.

CGIAR has appropriately shifted its attention to low-income countries that are still heavily dependent on agriculture for livelihoods and food security. These also tend to have lower national R&D capacities and more fragile innovation systems, as well as limited, albeit emerging, private sector capabilities to support their food and agricultural sectors.

Supporting the evolution of agricultural innovation systems within CGIAR’s target economies requires doubling down on technology discovery, adaptation and delivery activities.

Philip Pardey at the University of Minnesota, USA. (Photo: InSTePP/University of Minnesota)
Philip Pardey at the University of Minnesota, USA. (Photo: InSTePP/University of Minnesota)

How can CGIAR better meet current global food challenges?

CGIAR has been demonstrably successful as an international instrument of technology discovery and in enhancing the international transfer, or spillover, of these new technologies. Tackling longer term agricultural technology challenges has been a key part of past successes.

However, a significant share of the funding for the CGIAR appears to have shifted away from the more strategic development of international public innovation goods to more localized economic development activities with a technology component. For example, the share of unencumbered CGIAR funding shrank from around 80% in 1971 to 50% in 2000, and since 2010 has plummeted to very low levels. The impact evidence provides little support for the notion that this shift in funding, which often implies a greater emphasis on more localized and shorter-term activities, is a high payoff strategy that best leverages CGIAR’s comparative advantages.

As it continually repositions its role as a source of international public innovation goods targeted to agriculturally dependent low-income countries, CGIAR will need to rethink how it partners with the public agencies, universities and private research entities that are the major source of innovations in food and agriculture.

When CGIAR was founded, a large share of the world’s agricultural R&D was done by public agencies in rich countries. Now the agriculturally large, middle-income countries spend on par with the rich countries, and the innovation landscape in rich and many middle-income countries is increasingly dominated by private firms. This comes with new partnership opportunities for CGIAR, but also new challenges, not least given the increasingly proprietary nature of the innovations and data that are driving developments in the food and agricultural sectors.

In your report you have documented clear evidence to support investment in agricultural R&D. What are the next steps in engaging national governments and decision makers to get agricultural R&D back on their agendas?

Today, as in the past, funding streams for CGIAR research are in decline and under threat. This mirrors a pattern of declining public support over recent decades for agricultural R&D conducted by national programs in many of the world’s richer countries.

However, public expectations about the roles of government to address glaring market failures may be realigning. For instance, the COVID-19 crisis exposed weakness in many public health systems, with calls for renewed and hopefully sustained, long-term investments in these public programs. COVID has also revealed the fragility of food supply systems, even in rich countries. The tide of public opinion also seems to be turning regarding the growing risks associated with climate change.

Evidence-based efforts to communicate the inter-relatedness between climate, public health and agriculture risks, and the role of innovation in reducing these growing risks over the decades ahead is critical to right-sizing and realigning the public roles in agricultural R&D.

Just as strong public investments play a crucial and complimentary role regarding significant private investments in health research, so too does the basic and pre-competitive research, undertaken with public funding, prime the pump for the growing private roles in agricultural innovation.

And even as the worldwide demand for more diversified diets continues to increase, demand for staple crops such as wheat and maize will also continue to grow and will remain crucial to securing favourable nutrition and food security outcomes in the decades ahead. Innovations in agriculture are hard won, and there are long lags (often a decade or more) between spending on agricultural R&D and getting new crop technologies in the hands of farmers. Thus there is a real sense of urgency to revitalize the investments in agricultural R&D required to produce the innovations that are needed now more than ever to sustainably feed the world.

Philip Pardey is a Professor of Applied Economics and Director of the GEMS Informatics Center, a joint venture of the College of Food, Agricultural and Natural Resource Sciences (CFANS) and the Minnesota Supercomputing Institute (MSI), both at the University of Minnesota.

Breaking Ground: Rahel Assefa thrives off witnessing impact

Ethiopia-born Rahel Assefa began her career as a software engineer in a children’s hospital in Washington DC, USA. Although she enjoyed this work for the first few years, she found that it was not as fulfilling as she had initially hoped.

Rahel slowly started shifting gears towards a new career, initially pursuing an MSc in Project Management. “I knew that I was meant to work in an area where I would have direct interaction and impact, so I really thrived in that environment,” she explains.

Her work was highly appreciated by senior managers and she quickly progressed in this new career path. “I was soon recruited to help build a project management office from scratch and that solidified my interest in the field.”

A return to Africa

Rahel remained in health care for the next few years, taking on roles in portfolio and business relationship management but ultimately, she knew her next step would be to return to Africa and work in a field that contributes to supporting people’s livelihoods. 

In 2015, Rahel learned of a job opening at the International Maize and Wheat Improvement Center (CIMMYT) which was suitable to her skillset and would also serve her desire of moving to Africa. She applied and joined the organization in February 2016, moving to Addis Ababa with her young family in tow. “We had always discussed returning to Africa, and preferably to Ethiopia, so this was a welcome move. But it was also a big leap into the unknown because both my husband and I had left Ethiopia during our formative years,” she says.

Rahel had also never worked in the agricultural sector before joining CIMMYT, so there was a steep learning curve to contend with, as well as the cultural shifts she had to make to adjust to her new work environment. “I remember spending my first few days on the job taking the time to just observe, listen actively and ask questions.” 

Rahel Assefa (center) meets colleagues at a CIMMYT event in Texcoco, Mexico. (Photo: Alfonso Cortés)
Rahel Assefa (center) meets colleagues at a CIMMYT event in Texcoco, Mexico. (Photo: Alfonso Cortés)

Witnessing impact first-hand

Rahel now works as a project manager and as the regional program manager for CIMMYT’s Sustainable Intensification Program in Africa. “Working at CIMMYT is interesting because I get to collaborate with such a diverse group of people, and we can see that our work has a direct impact on the day-to-day lives of farmers,” she says. “It’s always rewarding to see first-hand how the life of a farmer, woman or young person is transformed because of the work we do.”

