Skip to main content

Agricultural scientist Balwinder Singh awarded ‘Alumnus of the Year’ by a prestigious Australian university

The Indian researcher leads CIMMYT’s environmental analytics work in South Asia, combining field experimentation, participatory engagement and cropping systems modelling to address the region’s productivity and sustainability challenges in cereal systems.

Charles Sturt University (CSU) awarded him with the 2021 Alumnus of the Year title in Professional Achievement (Research) as part of its Foundation Day celebrations on July 21.

Read more: https://www.sbs.com.au/language/english/audio/agricultural-scientist-balwinder-singh-awarded-alumnus-of-the-year-by-a-prestigious-australian-university

Building resilient and sustainable irrigation for food security in Nepal

An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)
An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)

In Nepal, agriculture contributes to a third of gross domestic product and employs about 80% of the rural labor force. The rural population is comprised mostly of smallholder farmers whose level of income from agricultural production is low by international standards and the countrys agricultural sector has become vulnerable to erratic monsoon rains. Farmers often experience unreliable rainfall and droughts that threaten their crop yields and are not resilient to climate change and water-induced hazard. This requires a rapid update of the sustainable irrigation development in Nepal. The Cereal Systems Initiative for South Asia (CSISA) Nepal COVID Response and Resilience short-term project puts emphasis on identifying and prioritizing entry points to build more efficient, reliable and flexible water services to farmers by providing a fundamental irrigation development assessment and framework at local, district and provincial levels.

Digital groundwater monitoring system and assessment of water use options

Digital system of groundwater data collection, monitoring and representation will be piloted with the government of Nepal to facilitate multi-stakeholder cooperation to provide enabling environments for inclusive irrigation development and COVID-19 response. When boosting the irrigation development, monitoring is fundamental to ensure sustainability. In addition, spatially targeted, ex-ante assessments of the potential benefits of irrigation interventions provide insights by applying machine-learning analytics and constructing data-driven models for yield and profitability responses to irrigation. Furthermore, a customized set of integrated hydrological modeling and scenario analyses can further strengthen local, district and provincial level assessment of water resources and how to build resilient and sustainable water services most productively from them.

Toward a systemic framework for sustainable scaling of irrigation in Nepal

Through interview and surveys, the project further builds systemic understanding of the technical, socioeconomic and institutional challenges and opportunities in scaling water access and irrigation technologies. This will contribute to the construction of a comprehensive irrigation development framework, achieved by the collective efforts from multiple stakeholders across different line ministries, levels of government and local stakeholders and water users. Together with the technical assessments and monitoring systems, the end goal is to provide policy guidelines and engage prioritized investments that ensure and accelerate the process of sustainable intensification in irrigation in Nepal.

This blog was originally published in Agrilinks.

The science behind the perfect bread and pasta flour

Have you ever considered that bread and pasta are made from different types of wheat? How about the fact that there are thousands of different wheat products consumed around the world, and each one has unique characteristics and processing requirements?

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) understand that the quality of the final product, be it spaghetti, a loaf of sourdough bread or a tandoori naan, is highly dependent on the quality of the grain and the flour it becomes. Every year, CIMMYT analyzes thousands of wheat lines in detail at its Wheat Quality laboratory to determine the nutritional, processing and end-use quality of the grain. In this short video, CIMMYT’s Wheat Quality lab head Maria Itria Ibba explains exactly what they are looking for and how they find it.

First, CIMMYT scientists test the overall grain quality by analyzing grain weight, density, protein content, moisture content and hardness.

The grains are then milled into flour, which is again analyzed for moisture content, protein content, color and protein quality. Protein quality is especially important to determine the end-use for the type of flour, and CIMMYT conducts several tests to determine this characteristic. Bread and durum wheat flours specifically are analyzed for overall protein quality by checking SDS-sedimentation volume. Mixographs are used to assess the flour’s mixing and absorption characteristics, and alveographs are used to measure dough deformation properties.

At the end of the tests, bread wheat flours are transformed into leavened breads and scored based on the loaf’s volume and crumb quality. Durum wheat flour, used to make Italian-style pasta, is scored based on grain quality, flour yellowness, high protein content and protein quality.

