Skip to main content

Exotic wheat DNA helps breed ‘climate-proof’ crops

A new study has determined that wheat with exotic DNA from wild relatives benefits from up to 50 percent higher yields in hot weather, compared with elite lacks lacking these genes.

The study by the International Maize and Wheat Improvement Center (CIMMYT) and the Earlham Institute examined how exotic alleles contribute to wheat heat tolerance in different field conditions based on field trials in Sonora, Mexico.

“Crossing elite lines with exotic material has its challenges,” said Matthew Reynolds, co-author of the study and leader of Wheat Physiology at CIMMYT. “There’s a well-recognized risk of bringing in more undesirable than desirable traits, so this result represents a significant breakthrough in overcoming that barrier and the continued utilization of genetic resources to boost climate resilience.”

These results can be used to improve crop resilience and food security in the face of the challenges posed by climate change, as well as emphasizing the importance of genetic diversity in key crops where selective breeding has reduced adaptability.

Read the original article: Exotic wheat DNA helps breed ‘climate-proof’ crops

Identifying climate mitigation strategies from AFOLU sector in Mexico

The vital tasks for each country to reduce its greenhouse gas (GHG) emissions and limited carbon outputs are daunting, especially with 2030 deadlines imposed by the Paris Climate Agreement only eight years away. National stakeholders would benefit greatly from roadmaps that identify realistic and achievable milestones to point the way forward.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have provided just such a road map. Using easily available data, they developed rapid assessment methods and adoption costs for mitigation related to crops, livestock, and forestry to identify priority locations and actions. Their article, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico”, was published in Carbon Management.

Applying these methods for Mexico, researchers found a national mitigation potential of 87.88 million metric tons (Mt) of carbon dioxide equivalents per year.

“Faced with such an overwhelming issue like climate change, it can be difficult for an individual, an organization, and especially an entire nation to know where to start. We developed a rapid assessment framework, tested in India, Bangladesh, and Mexico, but we believe other nations can use our methods as well,” said Tek Sapkota, the project leader and first author of the paper.

The research specifically focused on climate change mitigation in agriculture, forestry, and other land uses (AFOLU). Agriculture and related land use change contributed about 23% of the world’s anthropogenic GHG emissions in 2016, and that number is expected to increase as more food needs to be produced for the world’s growing population.

Chickpeas planted on wheat residue under conservation agriculture. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

The researchers’ starting point was to quantify baseline emissions and analyze the major sources of emissions. Mexico’s AFOLU sector is responsible for 14.5% of its total national GHG emissions. In Mexico’s agricultural sector, methane and nitrous oxide emissions arise from livestock activities (enteric fermentation and fertilizers), as well as from agricultural activities (soil management and field burning of crop residues). For land use, carbon dioxide emissions and removals result from changes in forest lands, pastures, agricultural land, wetlands, and settlements.

Activities identified for GHG mitigation in crop production included avoiding fertilizer subsidies, since those tend reward inefficient nitrogen use. Subsidies could be of use, however, in encouraging farmers to adopt more efficient nitrogen management. Precision levelling of crop fields can help to lower GHG emissions by reducing cultivation time and improving the efficiency of fertilizer and irrigation water and adoption of conservation agriculture practices, such as zero tillage.

“Adoptions of these practices will not only reduce GHG emissions, but they will also help increase productivity,” said Ivan Ortiz-Monasterio, co-author and Mexico coordinator of the study.

In the livestock sector, mitigation possibilities identified are the creation of official programs, financial support, and capacity building on composting and biodigester. In FOLU sector, researchers identified options such as zero deforestation and C offset in the C market.

In addition to mapping out the mitigation benefits of specific activities, researchers also considered the costs associated with implementing those activities. “Looking at these efforts together with the cost of their implementation provide a complete picture to the implementing bodies to identify and prioritize their mitigation efforts consistent with their development goals,” said Sapkota. For example, some efforts, like increasing nitrogen use efficiency, do not provide the most climate benefits but are relatively inexpensive to realize, while establishing and maintaining carbon capture markets provides large reductions in GHG, they can be expensive to implement.

