Skip to main content

2021 GAP Report endorses CIMMYT’s integrated agri-food systems methodology

The 2021 Global Agricultural Productivity (GAP) Report warns that farmers and food workers globally face the intimidating challenge of producing food sustainably in a degrading environment. The global economic slowdown and climate change are making the situation even more difficult.

This year’s report, titled Strengthening the Climate for Sustainable Agricultural Growth, argues that “accelerating productivity growth at all scales of production is imperative to meet the needs of consumers and address current and future threats to human and environmental well-being.”

The report, produced by Virginia Tech, was presented at the 2021 Borlaug Dialogue, part of the World Food Prize events.

The International Maize and Wheat Improvement Center’s (CIMMYT) public–private partnership model for the Integrated Agri-food Systems Initiative (IASI) contributes to one of six key strategies that accelerate productivity growth, according to the 2021 GAP Report.

“Our integrated methodology engages farmers in participatory research and innovation efforts, effectively improving small-scale systems,” said Bram Govaerts, director general of CIMMYT. “This results-backed strategy bridges yield gaps and builds resilience to the effects of climate change, with the main objective of giving access to enhanced nutrition and new market opportunities.”

The skillset and cumulative knowledge of small farmers worldwide shapes CIMMYT’s integrated development projects.

“The Integrated Agri-food Systems Initiative (IASI) is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant livelihood of supportive public and private investment,” concludes the GAP Report.

The report argues that technology itself does not boost productivity and resilience. Instead, “partnerships play an important role in enhancing human capital: a set of skills and knowledge by producers and others in the agricultural value chain are essential in a time of pandemics.”

A decade of world-leading maize and wheat research

For over a decade, the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT) have been at the forefront of research-for-development benefiting maize and wheat farmers in the Global South, especially those most vulnerable to the shocks of a changing climate.

From 2012 to 2021, MAIZE has focused on doubling maize productivity and increasing incomes and livelihood opportunities from sustainable maize-based farming systems. Through MAIZE, scientists released over 650 elite, high-yielding maize varieties stacked with climate adaptive, nutrition enhancing, and pest and disease resistant traits.

The WHEAT program has worked to improve sustainable production and incomes for wheat farmers, especially smallholders, through collaboration, cutting-edge science and field-level research. Jointly with partners, WHEAT scientists released 880 high-yielding, disease- and pest-resistant, climate-resilient and nutritious varieties in 59 countries over the life of the program.

To document and share this legacy, the MAIZE and WHEAT websites have been redesigned to highlight the accomplishments of the programs and to capture their impact across the five main CGIAR Impact Areas: nutrition, poverty, gender, climate and the environment.

We invite you to visit these visually rich, sites to view the global impact of MAIZE and WHEAT, and how this essential work will continue in the future.

The new MAIZE legacy website (left) and WHEAT legacy website launched today.
The new MAIZE legacy website (left) and WHEAT legacy website launched today.

A visual celebration in Mexico City

CIMMYT’s relationship with Mexico is one of a kind: in addition to being the birthplace of the wheat innovations that led to the Green Revolution and the founding of CGIAR, Mexico is also where maize originated thousands of years ago, becoming an emblem of the country’s economy and identity.

Honoring this longstanding connection and celebrating Mexico’s key contribution to global wheat and maize production, Mexico City will host a photo exhibition from December 1, 2021, to January 15, 2022, in the Open Galleries Lateral, located on Paseo de la Reforma, one of city’s most iconic promenades.

Titled “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat,” the exhibition illustrates the impact of MAIZE and WHEAT over the last ten years. The selection of photographs documents the challenges faced by maize and wheat smallholders in different regions, and showcases innovative interventions made by national and regional stakeholders worldwide.

From pathbreaking breeding research on climate-smart varieties to helping farming families raise their incomes, the photos — taken by CGIAR photographers before the COVID-19 pandemic — capture both the breadth of the challenges facing our global agri-food systems and the spirit of innovation and cooperation to meet them head on.

Don’t miss the chance to visit the exhibition if you are in Mexico City!

The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso Cortés/CIMMYT)
The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso Cortés/CIMMYT)

From diagnosis to action on social equity

A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)
A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)

As CGIAR develops 33 exciting new research Initiatives, it is essential for its new research portfolio to move beyond “diagnosing gender issues” and to supporting real change for greater social equity. Gender-transformative research and methodologies are needed, co-developed between scientists and a wide range of partners.

To advance this vision, gender scientists from ten CGIAR centers and key partner institutions came together from October 25 to 27, 2021, in a hybrid workshop. Some participants were in Amsterdam, hosted by KIT, and others joined online from Canada, the Philippines and everywhere in between.

The workshop emerged from gender scientists’ desire to create a supportive innovation space for CGIAR researchers to integrate gender-transformative research and methodologies into the new CGIAR Initiatives.

The organizing team calls this effort GENNOVATE 2, as it builds on GENNOVATE, the trailblazing gender research project which ran across the CGIAR between 2014 and 2018.

GENNOVATE 2 promises to help CGIAR Initiatives achieve progress in the Gender, Youth and Social Inclusion Impact Area. It will also advance change towards Sustainable Development Goals 5 and 10 on gender and other forms of inequality.