CIMMYT’s work ensures that wheat-derived foods produced in developing countries are nutritious, affordable, and maximize profits for each actor in the value chain.

Cover photo: At CIMMYT’s Wheat Quality lab, researchers evaluate how different bread wheat varieties behave at the time of baking. (Photo: CIMMYT)

Tracing the evolution of 50 years of maize research in CGIAR

CGIAR turned 50 in 2021. To mark this anniversary, two independent and highly reputed experts have authored a history of CGIAR maize research from 1970 to 2020.

The authors, Derek Byerlee and Greg Edmeades, focused on four major issues running through the five decades of CGIAR maize research: the diversity of maize-growing target environments, the role of the public and private sectors in maize research in the tropics, the approaches adopted in reaching smallholder farmers in stress-prone rainfed tropical environments with improved technologies, and the need for maintaining strong financial support for international maize research efforts under the CGIAR.

The work of the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA) and the CGIAR Research Program on Maize (MAIZE) and its partners features prominently in this account. The authors also reviewed the history of maize policy research undertaken by the International Food Policy Research Institute (IFPRI).

The authors bring a unique perspective to the challenging task of tracing the evolution of maize research in CGIAR as both “insiders” and “outsiders.” While they worked as CIMMYT researchers in the 1990s, and later on as reviewers of various projects/programs, both are currently unaffiliated with CIMMYT. Byerlee is affiliated with the School of Foreign Service at Georgetown University, Washington DC, USA, and Edmeades is an independent scholar based in New Zealand.

“A clear-eyed and unbiased appreciation of our past — both successes and missteps — can only enrich our efforts, make better progress, and effectively meet the challenges of the present and the future,” wrote B.M. Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program MAIZE , in the foreword.

According to Prasanna, “The challenges to the maize-dependent smallholders in the tropics are far from over. Optimal, stable and long-term investment in international maize improvement efforts is critical.”

Disclaimer: The CGIAR Research Program MAIZE supported only the review, formatting, and online publication of this document. The findings and conclusions are completely of the authors, and do not necessarily represent the institutional views of CIMMYT, IITA, IFPRI or CGIAR and its partners.

Nitrogen-efficient wheats can provide more food with fewer greenhouse gas emissions, new study shows

An international collaboration has discovered and transferred to elite wheat varieties a wild-grass chromosome segment that causes roots to secrete natural inhibitors of nitrification, offering a way to dial back on heavy fertilizer use for wheat and to reduce the crop’s nitrogen leakage into waterways and air, while maintaining or raising its productivity and grain quality, says a new report in the Proceedings of the National Academy of Sciences of the United States of America.

Growing wheat varieties endowed with the biological nitrification inhibition (BNI) trait could increase yields in both well-fertilized and nitrogen-poor soils, according to G.V. Subbarao, researcher at the Japan International Research Center for Agricultural Sciences (JIRCAS) and first author of the new report.

“Use of wheat varieties that feature BNI opens the possibility for a more balanced and productive mix of nitrogen nutrients for wheat fields, which are currently dominated by highly-reactive nitrogen compounds that derive in large part from synthetic fertilizers and can harm the environment,” Subbarao said.

The most widely grown food crop on the planet, wheat is consumed by over 2.5 billion people in 89 countries. Nearly a fifth of the world’s nitrogen-based fertilizer is deployed each year to grow wheat but, similar to other major cereals, vegetables, and fruits, the crop takes up less than half of the nitrogen applied.

Much of the remainder is either washed away, contaminating ground waters with nitrate and contributing to algae blooms in lakes and seas, or released into the air, often as nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide.

The study team first homed in on the chromosome region associated with the strong BNI capacity in the perennial grass species Leymus racemosus and moved it from the grass, using “wide crossing” techniques, into the cultivar Chinese Spring, a wheat landrace often used in genetic studies. From there, they transferred the BNI chromosome sequence into several elite, high-yielding wheat varieties, leading to a near doubling of their BNI capacity, as measured through lab analyses of soil near their roots.