Researchers examined publicly available AFLOU spatial data for each Mexican state. At the state level, AFOLU mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8Mt CO2eq), indicating these states can be considered the highest priority for alleviation efforts. They identified an additional 11 states (Oaxaca, Quintana Roo, Yucatan, Jalisco, Sonora, Veracruz, Durango, Chihuahua, Puebla, Michoacán, and Guerrero) as medium priorities with mitigation potentials of 2.5 to 6.5 Mt CO2eq.

“Our data driven, and evidence-based results can help the government of Mexico refine its national GHG inventory and its Nationally Determined Contributions target and monitor progress,” said Eva Wollenberg, the overall coordinator of the study and research professor of University of Vermont, USA. “This analysis further provides an example of a methodology and results to help inform future efforts in other countries in addition to Mexico.”

Read the study: Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico

Cover photo: Low nitrogen (at the front) and high nitrogen (at the back) maize planted to address nitrogen use efficiency. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

Scaling Scan website launched

The Scaling Scan website has been launched offering the latest news, manuals, videos, trainings, a directory of consultants, and a forum to engage with peers and experts on how to use the Scaling Scan tool to support scaling processes.

The website, which was developed by Lennart Woltering, scaling advisor with the International Maize and Wheat Improvement Center (CIMMYT), and the Scaling team in CIMMYT, builds on the success of the Scaling Scan, a user-friendly tool designed for anyone to learn about scaling: appreciate that context is king, that innovations don’t scale alone, and that collaboration is key for success

“The idea behind the Scaling Scan has always been to make it accessible to users of all levels, to bring the discussion on scaling to the ground and therefore, just like the tool, the materials on the site are available in English, French, and Spanish,” said Woltering.

It features materials used in training programs and workshops by CIMMYT’s scaling team over the past five years, repurposing them neatly for users around the world to assess the scalability of their own pilot projects and innovations. The website also includes a forum where users can engage in conversations, exchange information, and ask experts and other users questions and advice related to scaling. The platform also acts as a conversation space, allowing users around the world to share their experiences with the Scaling Scan, ask questions, and learn from each other. This has the added benefit of helping the Scaling Scan team understand on the ground needs so that they can create more user-friendly content.

“The demand for Scaling Scan workshops has been overwhelming, within CIMMYT, the CGIAR, but also with development organizations like Catholic Relief Services and GIZ and the private sector and we realized that we should bank much more on its biggest asset: accessibility. So, in 2022 we started with trainings for facilitators and the website serves as the platform for them to draw inspiration, materials, and methodologies how to apply the Scaling Scan in their context,” said Woltering.

Scaling is a process that aims to achieve sustainable change at scale. This means that not only should many people benefit from a new technology, but the results of a particular project should carry over beyond its immediate context and transform communities for the better.

It’s a complex process, and there is no one single recipe or blueprint. The Scaling Scan can, however, give direction to scaling new projects and highlight key factors scaling teams need to look out for

“The Scaling Scan aims to provide a framework for people to understand how much they should scale, and what else should be taken into consideration, in addition to the technology, for the next steps in their scaling process,” said CIMMYT Scaling Coordinator Eva Marina Valencia Leñero. “It also intends to show that scaling is not only about focusing on where the innovation is ready or mature, but also whether there are enabling conditions – what we call scaling ingredients – surrounding this innovation that managers have to plan for if they want their innovation to last in the long-term.”

“Considering that the core of the tool was developed at a kitchen table with three people over two days with no funding, it is amazing that the tool has served more than 2,000 people in the last five years,” said Woltering. With support from GIZ, the Scaling Scan is now being digitized which allows for the development of different versions, for example one with more emphasis on social inclusion or on climate mitigation for the One CGIAR Low-Emission Food Systems (MITIGATE+) Initiative. The lessons from over five years of applying the Scaling Scan from rural areas in Honduras to Bangladesh are currently being written up.

Tracking the development and reach of CIMMYT’s climate research

Research for development organizations generate a wealth of knowledge. However, due to time and resource restraints, this knowledge has not been systematically analyzed, and the dynamics of how research is shared online have not been fully understood.

Today, technical advances in text mining, network analysis and hyperlink analysis have made it possible to capture conversations around research outcomes mentioned almost anywhere on the web. New digital research methodologies have emerged offering comprehensive approaches to leverage data across the web and to synthesize it in ways that would be impossible to carry out using traditional approaches.