In the workshop, participants sought to:

  • Share and develop ideas, methods and approaches to operationalize gender-transformative research and methodologies. Working groups focused on an initial selection of CGIAR Initiatives, representing all the Action Areas of CGIAR:
    • ClimBeR: Building Systemic Resilience against Climate Variability and Extremes; (Systems Transformation)
    • Securing the Asian Mega-Deltas from Sea-level Rise, Flooding, Salinization and Water Insecurity (Resilient Agrifood Systems)
    • Sustainable Intensification of Mixed Farming Systems (Resilient Agrifood Systems)
    • Market Intelligence and Product Profiling (Genetic Innovation)
  • Build on the significant investments, methods, data, and results from the original GENNOVATE.
  • Conceive a community of practice for continued sharing, learning and collaboration, across and within Initiatives, to accelerate progress on gender and social equity.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

Joining a vibrant community

GENNOVATE 2 is envisioned to complement the CGIAR GENDER Platform and the proposed new CGIAR gender-focused research Initiative, HER+.

“We have several gender methodology assets in CGIAR, and GENNOVATE is one of them,” said Nicoline de Haan, Director of the CGIAR GENDER Platform, opening the workshop. “We want to make sure we cultivate and grow the efforts started during GENNOVATE and move forward important lessons and practices in the new CGIAR portfolio.”

The team of scientists behind GENNOVATE 2 wants to support a vibrant community of researchers who “work out loud.” They will document and share their research methodologies, experiences and insights, in order to accelerate learning on gender issues and scale out successes more quickly.

The ultimate objectives of GENNOVATE 2 are to:

  • Develop and deepen a set of methodologies expected to directly empower women, youth, and marginalized groups in the targeted agri-food systems
  • Contribute to normative change towards increased gender equality across different scales, ranging from households to countries.
  • Generate and build an evidence base on the relationship between empowering women, youth and marginalized people, and moving towards climate-resilient and sustainable agri-food systems — and vice versa.

“An example of the added value GENNOVATE 2 can bring to CGIAR Initiatives is understanding what maintains prevailing gender norms in research sites, and also at relevant institutional and political levels,” said Anne Rietveld, gender scientist at the Alliance of Bioversity International and CIAT, and co-organizer of the workshop. “This will enable CGIAR scientists, partners and policymakers to design locally relevant gender-transformative approaches and policies for more impact. We can do this by building on our GENNOVATE 1 evidence base, adapting methods from GENNOVATE 1 and co-developing new methods in GENNOVATE 2.”

Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

What’s next?

The workshop showed that many scientists from CGIAR and partner institutes are motivated to invest in the vision of GENNOVATE 2. Achieving impact in the Gender, Youth and Social Inclusion Impact Area will require concerted efforts and inputs from scientists on the ground.

“There is a groundswell of experience and enthusiasm that you, we, this group brings. We need answers and we can and should work together to make this a reality,” remarked Jon Hellin, Platform Leader – Sustainable Impact in Rice-based Systems at the International Rice Research Institute (IRRI), and co-lead of the ClimBeR Initiative.

The organizing team listed concrete actions to follow the workshop:

  • Developing processes and spaces for discussing methodological advancements among the gender scientists in these four Initiatives which other Initiatives can tap into, contribute to and become part of.
  • To develop these shared and integrated methodologies and approaches into a GENNOVATE 2 conceptual and methodological roadmap — to contribute to the CGIAR Gender, Youth, and Social Inclusion Impact Area and guide other Initiatives, as well as bilateral research
  • To develop a position paper articulating what can be achieved through concerted efforts to integrate gender and social equity more effectively into the Initiatives, to showcase gender-transformative research methods for further development and implementation. The aim of the position paper is to influence global science leaders and CGIAR leadership in how they include issues of social equity in the Initiatives.
  • To support these conversations, learnings and harmonization processes through setting up a community of practice, where the “practice” to be improved is the practice of advancing gender research methodologies to go from diagnosis to action. This will start with a core group of enthusiastic researchers and then will expand as it gains momentum, so that all researchers in the various Initiatives interested in social equity can contribute
  • To seek funding opportunities to support the activities outlined above.

The GENNOVATE 2 organizing team welcomes the participation of interested CGIAR Initiatives as they move forward. The organizing team will also help strengthen interactions with external resource people and research networks, in to cross-pollinate new knowledge and innovations.

If you would like to know more about GENNOVATE 2, please contact Anne Rietveld, Gender Scientist at the Alliance of Bioversity International and CIAT and Hom Gartaula, Gender and Social Inclusion Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

The GENNOVATE 2 workshop was supported with funds from the CGIAR Research Programs on Roots Tubers and Bananas, Maize, and Wheat.

Workshop organizers Anne Rietveld (Alliance), Cathy Rozel Farnworth (Pandia Consulting, an independent gender researcher), Diana Lopez (WUR) and Hom Gartaula (CIMMYT) guided participants. Arwen Bailey (Alliance) served as facilitator.

Participants were: Renee Bullock (ILRI); Afrina Choudhury (WorldFish); Marlene Elias (Alliance); Gundula Fischer (IITA); Eleanor Fisher (The Nordic Africa Institute/ClimBeR); Alessandra Galie (ILRI); Elisabeth Garner (Cornell University/Market Intelligence); Nadia Guettou (Alliance); Jon Hellin (IRRI); Deepa Joshi (IWMI); Berber Kramer (IFPRI); Els Lecoutere (CGIAR GENDER Platform); Angela Meentzen (CIMMYT); Gaudiose Mujawamariya (AfricaRice); Surendran Rajaratnam (WorldFish); Bela Teeken (IITA), among others.