“I also find working at CIMMYT’s Ethiopia office enjoyable simply because everyone gets along well,” she explains. Rahel particularly appreciates the Thursday morning coffee gatherings for staff hosted at the International Livestock Research Institute (ILRI) campus, and her frequent interactions with colleagues in Kenya and Zimbabwe, where she travels regularly. “I love having the opportunity to see the work colleagues do on the ground across Africa and I’m always in awe of their dedication to the work they do.”

When she’s not visiting projects in Nairobi or Harare, Rahel cherishes the time she spends with her family and young son, Adam, who seems to be developing a keen interest in agriculture himself. “He loves visiting ‘mommy’s office’ from time to time,” she explains, “and as a result he has recently even attempted to plant maize and wheat in our back garden.”

Rahel Assefa tests out farm machinery in Addis Ababa, Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Rahel Assefa tests out farm machinery in Addis Ababa, Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Landmark study generates genomic atlas for global wheat improvement

Close up of a durum wheat spike. (Photo: Xochiquetzal Fonseca/CIMMYT)
Close up of a durum wheat spike. (Photo: Xochiquetzal Fonseca/CIMMYT)

In a landmark discovery for global wheat production, an international team led by the University of Saskatchewan and including scientists from the International Maize and Wheat Improvement Center (CIMMYT) has sequenced the genomes for 15 wheat varieties representing breeding programs around the world, enabling scientists and breeders to much more quickly identify influential genes for improved yield, pest resistance and other important crop traits.

The research results, just published in Nature, provide the most comprehensive atlas of wheat genome sequences ever reported. The 10+ Genome Project collaboration involved more than 95 scientists from universities and institutes in Australia, Canada, Germany, Israel, Japan, Mexico, Saudi Arabia, Switzerland, the UK and the US.

“It’s like finding the missing pieces for your favorite puzzle that you have been working on for decades,” said project leader Curtis Pozniak, wheat breeder and director of the USask Crop Development Centre (CDC). “By having many complete gene assemblies available, we can now help solve the huge puzzle that is the massive wheat pan-genome and usher in a new era for wheat discovery and breeding.”

“These discoveries pave the way to identifying genes responsible for traits wheat farmers in our partner countries are demanding, such as high yield, tolerance to heat and drought, and resistance to insect pests,” said Ravi Singh, head of global wheat improvement at CIMMYT and a study co-author.

One of the world’s most cultivated cereal crops, wheat plays an important role in global food security, providing about 20 per cent of human caloric intake globally. It’s estimated that wheat production must increase by more than 50% by 2050 to meet an increasing global demand.

The study findings build on the first complete wheat genome reference map published by the  International Wheat Genome Sequencing Consortium in 2018, increasing the number of wheat genome sequences almost 10-fold, and allowing scientists to identify genetic differences between wheat varieties.

The research team was also able to track the unique DNA signatures of genetic material incorporated into modern cultivars from wild wheat relatives over years of breeding.

“With partners at Kansas State University, our CIMMYT team found that a DNA segment in modern wheat derived from a wild wheat relative can improve yields by as much as 10%,” said Philomin Juliana, CIMMYT wheat breeder and study co-author.  “We can now work to ensure this gene is included in the next generation of modern wheat cultivars.”

The team also used the genome sequences to isolate an insect-resistant gene called Sm1, that enables wheat plants to withstand the orange wheat blossom midge, a pest which can cause more than $60 million in annual losses to Western Canadian producers.

“Understanding a causal gene like this is a game-changer for breeding because you can select for pest resistance more efficiently by using a simple DNA test than by manual field testing,” explained Pozniak.

The 10+ Genome Project was sanctioned as a top priority by the Wheat Initiative, a coordinating body of international wheat researchers.

“This project is an excellent example of coordination across leading research groups around the globe.  Essentially every group working in wheat gene discovery, gene analysis and deployment of molecular breeding technologies will use the resource,” said Wheat Initiative Scientific Coordinator Peter Langridge.

Read the full press release from the University of Saskatchewan.

RELATED PUBLICATIONS: 

Multiple Wheat Genomes Reveal Global Variation in Modern Breeding

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT. M.macneil@cgiar.org

Victoria Dinh, Media Relations, Univeristy of Saskatchewan, Victoria.dinh@usask.ca

ABOUT CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org

ABOUT CDC:

The Crop Development Centre (CDC) in the USask College of Agriculture and Bioresources is known for research excellence in developing high-performing crop varieties and developing genomic resources and tools to support breeding programs.  Its program is unique in that basic research is fully integrated into applied breeding to improve existing crops, create new uses for traditional crops, and develop new crops. The CDC has developed more than 400 commercialized crop varieties.

Progress and opportunities for CIMMYT spring wheat breeding

Wheat stalks grow in a in India. (Photo: Saad Akhtar)
Wheat stalks grow in a field in India. (Photo: Saad Akhtar)

Wheat scientists in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, led by the International Maize and Wheat Improvement Center (CIMMYT), presented a range of new research at the 2020 Borlaug Global Rust Initiative (BGRI) Technical Workshop in October, highlighting progress in spring wheat breeding, disease screening and surveillance and the use of novel genomic, physiological tools to support genetic gains.

Sridhar Bhavani, CIMMYT senior scientist and head of Rust Pathology and Molecular Genetics, delivered a keynote presentation on a “Decade of Stem Rust Phenotyping Network: Opportunities, Challenges and Way Forward,” highlighting the importance of the international stem rust phenotyping platforms established with national partners in Ethiopia and Kenya at the Ethiopian Institute for Agricultural Research station in Debre Zeit, and the Kenya Agricultural and Livestock Research Organization station in Njoro, respectively. These platforms support global wheat breeding, genetic characterization and pre-breeding, surveillance and varietal release, and will continue to be an important mechanism for delivering high performing material into farmers’ fields.