In a study published in Nature Scientific Reports, scientists from the International Maize and Wheat Improvement Center (CIMMYT) teamed up with researchers from the University of Coimbra and University of Molise to investigate how CIMMYT research in climate change and climate sensitive agriculture is developing and the extent to which the center is exchanging knowledge with communities around the world.

Using text mining, social network analysis and hyperlink analysis to uncover trends, narratives and relationships in digital spaces such as research databases, institutional repositories, and Twitter, the team found that CIMMYT has steadily increased its focus on climate change research and is effectively sharing this knowledge around the world. The authors also found that CIMMYT’s climate research was centered on three main countries: Mexico, India, and Ethiopia.

The novel analytical framework developed by the team will help scientists track where their research is being shared and discussed on the web, from traditional scientific journal databases to social media.

“The web analytics framework proposed in this paper could be a useful tool for many research for development organizations to assess the extent of their knowledge production, dissemination, and influence from an integrated perspective that maps both the scientific landscape and public engagement,” said Bia Carneiro, first author of the paper.

The results of the study showed that sharing of CIMMYT’s climate science research was strongest on academic and research platforms but was also reflected in social media and government and international organization websites from across the Global North and South.

The findings from the study are important for the decolonization of science and the democratization of scientific debate. They show that CIMMYT is decolonizing climate science by sharing, creating, and co-creating knowledge with communities across the globe, particularly in Latin America, South Asia and Africa. On Twitter, the team noted that almost all countries were mentioned in CIMMYT’s Twitter conversations.

The study also shows that CIMMYT is bringing climate science and climate-sensitive agriculture into public debate, particularly through social media platforms, though they note there is potential to share more knowledge through these channels.

According to CIMMYT Agricultural Systems and Climate Change Scientist and coordinator of the study, Tek Sapkota, these types of analyses help research for development organizations to understand how people around the world view their expertise on subject matter, identify their comparative advantage and develop the value proposition of their work going forward.

Read the study: Digital artifacts reveal development and diffusion of climate research

Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

Farmers in Zimbabwe embrace agroecology

Smallholder farmers display a range of small and large grains at the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Smallholder farmers in resource-poor communities of Zimbabwe and much of the Global South have been experiencing low crop productivity due to many factors, including inappropriate seeds and seed varieties, labor shortages, loss of agro-biodiversity, insufficient inputs, degrading soils, and recurrent droughts. These threats are now amplified by climate change.

This has resulted in broken food systems rendering food and nutrition insecurity commonplace. The One CGIAR initiative, Transformational Agroecology Across Food, Land, and Water Systems, led by the International Maize and Wheat Improvement Center (CIMMYT) in Zimbabwe, is designed to bring agroecological advances to smallholder famers in an effort to strengthen local food systems.

Smallholder farmers in the Mbire and Murehwa Districts of Zimbabwe were introduced to innovative agroecology interventions, premised on harnessing nature’s goods and services while minimizing adverse environmental impacts and improving farmer-consumer connectivity, knowledge co-creation, and inclusive relationships among food system actors.

Smallholder farmers register for the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove)

Farmer to farmer collaboration at seed fairs

In response to challenges related to lack of appropriate seeds and eroding agrobiodiversity and, as a way to transition prevailing food systems to more sustainable ones, farmers were invited to take part in seed fairs. The seed fair’s objective was to enable smallholder farmers to access improved and locally adapted seeds of food crops originating from the private sector and fellow farmers. In addition, the seed fairs provided a platform for learning about agroecological practices. Farmers were also given a chance to see different machinery that could aid in land, food, and feed preparation, and address their labor shortage challenges.

At the opening of the seed fair in Mbire, Dorcas Matangi, CIMMYT research associate, acknowledged that smallholder farmers operate in challenging and complex ecological, social, and economic systems and there is a need for interventions that address the natural resource base without ignoring the social and economic dynamics within communities.

“The communal culture of sharing and trading between community members can be capitalized on for a collective benefit, said Matangi. “One such case is through events such as seed fairs where we encourage farmers to showcase and sell seeds they know perform very well.”

She further explained to the participating farmers how increasing their crop diversity and using practices such as conservation agriculture techniques benefit the environment and improves food security and nutrition.

