Skip to main content

Four questions with CIMMYT’s Maize Genebank Curator

Seeds are a cornerstone of food security. That is why the maize and wheat genebanks have always been at the heart of the work of the International Maize and Wheat Improvement Center (CIMMYT).

Earlier this year, as the CIMMYT community wished farewell to Denise Costich, Terence (Terry) Molnar stepped into her shoes and took over the management of the world’s largest and most diverse collection of maize.

Molnar calls himself a curator, but unlike his counterparts at libraries and museums, his job is not only about registering and showcasing the 28,000 unique seed collections of maize. He and his team make sure that the rich maize biodiversity collected throughout time and geographies stays alive, viable and accessible to others.

We sat down with Molnar to learn more about his unique role and what we can do to celebrate biodiversity on the International Day for Biological Diversity — and every other day.

A conservation conversation

Germplasm banks around the world are protectors of genetic diversity, altogether preserving roughly 700,000 samples of wheat varieties from fields far and wide. Thomas (Tom) Payne, the head of CIMMYTs Wheat Germplasm Collection, or genebank, manages the Mexico-based collection of nearly 150,000 accessions from over 100 countries. He has been affiliated with CIMMYT since 1988, and has dedicated his career to wheat improvement and conservation, working in Ethiopia, Mexico, Syria, Turkey and Zimbabwe. In addition to managing the genebank, he is the chair of the CGIAR Genebank Managers Group, has served as secretary to the CIMMYT Board of Trustees, manages the CIMMYT International Wheat Improvement Network and was awarded the Frank N. Meyer Medal for Plant Genetic Resources in 2019.

In advance of his retirement in July 2021, CIMMYT senior scientist Carolina Saint Pierre sat down with Tom Payne over Zoom to ask him a few questions from the wheat breeding team about his lifetime of experience in wheat biodiversity conservation.

What is your favorite Triticum species?

Triticum aestivum, bread wheat, is my favorite. Bread wheat feeds around 2.7 billion people worldwide. In fact, more food products are made from wheat than from any other cereal. An interesting detail about Triticum aestivum, however, is that it’s a hexaploid, meaning that it is a distinct species formed from three separate species. The inherent genetic diversity resulting from its three ancestral species and its ability to naturally incorporate genetic diversity from other species gives breeders a broad palette of genetic diversity to work with for current and future needs.

How can genebank managers of vital food crops add diversity to existing collections?

Some of the thousands of samples that make up the wheat active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT's global headquarters in Texcoco, Mexico. (Photo: X. Fonseca/CIMMYT)
Some of the thousands of samples that make up the wheat active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: X. Fonseca/CIMMYT)

There are many vital genebanks, with community, national, regional, and international affiliations. Harmonization of these efforts into a global conservation network is needed. In wheat, for example, we do not adequately understand the diversity of the crop’s wild relatives. A recent study from Kansas State University observed that two thirds of the accessions of Aegilops tauschii held by several key collections were duplicates. This is an alarm to the global wheat community. The ex-situ collection of a critical species is less representative and more vulnerable than the sheer number of accessions would imply. We need to conduct a thorough characterization of all crop wild relatives to assess the risks to diversity, and a gap analysis of newly collected materials to ensure that their long-term conservation adds unique diversity to existing collections.

Which of the Triticum species that you store in the CIMMYT wheat genebank should, in your opinion, be explored much more?

Species that can readily cross with cultivated wheat, both bread wheat and durum wheat, should have intensified conservation and characterization efforts. Examples of these include Triticum monococcum subspecies monococcum (Einkorn) and Triticum turgidum subspecies dicoccon (Emmer).

What were the most surprising results from the genetic diversity analyses of nearly 80,000 wheat accessions from the CIMMYT genebank?

Modern, molecular genetic tools confirmed, for the most part, the centuries-old Linnaean taxonomic classification of Triticum and Aegilops species. There are generally two broad schools of taxonomists, “lumpers” and “splitters.” The former groups species based on a few common characteristics, and the latter defines multiple taxa based on many traits. The Seeds of Discovery work, in partnership with Michiel van Slageren from Kew Gardens, is confirming the salient taxonomy of the Triticum genus. Van Slageren previously studied and published a taxonomic monograph on the wheat ancestral Aegilops genus.

How can a genebank managers help in pre-breeding?