CIMMYT wheat breeder Suchismita Mondal chaired a session on breeding technologies, drawing on her expertise leading the trait delivery pipeline in AGG (including rapid generation cycling and speed breeding). She led a lively Q&A on the potential for genomics and data-driven approaches to support breeding.

In the session, CIMMYT Associate Scientist and wheat breeder Philomin Juliana presented a “Retrospective analysis of CIMMYT’s strategies to achieve genetic gain and perspectives on integrating genomic selection for grain yield in bread wheat,” demonstrating that phenotypic selection making breeding selections based on physically identifiable traits has helped increase the proportion of genes associated with grain yield in CIMMYT’s globally distributed spring wheat varieties. Her work demonstrates the efficiency of indirect selection for yield in CIMMYT’s Obregon research station, and the potential of genomic selection, particularly when incorporating environmental effects.

The use of Obregon as a selection environment was further explored by CIMMYT wheat breeder Leo Crespo presenting “Definition of target population of environments in India and their prediction with CIMMYT’s international nurseries.” This work confirms Obregon’s relevance as an effective testing site, allowing the selection of superior germplasm under distinct management conditions that correlate with large agroecological zones for wheat production in India. Similar analyses will be conducted in AGG with the support of the CGIAR Excellence in Breeding Platform to optimize selection conditions for eastern Africa.

A wheat field is fed by drip irrigation in Obregon, Mexico. (Photo: H. Gomez/CIMMYT)
A wheat field is fed by drip irrigation in Obregon, Mexico. (Photo: H. Gomez/CIMMYT)

Supporting future genetic gains

CIMMYT’s Head of Global Wheat Improvement Ravi Singh presented “Genetic gain for grain yield and key traits in CIMMYT spring wheat germplasm progress, challenges and prospects,” highlighting the International Wheat Improvement Network as an important source of new wheat varieties globally. He described progress on the implementation of genomic selection and  the use of state of the art tools to collect precise plant trait information, known as high-throughput phenotyping (HTP), in CIMMYT wheat breeding.

With partners, he is now conducting both genotyping (measuring the genetic traits of a plant) and phenotyping for all entries in the earliest stages of yield trials in Mexico. In addition, his team has succeeded in phenotyping a large set of elite lines at multiple field sites across South Asia. Looking forward, they aim to shorten generation advancement time, improve the parental selection for “recycling” (re-using parents in breeding), and adding new desirable traits into the pipeline for breeding improved varieties.

Following on from Ravi’s presentation, CIMMYT scientist Margaret Krause highlighted progress in HTP in her talk on “High-Throughput Phenotyping for Indirect Selection on Wheat Grain Yield at the Early-generation Seed-limited Stage in Breeding Programs.” This work highlights the potential of drones to capture highly detailed and accurate trait data, known as aerial phenotyping, to improve selection at the early-generation, seed-limited stages of wheat breeding programs.

This kind of physiological understanding will support future phenotyping and selection accuracy, as seen in the work that CIMMYT scientist Carolina Rivera shared on “Estimating organ contribution to grain-filling and potential for source up-regulation in wheat cultivars with contrasting source-sink balance.” Her research shows that a plant’s production of biomass is highly associated with yield under heat stress and that it is possible to achieve greater physiological resolution of the interaction between traits and environment to deliver new selection targets for breeding.

Overall, the talks by AGG scientists demonstrated tremendous progress in spring wheat breeding at CIMMYT and highlighted the importance of new tools and technologies to support future genetic gains.

All presentations can be found on the BGRI Workshop 2020 website.

The Borlaug Global Rust Initiative is an international community of hunger fighters committed to sharing knowledge, training the next generation of scientists, and engaging with farmers for a prosperous and wheat-secure world. The BGRI is funded in part through the Delivering Genetic Gain in Wheat (DGGW) project from the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office.

“CIMMYT is at my heart”

After a 37-year career, Hans-Joachim Braun is retiring from the International Maize and Wheat Improvement Center (CIMMYT). As the director of the Global Wheat Program and the CGIAR Research Program on Wheat, Braun’s legacy will resonate throughout halls, greenhouses and fields of wheat research worldwide.

We caught up with him to capture some of his career milestones, best travel stories, and vision for the future of CIMMYT and global wheat production. And, of course, his retirement plans in the German countryside.

Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)
Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)

Major career milestones

Native to Germany, Braun moved to Mexico in 1981 to complete his PhD research at CIMMYT’s experimental station in Obrégon, in the state of Sonora. His research focused on identifying the optimum location to breed spring wheat for developing countries — and he found that Obrégon was in fact the ideal location.

His first posting with CIMMYT was in Turkey in 1985, as a breeder in the International Winter Wheat Improvement Program (IWWIP). This was the first CGIAR breeding program hosted by a CIMMYT co-operator, that later developed into the joint Turkey, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) winter wheat program. “In 1990, when the Commonwealth of Independent States was established, I saw this tremendous opportunity to work with Central Asia to develop better wheat varieties,” he said. “Today, IWWIP varieties are grown on nearly 3 million hectares.”

Although Braun was determined to become a wheat breeder, he never actually intended to spend his entire career with one institution. “Eventually I worked my entire career for CIMMYT. Not so usual anymore, but it was very rewarding. CIMMYT is at my heart; it is what I know.”

Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

“Make the link to the unexpected”

One of Braun’s standout memories was a major discovery when he first came to Turkey.  When evaluating elite lines from outside the country — in particular lines from a similar environment in the Great Plains — his team noticed they were failing but nobody knew why.