“I am grateful for these efforts,” said Grace Musandaira, supervisor of the Agriculture Advisory and Rural Development Service. “Our region is arid, and as such, it is very difficult for our farmers to achieve significant yields to assure them there is enough food for the year. In addition, the knowledge provision relating to preserving and improving agrobiodiversity through agroecological practices is set to improve rural livelihoods.”

Senzeni Nyagonye, a farmer in Mbire, said “This initiative is teaching and exposing us to so many new concepts such as conservation agriculture with mechanization. If we can apply conservation agriculture with the seeds we bought at this seed fair, we are optimistic about a great harvest.”

A total of 1,058 farmers attended two seed fairs in Mbire and Murehwa. Farmers had the opportunity to access a variety of crop seeds ranging from maize, to sorghum, millets, groundnuts, bambara groundnuts, and sunflowers. More than 200 farmers exhibited local seeds that were available for sale or exchange. Private seed companies also showcased and sold certified drought-tolerant maize, sorghum, bean and cowpea varieties.

“The seed fairs in Mbire and Murehwa were very successful”, said Matangi. “And we feel these efforts will serve as a useful case study to guide a national scale-up.”

Taking Aim Against the Dire Threat of Fall Army Worm

Fall armyworm (FAW) is present in 109 countries in Africa, the Middle East, South and East Asia, and Oceania, and it has spread due to rapid increases in global trade. Maize is highly susceptible to the disease, but it affects more than 300 plant species.

Research by organizations such as the International Maize and Wheat Improvement Center (CIMMYT), CGIAR and CABI has developed effective strategies and tools for managing the disease, such as improved seed, proven agronomic practices, and biologic and chemical crop-protection tools.

An article in The Farming Forum explores FAW prevention developments and partnerships that are helping smallholder farmers protect their crops against this devastating disease.

Read the original article: Taking Aim Against the Dire Threat of Fall Army Worm

Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

In an interview, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), highlights the challenges facing crop cultivation management and agricultural product trade in Mexico and the rest of the world.

“At present, one of the most pressing challenges [in Mexico] is water scarcity exacerbated by la Niña’s occurrence,” explains Govaerts. “The global average of freshwater consumption for food production is 70 percent. However, Mexico ranks 24 in a global Water Stress Index facing high levels of stress by consuming between 40 and 80 percent of water supplies available in any given year.”

The article explores successful local sustainable grain sourcing projects in Mexico, research into sustainable global agricultural development, genetically-modified crops and their connection to biodiversity, and soil health.

Read the original article: Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

A sustainable solution to micronutrient deficiency

Zinc deficiency affects one third of the global population; vitamin A deficiency is a prevalent public health issue in many parts of sub-Saharan Africa and South Asia. This includes countries like Nepal, where alarming rates of micronutrient deficiency contribute to a host of health problems across different age groups, such as stunting, weakened immune systems, and increased maternal and child mortality.

In the absence of affordable options for dietary diversification, food fortification, or nutrient supplementation, crop biofortification remains one of the most sustainable solutions to reducing micronutrient deficiency in the developing world.

After a 2016 national micronutrient status survey highlighted the prevalence of zinc and vitamin A deficiency among rural communities in Nepal’s mountainous western provinces, a team of researchers from the Nepal Agricultural Research Council and the International Maize and Wheat Improvement Center (CIMMYT) proposed a study to assess the yield performance of zinc and provitamin A enriched maize varieties.

Focusing on the river basin area of Karnali Province — where maize is the staple food crop for most people – they conducted two different field trials using an alpha lattice design to identify zinc and provitamin A biofortified maize genotypes consistent and competitive in performance over the contrasting seasons of February to July and August to February.

The study, recently published in Plants, compared the performance of newly introduced maize genotypes with local varieties, focusing on overall agro-morphology, yield, and micronutrient content. In addition to recording higher levels of kernel zinc and total carotenoid, it found that several of the provitamin A and zinc biofortified genotypes exhibited greater yield consistency across different environments compared to the widely grown normal maize varieties.

The results suggest that these genotypes could be effective tools in combatting micronutrient deficiency in the area, thus reducing hidden hunger, as well as enhancing feed nutrient value for the poultry sector, where micronutrient rich maize is highly desired.