External experts who provided methodological inputs were: Nick Vandenbroucke of Trias talking about institutional change; Shreya Agarwal of Digital Green talking about transformative data; Katja Koegler of Oxfam Novib talking about Gender Action Learning Systems (GALS) for community-led empowerment; and Phil Otieno of Advocates for Social Change (ADSOCK) talking about masculinities and working with men.

Science, technology and farmers, the three pillars of CIMMYT at COP26

From October 31 to November 12, all eyes and cameras turned to Glasgow, where the 26th Conference of the Parties of the United Nations Convention against Climate Change (COP26) took place in a hybrid format. With temperatures rising around the world and extreme weather events becoming increasingly frequent, country leaders and climate experts came together in Scotland to discuss the next steps in the fight against climate change.

Together with other CGIAR Centers, the International Maize and Wheat Improvement Center (CIMMYT) took part in this crucial conversation, drawing attention to the impact of climate change on smallholder agriculture and echoing CGIAR’s call for increased funding for agricultural research and innovation.

Here’s a summary of the events in which CIMMYT researchers and scientists participated.

“Because farmers feed us all: using climate for a resilient food system”

November 6, 2021

Sponsored by the UK Met Office, this event focused on the effects of climate change on the resilience of food systems and how this impact is factored into decision-making. Speakers discussed the real-life application of climate risk information, highlighting the importance of global collaboration and multi-stakeholder partnerships in developing context-specific climate services.

Focusing on CIMMYT’s work in Ethiopia, research associate Yoseph Alemayehu and senior scientist Dave Hodson provided some insights on the wheat rust early warning system. This revolutionary mechanism developed by CIMMYT and partners helps farmers in developing countries predict this disease up to a week in advance.

“COP26 highlighted the vulnerability of different agriculture sectors to climate change, including increased threats from pests and pathogens. From the work in Ethiopia on wheat rust early warning systems, strong partnerships and the application of advanced climate science can play an important role in mitigating some of the effects.” – Dave Hodson

“Developing Climate Resilient Food Systems Pathways: Approaches From Sub-Saharan Africa”

November 8, 2021

Putting an emphasis on participatory governance and community-centered technologies, this event showcased innovative approaches to strengthen the resilience of African food systems, calling for increased investment in the scale-up of climate-smart agriculture practices to meet growing demand.

Joining from Zimbabwe, Christian Thierfelder, Principal Cropping Systems Agronomist gave an overview of CIMMYT’s work in southern Africa, explaining how the introduction of conservation agriculture back in 2004 helped farmers overcome low crop yields and boost their incomes.

“If one thing was made clear at COP26, it is the urgent need for a change in the way we do agriculture. The status quo is not an option and we, as CIMMYT and part of the One CGIAR, will continue to generate the scientific evidence and climate-smart solutions to accelerate this change and address the climate challenges ahead of us, with farmers at the core of our work.” – Christian Thierfelder

“4 per 1000” Initiative Day

November 10, 2021

The “4 per 1000” Initiative, a multi-stakeholder partnership of more than 650 members on food security and climate change, held a day-long hybrid event to explore how healthy soils can help agriculture and forestry adapt to and mitigate climate change.

At the Partner Forum, Bram Govaerts, Director General of CIMMYT, stressed the urgent need to fund soil science to achieve its carbon sequestration potential, reiterating CIMMYT’s commitment to supporting this science with results-oriented actions that scale out sustainable practices and technologies.

“For me, the main take-away of the summit is the growing consensus and understanding that we need to transform agriculture and food systems to achieve global emissions targets on time.” – Bram Govaerts

Cover photo: The action zone and the globe at the Hydro, one of the venues in Glasgow where COP26 took place. (Photo: Karwai Tang/UK Government)

Harnessing the power of science to reduce poverty and malnutrition

Researchers at work at CGIAR’s International Institute of Tropical Agriculture campus in Ibadan, Nigeria. (Credit: Chris de Bode/CGIAR)

A five-year partnership being launched by the Innovative Genomics Institute (IGI)—a non-profit founded by Nobel Laureate Jennifer Doudna—and CGIAR, the world’s largest publicly-funded agricultural research partnership, will harness the power of science to help millions of people overcome poverty, hunger and malnutrition.

One in four people globally, and rising, are unable to afford a healthy diet. COVID-19 has exacerbated this trend by disrupting food production and distribution, driving up by 20 percent the number of people threatened by hunger in 2020. The pandemic is unfolding amidst an environmental and climate crisis which is undermining food production and our ability to nourish the world.

But global consensus is building for urgent action. At the COP26 meetings in November, 45 nations committed to shifting to more sustainable ways of farming and accelerate the deployment of green innovations. Similarly, in late September, many government representatives at the United Nations Food Systems Summit committed to accelerating the transformation of how we grow, transport, process, and consume food. Recognizing the centrality of science and innovation for driving that transformation, United Nations Secretary-General António Guterres called on the world to scale public and private investment in research for food.