Maintaining native genetic diversity for use in the future is an important role that genebank managers play in pre-breeding and applied breeding processes. Furthermore, the identification of rare and odd variation plays an important role in understanding trait expression. Genebank managers are now gaining a stronger understanding of the genetic representativeness of their collections, and they can identify where gaps in the conserved genetic diversity may exist. A better understanding of the collections will enable their sustainable conservation and use.

Tom Payne at the Global Seed Vault in Svalbard, Norway, for the official opening ceremony in 2008. He holds one of the sealed boxes used to store the nearly 50,000 unique maize and wheat seed collections deposited by CIMMYT. (Photo: Thomas Lumpkin/CIMMYT)
Tom Payne at the Global Seed Vault in Svalbard, Norway, for the official opening ceremony in 2008. He holds one of the sealed boxes used to store the nearly 50,000 unique maize and wheat seed collections deposited by CIMMYT. (Photo: Thomas Lumpkin/CIMMYT)

What would you consider the biggest challenge when striving for genetic diversity in breeding wheat for the future?

CIMMYT and other CGIAR Centers are rightfully proud of their stewardship of global public goods, and the free access to and distribution of germplasm and information. Yet outside of the CGIAR, the two-way sharing of germplasm and knowledge is often still not realized by many crop communities. International agreements have attempted to bridge recognition of intellectual property rights with guaranteed access and benefit-sharing mechanisms. However, the playing field remains uneven between public and private organizations due to varied levels of investment and exclusivity, access to technology and information, and marketability.

What is one way we can ensure long-term conservation of staple crops around the world?

In the past few years, several internationally renowned germplasm collections have been destroyed due to civil conflicts, natural disasters and fires — for example in Aleppo, Cape Town and Sao Paulo. Each time, we hear what a shame it was that the destroyed heritage was lost, that it was irreplaceable and beyond value. When a genebank loses an accession, the ancestral lineage extending hundreds of generations becomes permanently extinct. Genebank managers recognize this threat, and hence duplicate samples of all accessions are now slowly being sent to the Global Seed Vault in Svalbard for long-term preservation.

Cover photo: Tom Payne, Wheat Germplasm Collections & International Wheat Improvement Network Manager. (Photo: X. Fonseca/CIMMYT)

México y EU establecen estrategia conjunta a favor de la seguridad alimentaria

Mexico’s Secretariat of Agriculture and Rural Development (SADER) and its counterpart in the United States reached an agreement to promote knowledge sharing and scientific collaboration on agriculture-related issues.

Read more: https://www.elsoldemexico.com.mx/mexico/sociedad/mexico-y-eu-establecen-estrategia-conjunta-a-favor-de-la-seguridad-alimentaria-6722351.html

CIMMYT releases 12 new maize lines

Maize ears of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)
Maize ears of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the release of a set of 12 new CIMMYT maize lines (CMLs). These lines were developed at various breeding locations of CIMMYT’s Global Maize program by a multi-disciplinary team of scientists in sub-Saharan Africa and Asia. The lines are adapted to the tropical maize production environments targeted by CIMMYT and partner institutions.

CIMMYT seeks to develop improved maize inbred lines in different product profiles, with superior performance and multiple stress tolerance to improve maize productivity for smallholder farmers. CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses, besides optimum conditions.  Suitability as either seed or pollen parent is also thoroughly evaluated.

To increase the utilization of the CMLs in maize breeding programs of partner institutions, all the new CMLs have been tested for their heterotic behavior and have been assigned to specific heterotic groups of CIMMYT: A and B. As a new practice, the heterotic group assignment is included in the name of each CML, after the CML number — for example, CML604A or CML605B.

Release of a CML does not guarantee high combining ability or per se performance in all environments. Rather, it indicates that the line is promising or useful as a parent for pedigree breeding or as a potential parent of hybrid combinations for specific mega-environments. The description of the lines includes heterotic group classification, along with information on their specific strengths, and their combining ability with some of the widely used CMLs or CIMMYT lines.

Plants of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)
Plants of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)

More information:

Summary of the characteristics of the 12 new CMLs (PDF).

Pedigree and characterization data of all the CMLs released to date, including the latest set (CIMMYT Research Data repository).

Seed requests:

A limited quantity of seed of the CMLs can be obtained by sending a request to the CIMMYT Maize Germplasm Bank. CMLs are freely available to both public and private sector breeders worldwide under the Standard Material Transfer Agreement.