Two of his colleagues had just returned from Australia, where research had recently identified micronutrient disorders in soil as a major constraint for cereal production. The team tried applying micro-nutrients to wheat plots, and it became crystal clear that zinc deficiency was the underlying cause. “Once aware that micro-nutrient disorders can cause severe growth problems, it was a minor step to identify boron toxicity as another issue. Looking back, it was so obvious. The cover picture of a FAO book on global soil analysis showed a rice field with zinc deficiency, and Turkey produces more boron than the rest of the world combined.”

“We tested the soil and found zinc deficiency was widespread, not just in the soils, but also in humans.” This led to a long-term cooperation with plant nutrition scientists from Cukurova University, now Sabanci University, in Istanbul.

But zinc deficiency did not explain all growth problems. Soil-borne diseases — cyst and lesion nematodes, and root and crown rot — were also widespread. In 1999, CIMMYT initiated a soil-borne disease screening program with Turkish colleagues that continues until today.  Over the coming decade, CIMMYT’s wheat program will make zinc a core trait and all lines will have at least 25% more zinc in the grain than currently grown varieties.

After 21 years in Turkey, Braun accepted the position as director of CIMMYT’s Global Wheat Program and moved back to Mexico.

Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)
Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)

Partnerships and friendships

Braun emphasized the importance of “mutual trust and connections,” especially with cooperators in the national agricultural research systems of partner countries. This strong global network contributed to another major milestone in CIMMYT wheat research: the rapid development and release of varieties with strong resistance to the virulent Ug99 race of wheat rust. This network, led by Cornell University, prevented a potential global wheat rust epidemic.

CIMMYT’s relationship with Mexico’s Ministry of Agriculture and the Obregón farmers union, the Patronato, is especially important to Braun.

In 1955, Patronato farmers made 200 hectares of land available, free if charge, to Norman Borlaug. The first farm community in the developing world to support research, it became CIMMYT’s principal wheat breeding experimental station: Norman Borlaug Experimental Station, or CENEB.  When Borlaug visited Obregón for the last time in 2009, the Patronato farmers had a big surprise.

“I was just getting out of the shower in my room in Obregón when I got a call from Jorge Artee Elias Calles, the president of the Patronato,” Braun recalls. “He said, ‘Hans, I’m really happy to inform you that Patronato decided to donate $1 million.’”

The donation, in honor of Borlaug’s lifetime of collaboration and global impact, was given for CIMMYT’s research on wheat diseases.

“This relationship and support from the Obregón farmers is really tremendous,” Braun says. “Obregón is a really special place to me. I am admittedly a little bit biased, because Obregón gave me a PhD.”

Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug's birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug’s birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

A worldwide perspective

Braun’s decades of international research and travel has yielded just as many stories and adventures as it has high-impact wheat varieties.

He remembers seeing areas marked with red tape as he surveyed wheat fields in Afghanistan in the 1990s, and the shock and fear he felt when he was informed that they were uncleared landmine areas. “I was never more scared than in that moment, and I followed the footsteps of the guy in front of me exactly,” Braun recalls.

On a different trip to Afghanistan, Braun met a farmer who had struggled with a yellow rust epidemic and was now growing CIMMYT lines that were resistant to it.

“The difference between his field and his neighbors’ was so incredible. When he learned I had developed the variety he was so thankful. He wanted to invite me to his home for dinner. Interestingly, he called it Mexican wheat, as all modern varieties are called there, though it came from the winter wheat program in Turkey.”

Seeing the impact of CIMMYT’s work on farmers was always a highlight for Braun.

Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)
Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)

CIMMYT’s future

Braun considers wheat research to be still in a “blessed environment” because a culture of openly-shared germplasm, knowledge and information among the global wheat community is still the norm. “I only can hope this is maintained, because it is the basis for future wheat improvement.”

His pride in his program and colleagues is clear.

“A successful, full-fledged wheat breeding program must have breeders, quantitative genetics, pathology, physiology, molecular science, wide crossing, quality, nutrition, bioinformatics, statistics, agronomy and input from economists and gender experts,” in addition to a broad target area, he remarked at an acceptance address for the Norman Borlaug Lifetime Achievement award.

“How many programs worldwide have this expertise and meet the target criteria? The Global Wheat Program is unique — no other wheat breeding program has a comparable impact. Today, around 60 million hectares are sown with CIMMYT-derived wheat varieties, increasing the annual income of farmers by around $3 billion dollars. Not bad for an annual investment in breeding of around $25 million dollars. And I don’t take credit for CIMMYT only, this is achieved through the excellent collaboration we have with national programs.”

A bright future for wheat, and for Braun

General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)
General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)

After retirement, Braun is looking forward to settling in rural Inzlingen, Germany, and being surrounded by the beautiful countryside and mountains, alongside his wife Johanna. They look forward to skiing, running, e-biking and other leisure activities.

“One other thing I will try — though most people will not believe me because I’m famous for not cooking — but I am really looking into experimenting with flour and baking,” he says.

Despite his relaxing retirement plans, Braun hopes to continue to support wheat research, whether it is through CIMMYT or through long friendships with national partners, raising awareness of population growth, the “problem of all problems” in his view.

“We have today 300 million more hungry people than in 1985. The road to zero hunger in 2030 is long and will need substantial efforts. In 1970, Organization for Economic Co-Operation and Development (OECD) countries agreed to spend 0.7% of GDP on official development assistance. Today only 6 countries meet this target and the average of all OECD countries has never been higher than 0.4%. Something needs to change to end extreme poverty — and that on top of COVID-19. The demand for wheat is increasing, and at the same time the area under wheat cultivation needs to be reduced, a double challenge. We need a strong maize and wheat program. The world needs a strong CIMMYT.”

Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

Are solar powered irrigation systems scalable?

A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)
A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)

Climate change is a major challenge for India, which faces large-scale climate variability and is exposed to high risk. The country’s current development model reiterates the focus on sustainable growth and aims to exploit the benefits of addressing climate change alongside promoting economic growth.