According to Barbara Wells, Global Director for Genetic Innovation at CGIAR: “World-class science is vital for facilitating farmer adaptation and mitigating our food system’s contribution to climate change. Plant-breeding innovations can help ramp up food production while making farms more climate resilient, profitable and environmentally friendly”.

“Technologies such as gene editing, which enable scientists to make targeted changes to a crop’s DNA, can accelerate the development of more disease-resistant, water-efficient varieties that can improve food production and nutrition in areas that are especially vulnerable to climate change,” Dr. Wells explained.

CGIAR has produced and promoted innovations that are boosting the sustainable production of nutritious food in Africa, Asia and Latin America. Over the past five decades, CGIAR scientists and national partners have developed and disseminated robust and highly productive crop varieties and livestock breeds tailored to the needs of local men and women. Those innovations have helped hundreds of millions of people across the Global South overcome hunger and poverty.

The IGI is a collaboration of the University of California, Berkeley and the University of California, San Francisco with a mission to develop revolutionary genome-editing tools that enable affordable and accessible solutions in human health, climate, and agriculture. The IGI’s Climate & Sustainable Agriculture program focuses on developing crops that are resistant to pests and diseases, resilient to a changing climate, and less dependent on farmer inputs. Whereas the IGI is a pioneer in applied genomic research, CGIAR focuses on translating discoveries into improved crop varieties and cropping systems. This partnership provides an accelerated pipeline from upstream innovation to real-world impact.

“The IGI is testing technologies with great potential to benefit people in the countries where CGIAR is active, such as a way of removing the cyanide found in cassava—a staple upon which nearly a billion people depend—and fighting diseases in economically important crops like wheat, rice and bananas,” said Brian Staskawicz, the IGI Director of Sustainable Agriculture.

“The IGI is also pioneering new ways to reduce methane emissions from rice farming, which accounts for 2.5 percent of humanity’s contribution to global warming, by using genomic approaches to reduce methane production by soil microbes,” he added.

“By partnering with CGIAR, the IGI can ensure that the products of its research will benefit farmers and consumers in some of the world’s poorest countries, where CGIAR has been working for 50 years and has extensive partner networks,” said Dr. Melinda Kliegman, Director of Public Impact at the IGI. “Together we can accelerate the development and delivery of more climate-resilient, productive and nutritious crops for resource-poor farmers and consumers.”

Over the next five years, the IGI and CGIAR will use the latest breakthroughs in genomic science to enhance the resilience and productivity of farmers in low- and middle-income countries and improve the wellbeing and livelihoods of women and men in some of the world’s poorest communities.

Authored by CGIAR and the Innovative Genomics Institute (IGI)

Cover photo: Researchers at work at CGIAR’s International Institute of Tropical Agriculture campus in Ibadan, Nigeria. (Credit: Chris de Bode/CGIAR)

Bringing wild wheat’s untapped diversity into elite lines

A collaboration involving 15 international institutes across eight countries has optimized efforts to introduce beneficial traits from wild wheat accessions in genebanks into existing wheat varieties.

The findings, published in Nature Food, extend many potential benefits to national breeding programs, including improved wheat varieties better equipped to thrive in changing environmental conditions. This research was led by Sukhwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT) as part of the Seeds of Discovery project.

Since the advent of modern crop improvement practices, there has been a bottleneck of genetic diversity, because many national wheat breeding programs use the same varieties in their crossing program as their “elite” source. This practice decreases genetic diversity, putting more areas of wheat at risk to pathogens and environmental stressors, now being exacerbated by a changing climate. As the global population grows, shocks to the world’s wheat supply result in more widespread dire consequences.

The research team hypothesized that many wheat accessions in genebanks — groups of related plant material from a single species collected at one time from a specific location — feature useful traits for national breeding programs to employ in their efforts to diversify their breeding programs.

“Genebanks hold many diverse accessions of wheat landraces and wild species with beneficial traits, but until recently the entire scope of diversity has never been explored and thousands of accessions have been sitting on the shelves. Our research targets beneficial traits in these varieties through genome mapping and then we can deliver them to breeding programs around the world,” Singh said.

Currently adopted approaches to introduce external beneficial genes into breeding programs’ elite cultivars take a substantial amount of time and money. “Breeding wheat from a national perspective is a race against pathogens and other abiotic threats,” said Deepmala Sehgal, co-author and wheat geneticist in the Global Wheat program at CIMMYT. “Any decrease in the time to test and release a variety has a huge positive impact on breeding programs.”

Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)
Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)

Taking into genetic biodiversity

The findings build from research undertaken through the Seeds of Discovery project, which genetically characterized nearly 80,000 samples of wheat from the seed banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).

First, the team undertook a large meta-survey of genetic resources from wild wheat varieties held in genebanks to create a catalog of improved traits.

“Our genetic mapping,” Singh said, “identifies beneficial traits so breeding programs don’t have to go looking through the proverbial needle in the haystack. Because of the collaborative effort of the research team, we could examine a far greater number of genomes than a single breeding program could.”

Next, the team developed a strategic three-way crossing method among 366 genebank accessions and the best historical elite varieties to reduce the time between the original introduction and deployment of an improved variety.

Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)
Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)

Worldwide impact

National breeding programs can use the diverse array of germplasm for making new crosses or can evaluate the germplasm in yield trials in their own environments.