Contact:

For further details regarding the released CMLs, please contact B.M. Prasanna, Director of the Global Maize Program, CIMMYT, and the CGIAR Research Program on Maize.

The Green Revolution was built on manipulating genes to breed higher-yielding, disease resistant crops. Here’s an ode to one of its pioneers, Sanjaya Rajaram

This tribute to the life and work of Sanjaya Rajaram, one of Norman Borlaug’s most impactful collaborators, also flags CIMMYT’s contribution to improving livelihoods and fostering more productive sustainable maize and wheat farming in low- and middle-income countries.

Read more: https://geneticliteracyproject.org/2021/05/05/the-green-revolution-was-built-on-manipulating-genes-to-breed-higher-yielding-disease-resistant-crops-heres-an-ode-to-one-of-its-pioneers-in-emembering-world-food-prize-laureate-sanjaya-rajaram-s/

Digitization equipment set to accelerate Kenya’s breeding programs

Last month, the CGIAR Excellence in Breeding (EiB) platform handed over digitization equipment to the Kenya Agricultural and Livestock Research Organization (KALRO) as part of ongoing efforts to modernize the public agency’s crop breeding programs. The handover of the equipment, valued at roughly $85,000, took place at KALRO headquarters in Nairobi on March 8, 2021, with representatives from the International Maize and Wheat Improvement Center (CIMMYT), EiB and KALRO in attendance.

KALRO received 23 units of equipment including seed counters, label printers, handheld data collectors, tablets and package printers. These will help the organization speed up and enhance the accuracy of various breeding processes, including seed preparation, data collection and data analysis. They will also support inventory management within KALRO’s maize, wheat, rice, sorghum, bean, soybean and potato breeding programs at six of its research centers in Kenya.

(L-R) CIMMYT Regional Representative for Africa and Kenya Country Representatives Moses Siambi, CGIAR EiB NARS Coordinator Biswanath Das, KALRO Director General Eliud Kireger and KALRO Deputy Director General for Crops Felister Makini at the digitization equipment handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)

Dispensing with laborious systems 

A lack of digitization equipment hampers the research efforts of many national agricultural research systems (NARS) across Africa. This adverse situation is compounded by unreliable institutional memory, which constrains NARS efforts to breed an assortment of crop varieties efficiently.

“Currently, KALRO uses very laborious systems including manual layouts and collection, followed by manual data entry into computers. This old age process is prone to data entry errors and delays in analysis, publication and reporting,” says KALRO Director General Eliud Kireger.

“With the equipment we are receiving, information and data can be recalled by a click of a button. The equipment will also significantly reduce research costs related to labor, thus freeing our scientists to focus on core research activities.”

The equipment will also support KALRO’s ongoing efforts to digitize its historical data, especially for the maize and wheat programs using the Breeding Management System (BMS). So far, 20 years of maize historical data has been uploaded onto the BMS platform for ease of access.

Prepped for emerging challenges  

The CGIAR EiB platform was established in 2017 to help modernize public breeding programs in the CGIAR and NARS to increase their rates of genetic gain. In recent years, there has been an upsurge in challenges including climate change, population growth, rapid urbanization, changing dietary inclinations, transboundary movement of pests and diseases. These have exerted an enormous strain on food production systems and elicited the urgency to prioritize the adoption of new plant breeding techniques and technologies to address current and emerging threats. This calls for a holistic approach to tackle the issues including better agronomy and policy, according to EiB NARS Coordinator Biswanath Das.

“Modernizing our plant breeding programs to develop new, climate smart, market driven varieties will be at the heart of the solution,” says Das. “We must ensure that public plant breeding programs are not left behind because for many crops in Africa, there is limited private sector interest. Public breeding programs must shoulder the responsibility for ensuring the development and adoption of the next generation of crop varieties.”

CGIAR EiB NARS Coordinator Biswanath Das shares remarks at the digitization handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)

Already, KALRO breeding programs, in collaboration with international CGIAR centers, have played a leading role in supporting farmers in sub–Saharan Africa to address many emerging plant threats such as wheat rust (UG99), maize lethal necrosis (MLN) and fall armyworm.