The government has been heavily emphasizing the importance of solar power in India, and the Ministry of New and Renewable Energy (MNRE) recently launched an ambitious initiative to further this cause. The Pradhan Mantri-Kisan Urja Suraksha evam Utthaan Mahabhiyan (PM-KUSUM) scheme aims to support the installation of off-grid solar pumps in rural areas, and reduce dependence on the grid in grid-connected areas.

However, there has been a knowledge gap about the potential use of solar energy interventions in the context of climate change and their scalability. In an effort to bridge this gap, scientists from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) have comprehensively synthesized existing pilot initiatives on the deployment of solar powered irrigation systems (SPIS) across different agro-climatic zones in India and tried to assess their scalability. This in turn has led to the identification of efficient and effective models for sustainable development in accordance with the region’s socioeconomic and geopolitical situation.

Solar powered irrigation systems in India

A compendium has been developed as part of the research carried out by CCAFS, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ) and the International Water Management Institute (IWMI).

The main objectives for bringing forth this compendium are: to qualitatively document various deployment models of SPIS and to understand the factors impacting the scalability of SPIS in India. The authors collected detailed information about the process of installing SPIS, their use and maintenance, and documented the different approaches in the form of case studies developed through primary and secondary research. They aimed to capture the key technical, social, institutional and financial attributes of the deployment approaches to enable comparative analysis and synthesis.

In total, 16 case studies from across India were documented — 1 case for centralized SPIS, 2 distributed SPIS and 13 examples for decentralized systems.  Though each of these was designed with unique objectives, detailed analysis reveals that all the cases revolve around the improvement of the three factors: accessibility, affordability and sustainability — the trinity against which all cases have been described. Grid-connected areas such as Gujarat and Maharashtra offer an immense scope of selling surplus energy being produced by SPIS, to energy-deficient electricity suppliers while areas such as Bihar and Jharkhand offer the potential for scaling the decentralized model of SPIS.

Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)
Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)

Assessing scalability

For inclusive and sustainable growth, it is important to consider the farm-level potential of solar energy use with multiple usages of energy. The compendium documents examples of the potential of solar irrigation systems in India for adaptation and mitigation benefits. It also assesses on the scalability of different deployment approaches such as solar pump fitted boats in Samastipur, Bihar, or the decentralized solar powered irrigation systems in Gujrat and West Bengal. Through the compendium, the authors study the five key stages of the scaling-up process to assess whether these initiatives are scalable and could reduce or replace fossil fuel dependence in agriculture.

While some of the documented cases are designed exclusively to address a very specific problem in a particular context, others are primarily designed as a proof-of-concept for wider applicability and policy implications — with or without suitable modifications at the time of scaling. In this compendium, both types of cases are included and assessed to understand their relevance and the potential contribution they can make in advancing the goal of solarizing irrigation and agriculture in a sustainable and effective way.

The authors conclude that all the cases have different technical, financial, and institutional aspects which complement each other, have been designed based on community needs and are in line with the larger objective of the intervention integrating three factors — accessibility, affordability and sustainability — to ensure secured availability of resources and to facilitate scalability.

Given that India is a diverse country with varied socioeconomic and geopolitical conditions, it is important to have set guidelines that lay out a plan for scaling while allowing agencies to adapt the SPIS model based on local context and realities in the field.

This article was originally published on the CCAFS website.

An instant seed market

How do you create the largest market for stress-tolerant seed away from a major business center and attract over 1000 smallholder farmers in two days? Organize a seed fair to strengthen knowledge and information sharing.

The availability, access and use of climate-resilient seed by smallholder farmers in Zimbabwe is often hampered by transport costs, the distance between farming areas and viable seed markets, lack of public transport to business centers, and the inflated prices of seed and inputs by local agro-dealers. As a result, resource-poor farmers who cannot afford to purchase inputs resort to exchanging local seed retained or recycled from informal markets. This has devastating effects on farmers’ productivity, food and nutrition security.

Under the Zambuko/R4 Rural Resilience Initiative, the International Maize and Wheat Improvement Center (CIMMYT) is promoting climate-smart technologies and appropriate seed varieties alongside conservation agriculture (CA) systems in Masvingo district, Zimbabwe. Since 2018, mother and baby trials have successfully yielded results for smallholders in Ward 17 and additional mother trials have been introduced in Ward 13.

To overcome the challenges of seed access, CIMMYT partnered with eight seed companies — including Agriseeds, Mukushi and SeedCo — to host two seed fairs in October, targeting farmers in Wards 13 and 17. The intervention sought to address seed insecurity while reducing the knowledge gap on available stress-tolerant seed varieties by smallholder farmers.

Groundwork preparations led by the Department of Agriculture and Extension Services (AGRITEX) mobilized farmers from the host wards as well as farmers from neighboring wards 15, 19 and 25. In light of the ongoing COVID-19 pandemic, regulations relating to social distancing, the use of masks and sanitization were adhered to throughout the events.

Climate-smart seed choices

A key message delivered to the more than 1000 farmers who attended the seed fairs was the importance of their preference when selecting the right seed for their field. “Farmers must be critical when selecting seed and ensure that their preferred seed will perform well under the prevailing climatic conditions to give a good harvest,” said CIMMYT seed systems specialist Peter Setimela.

Seed company representatives were offered a platform to market their varieties and explain the benefits of each product on the market while leaving it to the farmers to decide on the most suitable variety for their own needs. “Farmers came early for the seed fairs and showed interest in our products,” said Norman Chihumo, a regional agronomist at Syngenta Distributors. “We recorded fairly good sales of seed and chemicals through cash purchases and vouchers.”

Later in the day, farmers toured the seed company stands to see the diverse maize varieties and small grains on offer — including millet and sorghum, cowpeas and groundnuts — and heard testimonials from participants in the mother and baby trials. “Listening to a success story from a farmer I know gives me the confidence to follow suit and buy seed that works in this harsh climate of ours,” said Joice Magadza, a farmer from Ward 17.