The diverse new germplasm is being tested in major wheat producing areas, including India, Kenya, Mexico and Pakistan. In Mexico, many of the lines showed increased resistance to abiotic stresses; many lines tested in Pakistan exhibited increased disease resistance; and in India, many tested lines are now part of the national cultivar release system. Overall, national breeding programs have adopted 95 lines for their targeted breeding programs and seven lines are currently undergoing varietal trials.

“This is the first effort of its kind where large-scale pre-breeding efforts have not only enhanced the understanding of exotic genome footprints in bread wheat but also provided practical solutions to breeders,” Sehgal said. “This work has also delivered pre-breeding lines to trait pipelines within national breeding programs.”

Currently, many of these lines are being used in trait pipelines at CIMMYT to introduce these novel genomic regions into advanced elite lines. Researchers are collaborating with physiologists in CIMMYT’s global wheat program to dissect any underlying physiological mechanisms associated with the research team’s findings.

“Our investigation is a major leap forward in bringing genebank variation to the national breeding programs,” Singh explained. “Most significantly, this study sheds light on the importance of international collaborations to bring out successful products and new methods and knowledge to identify useful contributions of exotic in elite lines.”

Read the full article:
Direct introgression of untapped diversity into elite wheat lines

Cover photo: A researcher holds a plant of Aegilops neglecta, a wild wheat relative. Approximately every 20 years, CIMMYT regenerates wheat wild relatives in greenhouses, to have enough healthy and viable seed for distribution when necessary. (Photo: Rocío Quiroz/CIMMYT)

Throwing money at the problem won’t solve world hunger

In this op-ed, Harvard Professor Gabriela Soto Laveaga stresses the importance of tackling hunger as more than a technical problem to be addressed through scientific advancement alone, praising CGIAR for its community-centered & inclusive approach to food systems amid the climate crisis.

Read more: https://www.washingtonpost.com/outlook/2021/11/22/throwing-money-problem-wont-solve-world-hunger/

Pakistan, India transboundary dialogue imperative to resolve Lahore’s pollution: Amin

During the 26th Conference of Parties (COP26) held in Glasgow, Special Assistant to Pakistan’s Prime Minister on Climate Change Malik Amin Aslam said that a transboundary dialogue on mitigating air pollution was imperative to resolve Lahore’s smog, which is mostly generated by Indian farmers burning crop residues.

Read more: https://dailytimes.com.pk/844672/pakistan-india-transboundary-dialogue-imperative-to-resolve-lahores-pollution-amin/

CIMMYT scientists recognized for impact

Three scientists from the International Maize and Wheat Improvement Center (CIMMYT) have been included in the Highly Cited Researchers list for 2021, published by the Web of Science Group.

The list recognizes researchers who demonstrated significant influence in their field, or across fields, through the publication of multiple highly cited papers during the last decade. Their names are drawn from the publications that rank in the top 1% by citations for field and publication year in the Web of Science citation index.

Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information at Clarivate, the company which publishes the list.

This year, the three CIMMYT scientists listed are:

  • Jill Cairns: CIMMYT Maize physiologist.
  • Matthew Reynolds: CIMMYT Distinguished Scientist and Head of Wheat Physiology.
  • Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement.

For more information, you can view the full Highly Cited Researchers 2021 list and information on the methodology.

Less water for better crops

In India, nearly one-sixth of groundwater reserves has been overexploited and almost one-fifth of them is either in critical or semi-critical condition. For a country that relies heavily on groundwater for drinking and irrigation, these statistics are close to a death sentence.

India’s water crisis, however, is not unique in the region. Population growth, coupled with increasing urbanization and industrialization, has made South Asia, one of the most heavily irrigated areas on earth, highly vulnerable to water stress. Moreover, as the effects of climate change are increasingly felt in those countries, agricultural production, even at the current level, may not be sustainable.

Against this background, ensuring that water resources are used efficiently and sustainably is key to meet the world’s growing demand. Over the last decades, traditional systems of irrigation have given way to more efficient drip irrigation systems that deliver the right amount of water and nutrients to the plant’s root zone. But as farm labor shortages become more severe, investing in automated irrigation systems — which promise increased production rates and product quality — will be the only way to ensure the sustainability of agricultural production systems worldwide.

A new article co-authored by a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Thapar Institute of Engineering and Technology synthesizes the available information related to the automation of drip irrigation systems and explores recent advances in the science of wireless sensor networks (WSN), the internet of things (IoT) and other communication technologies that increase production capacity while reducing costs.

“Bundling both elements — drip irrigation and automation — in water application can lead to large savings in irrigation and boost water efficiency, especially in high water-consuming, cereal-based systems like the Indo-Gangetic Plains,” explained M.L. Jat, a principal scientist at CIMMYT and one of the authors of the review.

Investing in data and youth

Smart irrigation technologies, including sensors and the IoT, allow farmers to take informed decisions to improve the quality and quantity of their crops, providing them with site-specific data on factors like soil moisture, nutrient status, weed pressure or soil acidity.

However, this information is still limited to certain soil types and crops. “To upgrade drip irrigation systems elsewhere, especially in ‘water-stressed’ regions, we need additional agricultural background data in those areas,” Jat pointed out. “That’s the only way we can effectively customize innovations to each scenario, as one size does not fit all.”