The new wheats — elite varieties from the International Maize and Wheat Improvement Center (CIMMYT) into which the BNI trait was cross-bred — greatly reduced the action of soil microbes that usually convert fertilizer and organic nitrogen substances into ecologically-harmful compounds such as nitrous oxide gas, according to Hannes Karwat, a CIMMYT post-doctoral fellow and study co-author.

“The altered soil nitrogen cycle was even reflected in the plants’ metabolism,” Karwat said, “resulting in several responses indicative of a more balanced nitrogen uptake in the plants.”

The scientists involved said BNI-converted wheats in this study also showed greater overall biomass and grain yield, with no negative effects on grain protein levels or breadmaking quality.

“This points the way for farmers to feed future wheat consumers using lower fertilizer dosages and lowering nitrous oxide emissions,” said Masahiro Kishii, a CIMMYT wheat cytogeneticist who contributed to the research. “If we can find new BNI sources, we can develop a second generation of elite wheat varieties that require even less fertilizer and that better deter nitrous oxide emissions.”

A recent PNAS paper by Subbarao and Princeton University scientist Timothy D. Searchinger mentions BNI as a technology that can help foster soils featuring a more even mix of nitrogen sources, including more of the less-chemically-reactive compound ammonium, a condition that can raise crop yields and reduce nitrous oxide emissions.

CIMMYT researcher Masahiro Kishii examines wheat plants in a greenhouse. (Photo: CIMMYT)
CIMMYT researcher Masahiro Kishii examines wheat plants in a greenhouse. (Photo: CIMMYT)

Scale out to slow global warming?

The present study comes just as the Intergovernmental Panel on Climate Change (IPCC) has released its Sixth Assessment Report, which among other things states that “… limiting human-induced global warming … requires limiting cumulative CO2 emissions … along with strong reductions in other greenhouse gas emissions.”

Globally, 30% of greenhouse gas emissions come from agriculture. BNI-enabled wheat cultivars can play an important role to reduce that footprint. Wheat-growing nations that have committed to the Paris Climate Accord, whose provisions include reducing greenhouse gas emissions 30% by 2050, could be early adopters of the BNI technology, together with China and India, the world’s top two wheat producers, according to Subbarao.

“This work has demonstrated the feasibility of introducing BNI-controlling chromosome segments into modern wheats, without disrupting their yields or quality,” said Subbarao. “To realize the technology’s full potential, we need to transfer the BNI feature into many elite varieties adapted to diverse wheat growing areas and to assess their yield in many farm settings and with varying levels of soil pH, fertilization and water use.”

A project to establish nitrogen-efficient wheat production systems in the Indo-Gangetic Plains using BNI has recently been approved by Japan and is under way, with the collaboration of JIRCAS, the Indian Council of Agricultural Research (ICAR), and the Borlaug Institute of South Asia (BISA). Under the project, BNI-converted wheat lines developed from JIRCAS-CIMMYT partnerships will be tested in India and the BNI trait transferred to popular national wheat varieties.

“The BNI-technology is also featured in Green Technology, a Japanese government policy document for moving towards a zero-carbon economy,” said Osamu Koyama, President of JIRCAS, which has also posted a note about the new PNAS study. JIRCAS and CGIAR BNI research is co-funded by the Ministry of Agriculture, Forestry and Fisheries of Japan.

“Adaptation and mitigation solutions such as BNI, which help lessen the footprint of food production systems, will play a large role in CGIAR research-for-development, as part of One CGIAR Initiatives starting in 2022,” said Bram Govaerts, CIMMYT Director General.


RELATED RESEARCH PUBLICATIONS:

Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution

INTERVIEW OPPORTUNITIES:

Hannes Karwat – Postdoctoral Fellow, Nitrogen Use Efficiency, International Maize and Wheat Improvement Center (CIMMYT)

Masahiro Kishii – Wheat Cytogenetics, Wide Crossing, International Maize and Wheat Improvement Center (CIMMYT)

Victor Kommerell – Program Manager, CGIAR Research Program Wheat (WHEAT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

Can Uganda attain zero-hunger?