Local farmer Happison Chitono agreed. “I never used to grow cowpeas on my plot,” he explained, “but after learning about the ability it has to fix nitrogen into my soil and possibility of rotating the legume with maize, I am now gladly adding it to my seed input package.”

Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A seed fair is also a knowledge market

A key highlight of the seed fair was the learning platform promoting CIMMYT’s ongoing activities under the Zambuko/R4 Rural Resilience Initiative. Here, cropping systems agronomist Christian Thierfelder shared the objectives of this initiative with participating farmers.

“We know how good this seed is, but we also have to grow it in a sustainable way, so we make best use of the limited rainfall we receive in this area while we improve our soils,” he explained to farmers. “Cropping systems such as conservation agriculture combine no-tillage, mulching and crop rotation in a climate-smart agriculture way which enables farmers to harvest enough, even under heat and drought stress.”

Thierfelder also demonstrated the use of farm equipment promoted by CIMMYT in collaboration with Kurima Machinery, explaining how these can help reduce drudgery and save time on planting, transport and shelling.

Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Vouchers for transparent seed access

The seed fairs culminated in the distribution of seed and input vouchers. One hundred farmers were selected through a transparent raffle and redeemed their vouchers at their preferred seed company stands. They then also had the option to purchase additional seed, fertilizer and chemicals using their own cash.

Particularly high sales were recorded for Provitamin A orange maize, which sold out on both seed fair days. Stress-tolerant varieties such as ZM 309 and ZM 523 from Zimbabwe Super Seeds, ZM521 from Champion Seeds, and MRI 514 from Syngenta were also favorites among the farmers, while white sorghum and cowpea varieties such as CBC2 also sold well. Most of these varieties were already known to farmers as they had seen them growing for two years in CIMMYT’s mother trials of Ward 17.

The seed fairs ended on a high note with a total of 1.2 tons of seed sold to farmers on both days and agro-dealers hailed the fairs as a timely business venture for creating linkages and bringing seed suppliers on-site to assess their shops. A post-seed fair monitoring exercise will soon follow up on farmers’ use of the seed and the performance of demo packs and purchased varieties.

The Zambuko/R4 Rural Resilience Initiative supported by the United States Agency for International Aid (USAID), Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP) aims to increase farmer resilience and capacity to withstand climatic shocks and stresses in rural communities of Masvingo, Mwenezi and Rushinga in Zimbabwe.

CIMMYT scientists recognized for impact

Four scientists working with the International Maize and Wheat Improvement Center (CIMMYT) have been recognized as 2020 recipients of the Clarivate™ Highly Cited Researchers list.

The honor recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.

Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate.

The 2020 CIMMYT honorees include:

  • José Luis Francisco Crossa: CIMMYT Distinguished Scientist.
  • Julio Huerta: CIMMYT-seconded wheat breeder and rust geneticist with Mexico’s Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
  • Matthew Reynolds: CIMMYT Distinguished Scientist, wheat physiologist and member, Mexican Academy of Sciences.
  • Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement.

“I congratulate my colleagues in the Global Wheat Program for this excellent recognition of their important work,” said incoming CIMMYT Global Wheat Program Director Alison Bentley.

For more information, you can view the full Highly Cited Researchers 2020 list and information on the methodology.

Scientific opportunities and challenges

Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)
Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)

The first meetings of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) wheat and maize science and technical steering committees — WSC and MSC, respectively — took place virtually on 25th and 28th September.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) sit on both committees. In the WSC they are joined by wheat experts from national agricultural research systems (NARS) in Bangladesh, Ethiopia, Kenya, India, and Nepal; and from Angus Wheat Consultants, the Foreign, Commonwealth & Development Office (FCDO), HarvestPlusKansas State University and the Roslin Institute.

Similarly, the MSC includes maize experts from NARS in Ethiopia, Ghana, Kenya and Zambia; and from Corteva, the Foundation for Food and Agriculture Research (FFAR), the International Institute for Tropical Agriculture (IITA), SeedCo, Syngenta, the University of Queensland, and the US Agency for International Development (USAID).

During the meetings, attendees discussed scientific challenges and opportunities for AGG, and developed specific recommendations pertaining to key topics including breeding and testing scheme optimization, effective engagement with partners and capacity development in the time of COVID-19, and seed systems and gender intentionality.

Discussion groups noted, for example, the need to address family structure in yield trials, to strengthen collaboration with national partners, and to develop effective regional on-farm testing strategies. Interestingly, most of the recommendations are applicable and valuable for both crop teams, and this is a clear example of the synergies we expect from combining maize and wheat within the AGG project.

All the recommendations will be further analyzed by the AGG teams during coming months, and project activities will be adjusted or implemented as appropriate. A brief report will be submitted to the respective STSCs prior to the second meetings of these committees, likely in late March 2021.

Taking stock of the national toolbox

The Government of Ethiopia has consistently prioritized agriculture and sees it as a core component of the country’s growth. However, despite considerable efforts to improve productivity, poor management of soil health and fertility has been an ongoing constraint. This is mainly due to a lack of comprehensive site-and context-specific soil health and fertility management recommendations and dissemination approaches targeted to specific needs.

The government envisions a balanced soil health and fertility system that helps farmers cultivate and maintain high-quality and fertile soils through the promotion of appropriate soil-management techniques, provision of required inputs, and facilitation of appropriate enablers, including knowledge and finance.

So far, a plethora of different research-for-development activities have been carried out in support of this effort, including the introduction of tools which provide location-specific fertilizer recommendations. For example, researchers on the Taking Maize Agronomy to Scale in Africa (TAMASA) project, led by the International Maize and Wheat Improvement Center (CIMMYT), have created locally calibrated versions of Nutrient Expert® (NE) — a tool for generating fertilizer recommendations — for maize farmers in Ethiopia, Nigeria and Tanzania.