Making this data available to and readable by farmers is also essential. Here, young people can become very good allies, as they tend to be more technologically savvy and used to working with large volumes of information. “Not only are they more skilled to integrate agricultural data into decision-making, but they can also help older farmers adopt and trust intelligent irrigation systems,” Jat concluded.

Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)
Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)

Incentives against subsidies

With increasing water shortages worldwide, making the most out of every drop becomes an urgent priority. But in countries where irrigation systems are highly subsidized, farmers may struggle to see this urgency. India, for instance, subsidizes the cost of energy to pump water for farming, thus encouraging smallholders to extract more than they need.

How do we incentivize farmers in these countries to embrace water-efficient technologies?

According to Jat, using the “scientific card” can work with smallholders who, after having farmed for decades, may not change their minds automatically. “These people may be reluctant to accept incentives for water-efficient mechanisms at first, but they will surely be interested in more scientific approaches,” Jat explained, stressing that “the emphasis must be on the science, not on the technology.”

Designing profitable business models can also incentivize producers to embrace more efficient mechanisms. Farmers who have enjoyed irrigation subsidies for decades may not see any profit in trying out new technologies — but what if they are given the chance to become champions or ambassadors of these agricultural innovations? “That brings in a whole new perspective,” Jat said.

Apart from incentivizing farmers, good business models can also draw the attention of large companies, which would bring investment to boost research and innovation in drip irrigation. “More and more businesses are getting interested in smart agriculture and low emission farming, and their inputs can help conceptualize the future of this field,” he observed.

Singh receives lifetime award for wheat breeding successes

Ravi Singh, head of global wheat improvement at the International Maize and Wheat Improvement Center (CIMMYT), received the 2021 Borlaug Global Rust Initiative (BGRI) Lifetime Achievement Award for his contribution to protecting wheat from new races of some of agriculture’s oldest and most devastating diseases.

Read more: https://www.world-grain.com/articles/16099-singh-receives-lifetime-award-for-wheat-breeding-successes

A new vision of making profits drives mechanization service providers in Zimbabwe

Introducing mechanization services in any smallholder farming community has proven to yield multiple benefits largely aimed at increasing farming efficiency but importantly creating a solid economic base to boost farmer incomes. Anchored on the two-wheel tractor along with implements for land preparation, planting, harvesting, shelling, transporting, appropriate-scale mechanization has in the last seven years gained currency across African farming households.

Interventions such as the mechanization pilot implemented by the International Maize and Wheat Improvement Center (CIMMYT) provide a channel through which smallholder farmers with access to some financial resources can invest to become a viable enterprise.  The aim of this intervention is not to make every farmer own its own machinery, which would be costly and inefficient, but to train farmers to become service providers to other community members. This model has been effectively tried before in other places under the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

A recent visit to two service providers in southern Zimbabwe, demonstrates the high returns on investment achieved through enrolling in mechanization service provision.

Two service providers, one vision: Profit

Julius Shava (53) and Prince Chimema (22), shared their experience in offering diverse transporting and land preparation services using the two-wheel tractor, trailer, direct seeder, and sheller procured through the initiative.  Narrating how he learnt about the mechanization pilot and his subsequent enrolment, Shava explains how potential service providers had to make a financial commitment to the business before accessing the equipment.

“Through this mechanization business model, we would receive a two-wheel tractor, trailer, sheller, and seeder worth USD5,000, at a subsidized price of $USD2,500. The main condition for accessing this package was to pay a commitment fee of USD500 – there was no way I could let that opportunity slip away,” explains Shava.

“My wife and I decided to sell two cows to raise the funds and made the payment. Some community members were initially skeptical of the approach when it seemed that the consignment was delayed yet when the two-wheel tractor arrived, they were among the first to inquire about the services I was offering,” Shava adds.

“I made sure they all understood what I could provide for them using the 2WT and trailer such as land preparation and transportation – of manure, gravel stones and pit sand among other things.”

The multipurpose trailer with a loading capacity of up to one and a half tonnes can be attached to the two-wheel tractor for the provision of transport services. (S.Chikulo/CIMMYT)

Shava and Chimema are among fifteen service providers leading in the mechanization pilot initiative launched in July 2020 in Masvingo district. The initiative is supported by the Swiss Agency for Development and Cooperation (SDC) and managed by the World Food Program (WFP). The private sector machinery company Kurima Machinery facilitates provision of the two-wheel tractor, planter, trailer and sheller while the Zimbabwe Agriculture Trust (ZADT) manages the lease-to-own business model anchoring the mechanization pilot to the financial sector.

Counting the cost and returns

“How much turnover does a service provider realise on average?” is a question frequently asked by other farmers keen to take up the enterprise.

Shava explains the factors he considers, “When someone is hiring my services, I charge according to the distance and load to be transported.” For example, for a 200m delivery radius, I can charge USD5. However, for land preparation and ploughing, I charge USD100 per hectare.” He quickly adds that he also factors in his labor, fuel requirements and time into the final price of his service – a principle he learnt during a specialized technical and business training provided by Gwebi College of Agriculture for the mechanization pilot.

In addition, using the two-wheel tractor is efficient as a hectare is completed in about one hour where an animal drawn plough takes up to six hours or more, depending on the soil type. The reduced drudgery allows farmers to rest their livestock and adopt more efficient and sustainable land preparation technologies. Shava notes that these advantages are immediately apparent to farmers who seek the service.