“One in three children under the age of five in Nepal and half of the children in the study area are undernourished. Introduction and dissemination of biofortified maize seeds and varieties will help to mitigate the intricate web of food and nutritional insecurity, especially among women and children,” said AbduRahman Beshir, CIMMYT’s seed systems specialist for Asia and the co-author of the publication. Strengthening such products development initiatives and enhancing quality seed delivery pathways will foster sustainable production and value chains of biofortified crops, added Beshir.

Read the study: Zinc and Provitamin A Biofortified Maize Genotypes Exhibited Potent to Reduce Hidden-Hunger in Nepal

Cover photo: Farm worker Bharat Saud gathers maize as it comes out of a shelling machine powered by 4WT in Rambasti, Kanchanpur, Nepal. (Photo: Peter Lowe/CIMMYT)

For women in Ivory Coast, processing cassava no longer has to be a grind

Attieke is the national dish of Ivory Coast. Served with fried fish or a vegetable stew, this tangy, fermented side is the heart and soul of Ivorian cuisine. And because it’s made from cassava, attieke is gluten free. So, in addition to its status as an iconic food of hospitality from Abidjan to Yamoussoukro, attieke has the potential to catch on in distant locales.

Producing attieke is complicated—transforming tubers in the ground into a delicious bowl of couscous-like cassava involves harvesting, peeling, grinding, fermenting, pressing, and effectively storing the processed crop. And in Ivory Coast, this work is traditionally performed almost entirely by women.

A cooperative member processes cassava using a manual grinder. (Photo: Sylvanus Odjo/CIMMYT)

A grueling process

Traditional methods for processing cassava, however, are very slow and extremely laborious. “We had to use a wooden plank with nails [to grind cassava]”, said N’Zouako Akissi Benedicte, president of the local agricultural cooperative in Mahounou, Nanafoue, about 30 kilometers from the capital, Yamoussoukro. To remove the liquid from the ground cassava, Ivorian women used “a kind of screw press” that required so much strength that “it caused us pain in the chest.”

In addition to being painful and grueling, these manual methods are terribly inefficient, generating about 30 kilograms of product per hour. Benedicte said a worker could process very little cassava in a day’s work using this traditional approach. Limited physically by this hard manual labor and struggling to generate enough income to establish financial independence, women working in cassava production in Ivory Coast face difficult challenges.

Hydraulic cassava press. (Photo: Sylvanus Odjo/CIMMYT)

Lightening the load

Three years ago, things started to change for Benedicte and other women working in cassava production in her area. At that time, her cooperative partnered with the Green Innovation Centers for the Agriculture and Food Sector (GIC) of Ivory Coast to receive training to use hydraulic-powered cassava grinders and presses. These machines, which GIC helped design and adapt for the climate and cultural context of Ivory Coast, promised to significantly increase speed of production while making all aspects of cassava work more accessible to women. For instance, the grinding capacity of the equipment is around 600 kg/hr.

Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD no hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.

Beyond helping Benedicte’s cooperative finance the purchase of the new machines and providing instruction in their use, GIC offered the agricultural cooperative a broad range of seminars on topics including selecting seed varieties, soil preparation, processing, and commercialization. This comprehensive approach set the women of Mahounou, Nanafoue up for success.

Gas powered mechanical cassava grinder in Mahounou, Ivory Coast. (Photo: Sylvanus Odjo/CIMMYT)

A message for my sisters

For Benedicte, the new grinder and press are making a huge difference. “The press with the hydraulic system is very efficient and we no longer need to use so much effort to remove the juice,” she said. According to Benedicte, workers in the cooperative are now processing up 1,000% more cassava per day and are only limited by the availability of raw material.

Better yield is also generating financial improvements for these women. “A woman who is working can buy her own machine and earn money that can be used for the education of her children,” Benedicte said. “I have a message for my sisters: a woman cannot solely depend on her husband and expect him to provide everything.”

GIC is working with 32 other groups like Benedicte in Ivory Coast, and the mechanization program has impacted the work of 1,000 women so far.

Taking the next step

There are still hurdles to overcome. In Mahounou, women producing cassava are relying on men to ignite the machines, and when a grinder or a press breaks down, it can be difficult to find spare parts. Benedicte believes electric machines could help solve both problems and take their business to the next level. “We would like to increase our production and sell it at an international level,” she said. “We would like to have a small processing unit here for women that could be used to produce high quality products for the international markets.”