Nutrient Expert® is only one of the many fertilizer recommendation tools which have been developed in recent years covering different levels of applicability and accuracy across spatial scales and users, including smallholder farmers, extension agents and national researchers. However, in order to make efficient use of all the resources available in Ethiopia, there is a need to systematically evaluate the merits of each tool for different scales and use cases. To jump start this process, researchers from the TAMASA project commissioned an assessment of the tools and frameworks that have been developed, adapted and promoted in the country, and how they compare with one another for different use-cases. Seven tools were assessed, including Nutrient Expert®, the Ethiopian Soil Information System (EthioSIS) and RiceAdvice.

For each of these, the research team asked determined how the tool is currently being implemented — for example, as an app or as a generic set of steps for recommendation generation — and its data requirements, how robust the estimates are, how complicated the interface is, how easy it is to use, the conditions under which it performs well, and the spatial scale at which it works best.

Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Combining efforts and information

The results of this initial assessment indicate that the type of main user and the scale at which decisions are made varied from tool to tool. In addition, most of the tools considered have interactive interfaces and several — including Nutrient Expert® and RiceAdvice — have IT based platforms to automate the optimization of fertilizer recommendations and/or analyze profit. However, the source codes for all the IT based platforms and tools are inaccessible to end-users. This means that if further evaluation and improvements are to be made, there should be a means of collaborating with developers to share the back-end information, such as site-specific response curves and source codes.

Because most of the tools take different approaches to making fertilizer application site-specific, each of them renders unique strengths and trade-offs. For example, Nutrient Expert® may be considered strong in its approach of downscaling regionally calibrated responses to field level recommendations based on a few site-specific responses from farmers. By contrast, its calibration requires intensive data from nutrient omission trials and advice provision is time consuming.

Overall, the use of all the Site-Specific Decision-Support Tools (SSDST) has resulted in improved grain yields compared to when farmers use traditional practices, and this is consistent across all crops. On average, use of Nutrient Expert® improved maize, rice and wheat yields by 5.9%, 8.1% and 4.9%, respectively. Similarly, the use of RiceAdvice resulted in a 21.8% yield advantage.

The assessment shows that some of the tools are useful because of their applicability at local level by development agents, while others are good because of the data used to develop and validate them. However, in order to benefit the agricultural system in Ethiopia from the perspective of reliable fertilizer-use advisory, there is a need to develop a platform that combines the merits of all available tools. To achieve this, it has been suggested that the institutions who developed the individual tools join forces to combine efforts and information, including background data and source codes for IT based tools.

While the COVID-19 pandemic has disrupted efforts to convene discussions around this work, CIMMYT has and will continue to play an active advocacy role in supporting collaborative efforts to inform evidence-based reforms to fertilizer recommendations and other agronomic advice in Ethiopia and the wider region. CIMMYT is currently undertaking a more rigorous evaluation of these tools and frameworks as a follow up on the initial stocktaking activity.

Faster results at a lower cost

Usman Kadir and his family de-husk maize on their farm in Ethiopia. (Photo: Apollo Habtamu/ILRI)
Usman Kadir and his family de-husk maize on their farm in Ethiopia. (Photo: Apollo Habtamu/ILRI)

The current COVID-19 pandemic — and associated measures to reduce its spread — is projected to increase extreme poverty by 20%, with the largest increase in sub-Saharan Africa, where 80 million more people would join the ranks of the extreme poor. Accelerating the process of delivering high-quality, climate resilient and nutritionally enriched maize seed is now more critical than ever.However, developing these varieties is not a rapid or cheap process. Over the course of five years, researchers on the Stress Tolerant Maize for Africa (STMA) project developed a range of tools and technologies to reduce the overall cost of producing a new high yielding, stress tolerant hybrids for smallholder farmers in the region.

Maize breeding starts with crossing two parents and essentially ends after testing their great-great-great-great grandchildren in as many locations as possible. This allows plant breeders to identify the new varieties which will perform well in the conditions faced by their target beneficiaries — in the case of STMA, smallholder farmers in Africa. In other parts of the world, new tools and technologies are routinely added to breeding programs to help reduce the cost and time it takes to produce new varieties.

Scientists on the STMA project focused on testing and scaling new tools specifically for maize breeding programs in sub-Saharan Africa and began by taking a closer look at the most expensive part of the breeding process: phenotyping or collecting precise information on plant traits.

“Within a breeding program, phenotyping is the single most costly step,” explains CIMMYT molecular breeder Manje Gowda. “Molecular technologies provide opportunities to reduce this cost.” The research team tested two methods to speed up this step and make it more cost efficient: forward breeding and genomic selection.

Speeding up a long and costly process

Two important traits maize breeders look for in their plant progeny are susceptibility for two key maize diseases: maize streak virus (MSV) and maize lethal necrosis (MLN). In traditional breeding, breeders must extensively test lines in the field for their susceptibility to these diseases, and then remove them before the next round of crossing. This carries a significant cost.

Using a process called forward breeding, scientists can screen for DNA markers known to be associated with susceptibility to these diseases. This allows breeders to identify lines vulnerable to these diseases and remove them before field testing.

Scientists on the STMA project applied this approach in CIMMYT breeding programs in eastern and southern Africa over the past four years, saving an estimated $300,000 in field costs. Under the AGG project, research will now focus on applying forward breeding to identify susceptibility for another fast-spreading maize pest, fall armyworm, as well as extending use of this method in partners’ breeding programs.