Customers often pay in cash which is convenient for him as he saves the money or uses some of it to meet expenses related to the service provision. “So far I have reached up to 7 customers after two months from the Nemamwa area in Ward 12 of Masvingo and they were seeking different services. “For land preparation they were paying USD100 per hectare. In Ward 8, I managed to get about three customers.

“When it comes to pricing, I leave room for negotiation because it is inevitable that customers will always ask for a discount, but I ensure that I do not incur losses.” Since venturing into mechanization service provision, Shava has realized a gross income of USD$600 before deducting expenses such as fuel and regular maintenance. However, the two-wheel tractor is fuel efficient – utilizing at least seven liters of diesel per hectare. Diesel fuel is purchased in Masvingo town or from informal markets at the business center at a cost of USD1 per liter.

Young service providers making their mark

Service providers such as Prince Chimema, who are young, energetic and business minded are also among those quickly realizing the high returns on the small mechanization investment. Coming from a family of seven, Chimema – recently married and with a two-year old child – has found a secure income stream in service provision of different mechanization services.

“I am grateful for the financial support from my parents that enabled me to enroll into the mechanization pilot program,” says Chimeme. Like Shava, Chimema’s parents sold two cows to raise the USD500 commitment fee.  Soon, Chimema was approaching his relatives and neighbors in the community demonstrating the transporting, planting and land preparation services that he could provide. “Some of my customers would have seen me delivering manure or quarry stones to another household before requesting for my services; that is how my customer base has increased steadily.”

When pricing, Chimema considers the distance, fuel and time it will take to deliver the load. “In this area, requests are for transporting manure, quarry stones, pit sand and river sand. The price ranges from USD4 – USD8 per load. While most villagers pay in cash, a few may request to pay in kind using chickens,”

Chimema’s marketing strategy has been to push volumes by advertising his transporting services to other farmers outside of Ward 18. To date, he has focused on clients requiring transportation services. In Wards 18 and 19, Chimema has served a total of 60 customers, generating USD400 within the first two months of commencing the business.

Challenges and early lessons

Venturing into small mechanized service provision has not been without its challenges as attested by Chimema and Shava, “A lesson I learnt from the onset is never to overload the trailer beyond the recommended capacity,” explains Chimema. “During the mechanization training, we were advised that the trailer’s maximum carrying capacity is between 750-1000kg but at times I could overlook this leading to faults developing on my tractor,” says Prince.

Fuel access also presents challenges at times. “We have to get fuel from Masvingo because the quality of fuel here in the ward may be compromised while the price is slightly inflated because of the middlemen selling the fuel.

The delay in delivery of tractor-drawn direct seeders reduced the potential number of customers for both Chimema and Shava for planting services, as most farmers had proceeded to plant given the early onset of the rainy season. However, both service providers are hopeful that in the next season, with all the equipment in place, they can provide the full range of services to fellow smallholders.

Continuous improvement of the technology by including a toolbar is currently underway, which eases the level of effort required to operate the two-wheel tractor, making it more flexible for the service providers.

Twenty-two-year-old Prince Chimema of Ward 18 Masvingo district demonstrating the two-row direct seeder attached to the two-wheel tractor. (S.Chikulo/CIMMYT)

A vision for expansion and rural transformation

Chimema and Shava are optimistic about the future growth and performance of their business. Both aspire to expand their service provision over the coming five years by purchasing a second two-wheel tractor and creating employment for other villagers. “The income for the second two-wheel tractor should be generated from the current business” explains Shava.

In addition to the land preparation and transporting services, the maize sheller is set to increase their income. With a shelling capacity of 3-4 tons per day, the maize sheller significantly reduces the amount of time and effort required to shell a ton of maize manually (12.5 days).

“The priority now is to make sure that the loan repayment happens smoothly because I am generating enough income to pay back up for my package,” explains Shava. Once the payment is done, Shava would like to set up a borehole and drip irrigation system for their family plot and complete construction of his house in Masvingo town.

Chimema, on the other hand, is keen to start a poultry project. He is currently assisting his parents to pay school fees for his younger sibling but believes the poultry project will increase his income stream. “As I broadcast and market my services by word of mouth and through mobile platform messages; there is room for me to expand beyond Ward 18 and 19,” says Chimema. “I hope to employ at least two more people in the coming two or three years, to help me deliver the services to other farmers,” he adds.

“With the business experience gained from the current season, small mechanization service providers such as Chimema and Shava can increase the portfolio of services to customers”, says Christian Thierfelder, Principal Scientist at CIMMYT, leading the effort. “For example, at planting stage, service providers could provide a complete package for farmers including seed and fertilizer as well as a supply of appropriate herbicides for weed control as part of the land preparation and direct seeding service. Such an offering increases the value of the service and affords farmers the opportunity to witness the full benefits of small mechanized agriculture”, Thierfelder says.

“We have to provide farmers with options to abandon the hoe. The drudgery of farming has made this profession so unattractive that a rural exodus is looming. Providing business, employment and entrepreneurship will bring back hope and will lead to a true rural and agriculture transformation in Zimbabwe.” The high return on investment of the mechanized package makes it a viable year-round business option for farmers and entrepreneurs in rural Masvingo. The pilot is providing a proof of concept that this model works, even under low-potential environments.