As part of its commitment to supporting NARS partners, EiB provided over 10 million Kenyan shillings ($92,000) worth of material and in-kind support to various KALRO breeding operations in 2020. This included genotyping support for maize and wheat, support to adopt the BMS digital data management system, technical support and training of KALRO breeders.  Much of the digitization work is driven by EiB’s Operations and Phenoytyping module, led by Gustavo Teixeira. “We’ll continue to consider a whole range of devices and solutions,” says Teixeira. “It’s a part of our culture of continuous improvement, so breeding programs can focus on what really adds value to their clients.”

EiB will continue to support NARS across Africa and beyond to digitize their operations, and is working with partners to secure more equipment, training and resources. With this digitization project, EiB has targeted 24 breeding programs in 14 African countries. These include programs run by AfricaRice, CIMMYT, the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI).

“We want to do more to support centers to improve their operations so they can achieve the most effective and cost efficient phenotypic processes — agronomic practices, seed processing and other areas,” explains Teixeira. “We aim to expand to more programs and partners.”

EiB and partners are supported by CGIAR Trust Fund Contributors and the Crops to End Hunger initiative, via the Bill and Melinda Gates Foundation, GIZ, BMZ, USAID, UK Aid, ACIAR and other partners. 

CIMMYT and John Innes Centre announce strategic collaboration on wheat research

CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)
CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre (JIC) have announced a strategic collaboration for joint research, knowledge sharing and communications, to further the global effort to develop the future of wheat.

Wheat, a cornerstone of the human diet that provides 20% of all calories and protein consumed worldwide, is threatened by climate change-related drought and heat, as well as increased frequency and spread of pest and disease outbreaks. The new collaboration, building on a history of successful joint research achievements, aims to harness state-of-the-art technology to find solutions for the world’s wheat farmers and consumers.

“I am pleased to formalize our longstanding partnership in wheat research with this agreement,” said CIMMYT Deputy Director General for Research Kevin Pixley. “Our combined scientific strengths will enhance our impacts on farmers and consumers, and ultimately contribute to global outcomes, such as the Sustainable Development Goal of Zero Hunger.”

Director of the John Innes Centre, Professor Dale Sanders commented, “Recognizing and formalizing this long-standing partnership will enable researchers from both institutes to focus on the future, where the sustainable development of resilient crops will benefit a great many people around the world.”

Thematic areas for collaboration

Scientists from CIMMYT and JIC will work jointly to apply cutting-edge approaches to wheat improvement, including:

  • developing and deploying new molecular markers for yield, resilience and nutritional traits in wheat to facilitate deploying genomic breeding approaches using data on the plant’s genetic makeup to improve breeding speed and accuracy;
  • generating, sharing and exploiting the diversity of wheat genetic material produced during crossing and identified in seed banks;
  • pursuing new technologies and approaches that increase breeding efficiency to introduce improved traits into new wheat varieties; and
  • developing improved technologies for rapid disease diagnostics and surveillance.

Plans for future collaborations include establishing a new laboratory in Norwich, United Kingdom, as part of the Health Plants, Healthy People, Healthy Plant (HP3) initiative.

Bringing innovations to farmers

An important goal of the collaboration between CIMMYT and JIC is to expand the impact of the joint research breakthroughs through knowledge sharing and capacity development. Stakeholder-targeted communications will help expand the reach and impact of these activities.

“A key element of this collaboration will be deploying our innovations to geographically diverse regions and key CIMMYT partner countries that rely on smallholder wheat production for their food security and livelihoods,” said CIMMYT Global Wheat Program Director Alison Bentley.

Capacity development and training will include collaborative research projects, staff and student exchanges and co-supervision of graduate students, exchange of materials and data, joint capacity building programs, and shared connections to the private sector. For example, plans are underway for a wheat improvement summer school for breeders in sub-Saharan African countries and an internship program to work on the Mobile And Real-time PLant disease (MARPLE) portable rust testing project in Ethiopia.


INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

Dale Sanders  – Director, John Innes Centre

OR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE JOHN INNES CENTRE:

The John Innes Centre is an independent, international centre of excellence in plant science, genetics and microbiology. Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature’s diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.

We foster a creative, curiosity-driven approach to fundamental questions in bio-science, with a view to translating that into societal benefits. Over the last 100 years, we have achieved a range of fundamental breakthroughs, resulting in major societal impacts. Our new vision Healthy Plants, Healthy People, Healthy Planet (www.hp3) is a collaborative call to action. Bringing knowledge, skills and innovation together to create a world where we can sustainably feed a growing population, mitigate the effects of climate change and use our understanding of plants and microbes to develop foods and discover compounds to improve public health.