A CIMMYT research associate inspects maize damaged by fall army worm at KALRO Kiboko Research Station in Kenya. (Photo: Peter Lowe/CIMMYT)
A CIMMYT research associate inspects maize damaged by fall army worm at KALRO Kiboko Research Station in Kenya. (Photo: Peter Lowe/CIMMYT)

Forward breeding is ideal for “simple” traits which are controlled by a few genes. However, other desired traits, such as tolerance to drought and low nitrogen stress, are genetically complex. Many genes control these traits, with each gene only contributing a little towards overall stress tolerance.

In this case, a technology called genomic selection can be of service. Genomic selection estimates the performance, or breeding value, of a line based largely on genetic information. Genomic selection uses more than 5,000 DNA markers, without the need for precise information about what traits these markers control. The method is ideal for complicated traits such as drought and low nitrogen stress tolerance, where hundreds of small effect genes together largely control how a plant grows under these stresses.

CIMMYT scientists used this technology to select and advance lines for drought tolerance. They then tested these lines and compared their performance in the field to lines selected conventionally. They found that the two sets of resulting hybrid varieties — those advanced using genomic selection and those advanced in the field — showed the same grain yield under drought stress. However, genomic selection only required phenotyping half the lines, achieving the same outcome with half the budget.

Innovations in the field

While DNA technology is reducing the need for extensive field phenotyping, research is also underway to reduce the cost of the remaining necessary phenotyping in the field.

Typically, many traits — such as plant height or leaf drying under drought stress — are measured by hand, using the labor of large teams of people. For example, plant and ear height is traditionally measured by a team of two using a meter stick.

Mainasarra Zaman-Allah, a CIMMYT abiotic stress phenotyping specialist based in Zimbabwe, has been developing faster, more accurate ways to measure these traits.  He implemented the use of a small laser sensor to measure plant and ear height which only requires one person. This simple yet cost effective tool has reduced the cost of measuring these traits by almost 60%. Similarly, using a UAV-based platform has reduced the cost of measuring a trait known as canopy senescence — leaf drying associated with drought susceptibility —by over 65%.

The identification of plants which are tolerant to key diseases has traditionally involved scoring the severity of disease in each plot visually, but walking through hundreds of plots daily can lead to errors in human judgement. To combat this, CIMMYT biotic stress phenotyping specialist LM Suresh collaborated with Jose Luis Araus and Shawn Kefauver, scientists at the University of Barcelona, Spain, to develop image analysis software that can quantify disease severity, thereby avoiding problems associated with unintentional human bias.

Plant breeders need uniform, or homozygous, lines for selection. With conventional plant breeding this is difficult: no matter how many times you cross a line, a small amount of DNA will remain heterozygous — having two different alleles of a particular gene — and reduce accuracy in line selection.

A technology called doubled haploid allows breeders to develop homozygous lines within two seasons. While this technology has been used in temperate maize breeding programs since the 1990s, it was not available for tropical environments until 10 years ago. In 2013, thanks to joint work with Kenyan partners at the CIMMYT Doubled Haploid facility in Kiboko, this technology was made available to African breeding programs. Now Vijay Chaikam, a CIMMYT doubled haploid specialist based in Kenya, is working towards reducing the cost of this technology as well.

The efforts begun by the STMA research team is now continuing under the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project. As this work is carried forward, the next crucial step is ensuring that the next generation of African maize breeders have access to these technologies and tools.

“Improving national breeding programs will really drive success in raising maize yields in the stress prone environments faced by many farmers in our target countries,” says Mike Olsen, CIMMYT’s upstream trait pipeline coordinator. Under AGG, in collaboration with the CGIAR Excellence in Breeding Program, these tools will be scaled out.

International Whole Grain Day 2020

The International Maize and Wheat Improvement Center (CIMMYT) is proud to partner with the Whole Grain Initiative in celebrating International Whole Grain Day on November 19, 2020.

In terms of diet and nutrition, ours is an age of contradiction. While populations in wealthy countries are faced with unprecedented levels of diet-related disease, close to 2 billion people globally remain food insecure. At the same time, global agriculture has an enormous role to play in the transition towards an environmentally sustainable future.

International Whole Grain Day 2020 is a good day to step back and consider the continued role of whole grains in the healthy, sustainable diets of today and tomorrow. Explore our content to learn what whole grains are, how we’re working to make whole grain wheat and maize even more nutritious, and discover some our favorite recipes.

The Cereal Serial, Episode 1

In the first installment of The Cereal Serial, CIMMYT’s maize and wheat quality experts explain what whole grains are and why they are an important part of a healthy diet.

Explainer: What are whole grains?

For a deeper dive into the subject, check out our explainer on whole grains: What they are, why they are important for your health, and how to identify them.

The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)

Whole grains around the world

What do wholegrain foods look like around the world? We’ve curated photos of some delicious staples. View gallery.

Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)

“A Grain a Day” Cookbook

CIMMYT’s “A Grain a Day” cookbook highlights the big role maize and wheat play in diets around the world, and brings global cuisine to your own kitchen. (Note: not all recipes call for whole grains.) Learn more.

International Whole Grain Day webinar

Join members of the Whole Grain Initiative, the FAO and global leaders on November 19 as they discuss the role of whole grains in meeting the “triple challenge” of ensuring global food security and improving the livelihoods of agri-food workers in an environmentally sustainable manner. Join the webinar: Building Healthy, Sustainable and Resilient Food Systems.

Interested in learning more about how CIMMYT is working to make grain-based diets healthier and more nutritious? Check out our archive of health and nutrition content.

Featured image: Little girl eating roti, Bangladesh (S. Mojumder/Drik/CIMMYT)

The Cereal Serial: What are whole grains and why do they matter?

In the first installment of The Cereal Serial, CIMMYT’s maize and wheat quality experts Natalia Palacios and Itria Ibba explain what whole grains are and why they are an important part of a healthy diet. For a deeper dive into the subject, check out our whole grains explainer.

Share recipes and photos of your favorite whole grain foods by tagging @CIMMYT and using #choosewholegrains in your social media posts.