Uganda is one of the fastest economically growing nations in sub-Saharan Africa and is in the midst of socio-economic transition. Over the past two decades the country’s GDP has expanded, on average, by more than 6% each year, with per capita GDP reaching $710 in 2019. Researchers project that this will continue to rise at a rate of 5.6% each year for the next decade, reaching approximately $984 by the year 2031.

This growth is mirrored by a rising population and rapid urbanization within the country. In 2019, 24.4% of the Uganda’s 44.3 million citizens were living in urban areas. By 2030, population is projected to rise to 58-61 million, 31% of whom are expected to live in towns and cities.

“Changes in population, urbanization and GDP growth rate all affect the dietary intake pattern of a country,” says Khondoker Mottaleb, an economist at the International Maize and Wheat Improvement Center (CIMMYT). “Economic and demographic changes will have significant impacts on the agricultural sector, which will be challenged to produce and supply more and better food at affordable prices.”

This could leave Uganda in a precarious position.

In a new study, Mottaleb and a team of collaborators project Uganda’s future food demand, and the potential implications for achieving the United Nations Sustainable Development Goal of zero hunger by 2030.

The authors assess the future demand for major food items, using information from 8,424 households collected through three rounds of Uganda’s Living Standards Measurement Study — Integrated Surveys on Agriculture (LSMS-ISA). They focus on nationwide demand for traditional foods like matooke (cooking banana), cassava and sweet potato, as well as cereals like maize, wheat and rice — consumption of which has been rising alongside incomes and urbanization.

A conceptual framework of changing food demand in the Global South. (Graphic: CIMMYT)

The study findings confirm that with increases in income and demographic changes, the demand for these food items will increase drastically. In 2018, aggregate consumption was 3.3 million metric tons (MMT) of matooke, 4.7 MMT of cassava and sweet potato, 1.97 MMT of maize and coarse grains, and 0.94 MMT of wheat and rice. Using the Quadratic Almost Ideal Demand System (QUAIDS) estimation approach, the authors show that in 2030 demand could be as high as 8.1 MMT for matooke, 10.5 MMT for cassava and sweet potato, 9.5 MT for maize and coarse grains, and 4 MMT for wheat and rice.

Worryingly, Mottaleb and his team explain that while demand for all the items examined in the study increases, the overall yield growth rate for major crops is stagnating as a result of land degradation, climate extremes and rural out-migration. For example, the yield growth rate for matooke has reduced from +0.21% per year from 1962-1989 to -0.90% from 1990-2019.

As such, the authors call for increased investment in Uganda’s agricultural sector to enhance domestic production capacity, meet the growing demand for food outlined in the study, improve the livelihoods of resource-poor farmers, and eliminate hunger.

Read the full article, Projecting food demand in 2030: Can Uganda attain the zero hunger goal?

New CIMMYT maize hybrids available from Latin America breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in the tropical lowlands of Latin America and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities. In some countries, depending on the applicable regulatory framework for commercial maize seed, successful applicants may first need to sponsor the products through the national registration / release process prior to commercialization.

The deadline to submit applications to be considered during the first round of allocations is September 17, 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits Trial summary
Latin America Product Profile 1A

(LatAM-PP1A)

CIM19LAPP1A-11 Early-maturing, white, high-yielding, drought tolerant, resistant to MLB, TSC and ear rots FSR, GLS Appendix 1
CIM19LAPP1A-13

 

CIMMYT Latin America Stage 4 and Stage 5 Trials: Results of the 2019 and 2020 Trials and Product Announcement

Appendix 1: CIMMYT maize hybrids available under LatAM-PP1A

Appendix 2: Information on Latin America trial locations and management

Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal in English or Spanish.

APPLY FOR A LICENSE

Alternatively, applications may be submitted via email to GMP-CIMMYT@cgiar.org using the PDF forms available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. (Please be sure to use these current versions of the application forms.)