GIC also has plans for a technology transfer that could reproduce this successful program in Malawi. Ivorian staff are collaborating with colleagues there to develop a cassava grinder and press for the Malawian context.

For Benedicte, there is more than food and income at stake in the success of these efforts. “It is important to be autonomous in taking charge of our own expenses,” she said. “This is being a woman. So, please, I invite my sisters to work.”

Cover photo: N’Zouako Akissi Benedicte, president of the local agricultural cooperative, with cooperative members and mechanical cassava grinders. (Photo: Sylvanus Odjo/CIMMYT)

A reluctant farmer changes the fortune of his inherited land

In the sultry spring-summer heat of Bihar, India, the landscape is yellow with wheat grains ready for harvest. Here, in Nagma village farmer Ravi Ranjan attends to his fields — mostly wheat, with some pulses in the adjoining plots. The harvest this year will be a little less than anticipated, he explains, as receding monsoon rains left the soil too moist to begin sowing on time.

Ranjan’s grandfather and father were both farmers who owned sizable land. His father used to say that the land was productive but required a lot of hands, sweat, and time to sustain the yields. Agriculture was all that the family had known and depended on for decades before Ranjan’s father left the sector for the civil service. After the early demise of his grandfather in 2003, and with his father in a secure government job, it fell to Ranjan to shoulder the responsibility of managing the family farm.

As a young man, Ranjan had sometimes helped his grandfather in the fields, but now, as the owner of a hydraulic mechanical service firm working hundreds of kilometers away in Chhattisgarh, he had never imagined becoming a farmer himself. Though reluctant to begin with, Ranjan decided there was no alternative but to take on the challenge and do his best, and while initially he had little success with the new venture, slowly and steadily he began to change the fortune of his inherited land.

Today Ranjan is one of the local area’s success stories, as a progressive and influential farmer with ties to the Cereal Systems Initiative for South Asia (CSISA) project. Researchers on the CSISA team have been working with farmers like him in the region for over a decade and are proud of the ongoing collaboration. Ranjan’s fields are regularly used as CSISA trial plots to help demonstrate the success of new technologies and conservation agriculture practices that can enhance productivity and sustainability. For example, in the 2021-2022 winter cropping season — locally known as Rabi — he harvested 6.2 tons per hectare – while a separate acre plot as demonstration site was harvested publicly with officials from CSISA and the Krishi Vigyan Kendra Network (KVK), JEEViKA, and farmers from neighboring villages for improving yield sustainably.

As India celebrates Kisan Diwas (Farmer’s Day) on December 23, we speak to Ranjan about his hopes for the future and the continuity of farming in his family after he hangs his boots.

Farming has seen a sea of change since your grandfather’s time. What do you think has been the most transformative change in the years you have been involved in farming?

I think using mechanized tools and technology to ensure good cropping practices has tremendously reduced manual work. Furthermore, today with innovations and digitization in agriculture science, farming is not just recognized as a noble profession, but also an enterprising one. I am happy I came into it right when things were changing for good. I have no regrets.

Though not by choice that I came into it, I am now fully invested and devoted to farming. From being an entrepreneur to farming, it has been a transformational journey for me. I am unsure whether my daughters — I have three, the eldest turns 18 next year — will choose to be involved in agricultural farming. But I will encourage and fully support them if they choose to take it up. After all, they will inherit the land after me.

Extreme climate effects are challenging agricultural practices and output. How are you preparing to reduce the impact of these in your fields?

It is worrying to see how extreme climatic effects can be challenging for agriculture, particularly for smallholder farmers in the region. Erratic rains, drought at times, and increasing temperatures have all harmed our cereal and vegetable farms and affected yield in wheat crops significantly. The adoption of new technologies like direct seeded rice (DSR) to avoid puddled rice transplanting, early wheat sowing (EWS) to avoid terminal heat at maturity, zero tillage technology (ZTT), and better-quality seeds, are interventions introduced and supported by CSISA and other agricultural organizations from the state that has helped combat some of these climate-induced problems.

In my own fields, I have also introduced proper irrigation systems to reduce the impact of limited water availability. I hope to stay ahead of the curve and make sure I am aware of all that is possible to keep my farm productive and sustainable.

How did you begin your association with CSISA? What has been your experience of working with them to make your agriculture resilient and productive?