Cover photo: Julius Shava and his wife standing at their lease-to-own two-wheel tractor which is part of the starter package for small-mechanization service providers in Masvingo District. (S.Chikulo/CIMMYT)

Is a pluralistic seeds system a pathway to seed security in Ethiopia?

The ever-changing environmental conditions and the urgency to improve food production and productivity for growing populations have ushered in the necessity for smallholder farmers to have widespread access to improved seed in the last mile. However, adequate access to the preferred, good-quality seeds that are climate-resilient and nutrition-dense is essential to farmers’ food and livelihood security. While seed security is an important first step to improved food production in developing countries and well examined in disaster situations, it remains understudied concerning long-term seed sector development, says a new study.

The Food and Agriculture Organization of the United Nations (FAO) describes seed security as “ready access by rural households, particularly farmers and farming communities, to adequate quantities of quality seeds adapted to their agro-ecological conditions and socioeconomic needs, at planting time, under normal and abnormal weather conditions.” In 2016, FAO specified two elements: varietal suitability (traits that respond to farmers’ preferences) and resilience (stability of seed system in the context of shocks) in addition to seed quantity, quality, and access identified in the earlier conceptualization of seed security.

Widespread seed insecurity

The study analyzed farmers’ seed use and preferences (demand-side) and the role of actors and institutions (supply-side) to understand farmers’ seed security. The latter was examined within the context of the recently adopted Pluralistic Seed System Development Strategy (PSSDS) of Ethiopia to understand how they affect the availability, quantity, quality, accessibility, and suitability of seeds from different sources. They focused on seed systems in two districts in Central Ethiopia — subsistence teff-growing and commercial wheat-growing districts. Since it started its operation in Ethiopia, CGIAR’s International Maize and Wheat Improvement Center (CIMMYT) has been one of the major actors in the commercial wheat district covered in this study. CIMMYT has contributed to the capacity building of Kulumsa Agricultural Research Center, a center of excellence for wheat research and development in East Africa that has released over 70 improved bread wheat and durum wheat varieties.

Despite great strides made in improving the seed sector in Ethiopia, the study found that the farmers in the two districts predominantly rely on the informal seed systems, concluding widespread seed insecurity in both regions. The study reported discrepancies between seeds farmers say they prefer and those they actually use. This discrepancy is due to the limited availability of improved varieties and specially certified seeds of these varieties, challenges with seed quality from some sources, and inequitable access to preferred seed and information according to sex, age, and wealth.

Explaining the finding concerning the widespread seed insecurity observed in the study districts, Teshome Hunduma, the lead author of the study, noted: “We were able to reveal some of the social, political, and institutional constraints and opportunities that underlie chronic seed insecurity among smallholder farmers in the two districts in Ethiopia. The country has a good seed sector development policy, for instance, the PSSDS, but these constraints limited its implementation.”

Women empowerment and access to certified seeds

In the study districts where CIMMYT operates, wealthy farmers aligned with the Ethiopian government received a privileged position as model farmers enjoyed increased seed access. Likewise, female-headed households targeted by the extension services had improved access to certified seeds. The presence of development actors, including CIMMYT alongside its partners such as Kulumsa Agricultural Research Center, actively contributed to the “unusual empowerment of women in the predominantly wheat-growing districts,” according to Hunduma. Hunduma referred to the following excerpt from the study to confirm his upbeat impression during his field research.

The study reports: “the women focus group participants highlighted unexpectedly positive empowerment of female heads of household and their related access to improved agricultural technologies [improved wheat]:

Unfortunately, all of us are on our own, i.e., we are widows and divorcees. ( . . . ) We do everything that most men do in farming. In the past, women, including widows and divorcees, were not considered equal to men. Now, we have more freedom and voice. We equally participate in meetings, trainings, and access inputs as men. We express our ideas in public gatherings… We learnt new techniques and gained skills in agriculture. We have better savings; some of us have saved between 70,000 to 100,000 ETB. We have full control over our incomes and resources. We hire labor and rent land to expand our production.

According to Hunduma, “development actors, including CGIAR and its partners, targeted female heads of households for varietal adaptation trial, seed multiplication, extension and credit services, which led to a significant push for a gender-sensitive approach to agricultural development.”

Over the past two decades, Ethiopia has also achieved high wheat production levels and productivity due to the germplasm that CGIAR introduced in the country in collaboration with its partners. This strategy has firmly put the country on the right path towards wheat self-sufficiency.

As national seed policies and programs in developing countries have primarily focused on the formal seed supply system, farmers’ use of seeds from the formal seed system remains limited. The pluralistic seed system approach could appear to provide a path to seed security in developing countries. Nevertheless, political, organizational, and economic interests within key institutions represent significant obstacles, which need to be addressed. The study concludes that efforts to support farmers’ access to seeds should recognize the complementarity of formal and informal seed systems. Thus the study advocates a pluralistic approach to seed sector development by promoting complementarity of activities between value-chain components of each seed system. 

Read the full study: Pluralistic Seed System Development: A Path to Seed Security?

Cover photo: Part of Ethiopia’s Southeastern wheat belt in the Heexosa district, where the pioneering Green Revolution project started in Ethiopia. (Credit: Joshua Masinde/CIMMYT)