FORM A – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO A – Solicitud para asignación de productos mejorados de maíz del CIMMYT)

FORM B – Application for CIMMYT Improved Maize Product Allocation (also available in Spanish: FORMATO B – Solicitud para asignación de productos mejorados de maíz del CIMMYT)

 

Seed giants must collaborate or be dwarfed by threat of climate change

Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT) For more information, see CIMMYT's Wheat Doctor: http://wheatdoctor.cimmyt.org/index.php?option=com_content&task=view&id=84&Itemid=43&lang=en. Photo credit: CIMMYT.
Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)
For more information, see CIMMYT’s Wheat Doctor: http://wheatdoctor.cimmyt.org/index.php?option=com_content&task=view&id=84&Itemid=43&lang=en.
Photo credit: CIMMYT.

The COVID-19 pandemic has exposed vast inequalities when it comes to food security. But there is an even larger and more concerning crisis waiting for us: global food shortages caused by climate change.

According to the latest report from the Intergovernmental Panel on Climate Change, total global warming is likely to rise around 1.5 degrees Celsius within the next two decades.

Nobody knows when or how hard it will hit, but we inch closer each year with new temperature records, the spread of pests, and emerging crop diseases. We are already seeing the beginning of this future crisis. Climate-induced food price hikes have caused political turmoil in the Middle East, while climate-related disasters have been linked with mass human migration in South Asia.

Every seed company and crop research center worldwide is preoccupied with the race to breed hardier crops to keep pace with the demands of a growing population as circumstances become increasingly challenging. But the truth is, this is a relay race, and yet the crop research field is running 100-meter sprints in different places at different times.

For every scientific advance, other areas of crop research go under-resourced and are technology poor, with asymmetries in research investment creating islands of knowledge that are disparate and disconnected.  These research asymmetries hold back crop improvement as a whole, contributing to climate-induced crop failure and the political turmoil that ensues when staple foods become scarce.

While it is common for academic crop scientists to share ideas and collaborate with industry, it is far less typical for major seed companies to cooperate with each other.

If the public and private sectors are to have any chance of outrunning climate change, industry must shift toward investing in mutually beneficial research and development to pool resources and build on every gain, in the interests of the whole.

In an unprecedented first step that reveals just how much pressure the sector feels about the daunting task ahead, some of the crop industry’s main players and competitors — including Syngenta, BASF, Corteva and KWS — recently shared their insights into the gaps in existing crop science.

The shortcomings identified that hold back the crop industry from addressing the looming food crisis have three features in common. They are all under-represented in scientific literature, are likely to boost productivity across a wide range of crops and environments, and crucially, the research is fundamental enough to be “pre-competitive,” or valuable without jeopardizing individual business outcomes.

For example, although scientists have made progress towards improving the potential of crucial processes in crop development, like photosynthesis, other gaps in knowledge must be filled to ensure that this translates into improved yield, especially under unstable environments.

Such research is critical to ensuring reliable harvests across a range of crops, and can be conducted without infringing the intellectual property or proprietary technology of any single company.

However, accessing research funding can be surprisingly difficult. Public research budgets are shrinking, their funds are at risk of being re-appropriated, and collaboration is not the industry standard.

New funding models, such as public-private partnerships, can collectively address knowledge gaps to avoid potential catastrophes for society at large.

This approach has already proven fruitful. The public-private consortium “Crops of the Future Collaborative” brings competitors together to jointly fund research into the characteristics crops need to adapt to a changing future.

Industry matched the Collaborative’s initial $10 million investment by the Foundation for Food & Agriculture Research to work on corn that survives in drought conditions and leafy greens that are resistant to pests.

Conducting this research jointly drastically improves crop efficiency and the technological toolbox available to breeders and other crop scientists, passing the baton in the race towards a food secure future.

Increasing the global food supply through research and development is the most achievable and sure approach to avoid a global food crisis, and comes with historically high returns on investment. Furthermore, scientists can tap into a global infrastructure of researchers across public and private sectors, international organizations, and the millions of farmers worldwide who have willingly collaborated over the last half century to provide enough food for all.

Failure to collaborate will ultimately result in unsustainable food systems, which not only renders seed companies obsolete but threatens a prerequisite of civilization: food security.

The private sector has the knowledge and resources to redefine the race. Rather than competing against one another, the crop industry must join forces to compete instead with climate change. And it is a contest we can only win if all players work together.