The John Innes Centre is strategically funded by the UKRI-BBSRC (Biotechnology and Biological Sciences Research Council), and is supported by the John Innes Foundation through provision of research accommodation, capital funding and long-term support of the Rotation PhD programme.

For more information about the John Innes Centre visit our website: www.jic.ac.uk.

México se consolida como el tercer productor agropecuario de América Latina

During the presentation of Mexico’s 2021 Agri-Food Expectations, Bram Govaerts, Director General of CIMMYT, flagged a number of initiatives aimed at supporting the country’s food self-sufficiency and safeguarding the cultural heritage of its agricultural sector.

Read more: https://www.elsoldemexico.com.mx/mexico/sociedad/mexico-se-consolida-como-el-tercer-productor-agropecuario-de-america-latina-6658152.html

 

New project to recharge aquifers and cut water use in agriculture by 30 percent

Irrigated fields under conservation agriculture practices at CIMMYT's experiment station near Ciudad ObregĂłn, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)
Irrigated fields under conservation agriculture practices at CIMMYT’s experiment station near Ciudad ObregĂłn, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) announced a new three-year public–private partnership with the German development agency GIZ and the beverage company Grupo Modelo (AB InBev) to recharge aquifers and encourage water-conserving farming practices in key Mexican states.

The partnership, launched today, aims to contribute to a more sustainable use of water in agriculture. The project will promote sustainable farming and financing for efficient irrigation systems in the states of Hidalgo and Zacatecas, where Grupo Modelo operates. CIMMYT’s goal is to facilitate the adoption of sustainable intensification practices on more than 4,000 hectares over the next three years, to reduce the water footprint of participant farmers.

Mexico is at a high risk of facing a water crisis in the next few years, according to the World Resources Institute. The country needs to urgently begin reducing its use of available surface and ground water supplies if it is to avert the looming crisis.

Farming accounts for nearly 76% of Mexico’s annual water consumption, as estimated by Mexico’s Water Commission (CONAGUA). Farmers, therefore, have a key role to play in a more sustainable use of this valuable natural resource.

“We need to take care of the ecosystem and mitigate agriculture’s impact on the environment to address climate change by achieving more sustainable agri-food systems,” said Bram Govaerts, chief operating officer, deputy director general of research a.i. and director of the Integrated Development program at CIMMYT.

The project, called Aguas Firmes (Spanish for “Firm Waters”), also seeks to recharge two of Mexico’s most exploited aquifers, by restoring forests and building green infrastructure.

“Our priority is water, which is the basis of our business but, above all, the substance of life,” said Cassiano De Stefano, chair of Grupo Modelo, one of the Mexico’s leading beer companies. “We’ve decided to lead by example by investing considerably in restoring two aquifers that are essential to Zacatecas and Hidalgo’s development.”

The German development agency GIZ, one of CIMMYT’s top funders, is also investing in this alliance that will benefit 46,000 farmers in Hidalgo and 700,000 farmers in Zacatecas.

“We are very proud of this alliance for sustainable development that addresses a substantial problem in the region and strengthens our work on biodiversity conservation and sustainable use of natural resources in Mexico,” said Paulina Campos, Biodiversity director at GIZ Mexico.

CIMMYT undertakes participatory agricultural research activities with local farmers to collaboratively develop and implement sustainable farming practices and technologies that help reduce water consumption in grain production by up to 30%.


 

INTERVIEW OPPORTUNITIES:

Bram Govaerts – Chief Operating Officer, Deputy Director General of Research a.i. and Director of the Integrated Development program, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Ricardo Curiel, Senior Communications Specialist for Mexico, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Many birds with one stone

In Ethiopia, farming systems rely heavily on animal and human power, reducing productivity and efficiency. In recent years, the government and development partners have made significant efforts to modernize agriculture.

In 2013, CIMMYT introduced one-axel multipurpose tractors in various districts of Amhara, Oromia, South and Tigray regions. This new technology has helped to improve farmers’ lives and phase out outdated farming practices. Farmers have reduced drudgery, improved productivity and gained higher profits. This short video shows the impacts the two-wheel tractor brough to smallholder farmers in Ethiopia.

Financial support for this initiative came from the German development agency GIZ, USAID and the Australian government.