This op-ed was originally published on the Des Moines Register.

Matthew Reynolds is a distinguished scientist with the International Maize and Wheat Improvement Center. Jeffrey L. Rosichan is a director with Foundation for Food & Agriculture Research. Leon Broers is a board member with KWS SAAT SE & Co. KGaA.

When it comes to maize variety choices, can farmers have it all?

Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)
Farmer Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)

Smallholder farmers are often torn between maize seed varieties that have multiple desirable traits. Since they cannot always have it all — there are limits on what traits breeders can integrate in any given variety — they face the dilemma of which seed to pick at the expense of an equally desirable option.

Trait preference trade-offs among maize farmers in western Kenya, published in March 2021, provides evidence of this prioritization and seeks to help breeders, seed companies and other stakeholders set priorities that account for farmers’ needs and their willingness to make preference trade-offs. The researchers evaluated responses from 1,288 male and female farmers in the mid-altitude maize growing areas of western Kenya.

The study argues that farmer-centered seed systems (including seed companies) should be guided by farmers’ priorities and reflect a greater understanding of the tradeoffs these farmers make between traits and varieties. They have two key options, according to Paswel Marenya, the study’s lead researcher and adoption and impact assessment economist at the International Maize and Wheat Improvement Center (CIMMYT). The first involves prioritizing the critical must-have traits in any one variety. The second option entails having multiple varieties that meet diverse farmers’ needs and then segmenting the seed markets.

While Marenya argues that prioritization is important for balancing commercial realities and farmers’ diverse interests, he is quick to add that “market segmentation has limits imposed by the commercial viability of each segment.”

“At every turn, from breeding to farmer varietal preferences to seed company considerations, there have to be trade-offs, as one cannot keep segmenting the market forever,” Marenya said. “At some point, you must stop and choose what traits to prioritize in your breeding or commercially viable market segments, based on the most pressing challenges already identified.”

CIMMYT researchers conduct interviews in Kenya to determine farmer preferences for maize traits. (Photo: CIMMYT)

Differences in tradeoffs among men and women

From a gender lens, the paper reveals an obvious difference in tradeoffs made by men and women. Whereas the two groups desire some similar traits in their varieties of choice, women seem to be willing to make slightly larger yield sacrifices in favor of tolerance to drought and Striga and good storability. Women also valued good storability over 90-day maturity, while men appeared to place a higher value on the closed tip, a sign of resistance to moisture infiltration which causes grain rotting.

“These results imply that unless the risks of storage or pre-harvest losses are reduced or eliminated, the value of high yielding varieties can be diminished if they are susceptible to production stresses or the grain characteristics make them susceptible to storage pests,” the study states.

The study indicates that farmers may adopt stress tolerant and high yielding varieties with somewhat low storability only if advanced grain storage technologies are available.

Until then, the suggestion to policy makers responsible for maize breeding is to use “multi-criteria evaluations” of new varieties to ensure that traits for stress tolerance and storability are given optimal weighting in variety release decisions.

Additionally, information about farmer preferences should be fed back to breeding programs in national and international institutes responsible for maize genetic improvement.

India’s Groundwater Is In Trouble. And It Could Cause a Food Shortage for Millions By 2025, Study Finds

A recent study of the groundwater in India revealed that, by 2025, large areas of the north-western and southern parts of the country will have “critically low groundwater availability”, leading to a decrease in cropping that will ultimately cause an imbalance in the food security for millions.

Read more: https://www.greenqueen.com.hk/indias-groundwater-is-in-trouble-and-it-could-cause-a-food-shortage-for-millions-by-2025-study-finds/

Preventing and protecting against wheat blast

A blast-blighted stalk of wheat. (Photo: Chris Knight/Cornell)

Every year, the spores of the wheat blast fungus lie in wait on farms in South America, Bangladesh, and beyond. In most years, the pathogen has only a small impact on the countries’ wheat crops. But the disease spreads quickly, and when the conditions are right there’s a risk of a large outbreak — which can pose a serious threat to the food security and livelihood of farmers in a specific year.

To minimize this risk, an international partnership of researchers and organizations have created the wheat blast Early Warning System (EWS), a digital platform that notifies farmers and officials when weather conditions are ideal for the fungus to spread. The team, which began its work in Bangladesh, is now introducing the technology to Brazil — the country where wheat blast was originally discovered in 1985.

The International Maize and Wheat Improvement Center (CIMMYT), the Brazilian Agricultural Research Corporation (EMBRAPA),  Brazil’s University of Passo Fundo (UPF) and others developed the tool with support from USAID under the Cereal Systems Initiative for South Asia (CSISA) project.

Although first developed with the help of Brazilian scientists for Bangladesh, the EWS has now come full circle and is endorsed and being used by agriculture workers in Brazil. The team hopes that the system will give farmers time to take preventative measures against the disease.

Outbreaks can massively reduce crop yields, if no preventative actions are taken.

“It can be very severe. It can cause a lot of damage,” says Maurício Fernandes, a plant epidemiologist with EMBRAPA.

Striking first

In order to expand into a full outbreak, wheat blast requires specific temperature and humidity conditions. So, Fernandes and his team developed a digital platform that runs weather data through an algorithm to determine the times and places in which outbreaks are likely to occur.

If the system sees a region is going to grow hot and humid enough for the fungus to thrive, it sends an automated message to the agriculture workers in the area. These messages — texts or emails — alert them to take preemptive measures against the disease.

More than 6,000 extension agents in Bangladesh have already signed up for disease early warnings.

In Brazil, Fernandes and his peers are connecting with farmer cooperatives. These groups, which count a majority of Brazilian farmers as members, can send weather data to help inform the EWS, and can spread  alerts through their websites or in-house applications.

Wheat blast can attack a plant quickly, shriveling and deforming the grain in less than a week from the first symptoms. Advance warnings are essential to mitigate losses. The alerts sent out will recommend that farmers apply fungicide, which only works when applied before infection.

“If the pathogen has already affected the plant, the fungicides will have no effect,” Fernandes says.

A blast from the past

Because wheat had not previously been exposed to Magnaporthe oryzae,  most wheat cultivars at the time had no natural resistance to Magnaporthe oryzae, according to Fernandes.  Some newer varieties are moderately resistant to the disease, but the availability of sufficient seed for farmers remains limited.

The pathogen can spread through leftover infected seeds and crop residue. But its spores can also travel vast distances through the air.

If the fungus spreads and infects enough plants, it can wreak havoc over large areas. In the 1990s — shortly after its discovery — wheat blast impacted around three million hectares of wheat in South America. Back in 2016, the disease appeared in Bangladesh and South Asia for the first time, and the resulting outbreak covered around 15,000 hectares of land. CGIAR estimates that the disease has the potential to reduce the region’s wheat production by 85 million tons.

In Brazil, wheat blast outbreaks can have a marked impact on the country’s agricultural output. During a major outbreak in 2009, the disease affected as many as three million hectares of crops in South America. As such, the EWS is an invaluable tool to support food security and farmer livelihoods. Fernandes notes that affected regions can go multiple years between large outbreaks, but the threat remains.

“People forget about the disease, then you have an outbreak again,” he says.

Essential partnerships

The EWS has its roots in Brazil. In 2017 Fernandes and his peers published a piece of research proposing the model. After that, Tim Krupnik, a senior scientist and country representative with CIMMYT in Bangladesh, along with a group of researchers and organizations, launched a pilot project in Bangladesh.

There, agriculture extension officers received an automated email or text message when weather conditions were ideal for wheat blast to thrive and spread. The team used this proof of concept to bring it back to Brazil.

According to Krupnik, the Brazil platform is something of a “homecoming” for this work. He also notes that cooperation between the researchers, organizations and agriculture workers in Brazil and Bangladesh was instrumental in creating the system.

“From this, we’re able to have a partnership that I think will have a significant outcome in Brazil, from a relatively small investment in research supplied in Bangladesh. That shows you the power of partnerships and how solutions can be found to pressing agricultural problems through collaborative science, across continents,” he says.

Read more: Towards an early warning system for wheat blast: epidemiological basis and model development