I was initially approached by one of their scientists working in the area. And because of my interest, they slowly began informing me of various technologies I could try. With these technologies implemented in my field, the yield and productivity improved.

Soon after expanding my agriculture output, I got 50 acres of land on lease in the village to grow more crops like pulses, along with rice and wheat. Today, CSISA has started using my fields as their demonstration plots for new technologies and best practices, and to spread awareness and bring in more farmers from neighboring villages to encourage adoption.

CSISA and others call me a progressive and innovative farmer. I am proud that many farmers and other agricultural agencies in the area have appreciated our efforts to continue making agriculture productive and sustainable.

About CSISA:

Established in 2009, the Cereal Systems Initiative for South Asia (CSISA) is a science-driven and impacts-oriented regional initiative for increasing the productivity of cereal-based cropping systems. CSISA works in Bangladesh, India, and Nepal. CSISA activities in India focus on the eastern Indo-Gangetic Plains, dominated by small farm sizes, low incomes, and comparatively low agricultural mechanization, irrigation, and productivity levels.

Cover photo: Ravi Ranjan takes the author on a tour of his fields where wheat grown with conservation agriculture practices like zero tillage technology is ready for harvest, Nagwa village, Bihar, India. (Photo: Nima Chodon/CIMMYT)

Improved nitrogen use can boost tomato yields

Nitrogen use efficiency (NUE) and tomato production in Nepal have both been negatively affected by universal fertilizer recommendations that do not consider the soil type, nutrient status, or climate and crop management practices. Improved use of appropriate levels of nitrogen (N) fertilizer, application time, and application methods could increase yields and reduce environmental impact.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Nepal Agricultural Research Council (NARC), the National Soil Science Research Center (NSSRC), and the International Fertilizer Development Center completed a study to identify the optimum N rate and application method to increase NUE and tomato crop yield as part of the Nepal Seed and Fertilizer (NSAF) project.

Randomized trials with nine treatments across five districts included the omission of N, phosphorus (P) and potassium (K) (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK).

Considering its anticipated higher NUE, N input in UB was reduced from the recommend N rate of 200 kg ha−1 by a quarter. N was revealed as the most limiting plant nutrient based on yield responses from an NPK omission plot.

Tomato yield was increased by 27 percent, 35 percent, 43 percent, and 27 percent over N0 with respective applications of fertilizer at N-100, N-150, N-200 and N-250. Yields responded quadratically to the added N fertilizers, with optimum rates ranging from 150 to 200 kg ha−1.

UBN-150 produced a similar yield to the recommended rate of N-200 and significantly increased tomato yield by 12% over N-150.

At N-100, scientists observed the highest partial factor productivity of N (PFPN), while at N-200, the highest agronomic efficiency of N (AEN) was recorded.

Results suggest that there is opportunity to develop more efficient N fertilization strategies for Nepal, leading to benefits of higher yields and less environmental damage.

Read the study: Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal

Cover photo: Generic, non-specific recommendations for fertilizer use in Nepal have affected the production of tomato crops. (Photo: Dilli Prasad Chalise/CIMMYT)

Building capacities in genetic resources and seed production strengthens collaboration ties between Guatemala and CIMMYT

Field day on maize seed production. (Photo: CIMMYT)

More than 20 participants attended the genetic resources and seed production courses given by researchers from the Global Maize Program of the International Maize and Wheat Improvement Center (CIMMYT), from October 24 to 28 in Antigua, Guatemala. Among the attendees were technicians and researchers from the Institute of Agricultural Science and Technology (ICTA, for its acronym in Spanish), as well as students from Universidad Rafael Landívar and the University Centers of Chimaltenango (CUNDECH, in Spanish) and Quiché (CUSACQ, in Spanish) of Universidad de San Carlos de Guatemala.

Thanks to the support of the Global Environment Facility (GEF), the Tropical Agricultural Research and Higher Education Center (CATIE, in Spanish), the National Council for Protected Areas (CONAP, in Spanish) and the United Nations Environment Program (UNEP), these courses contributed to the development of a biosafety project, supported by GEF and UNEP, to complete the implementation process of the Cartagena Protocol through an innovative approach that promotes a strong link between biotechnology and biodiversity. In addition, it sought to strengthen capacities in the performance and interpretation of molecular analyses and promote the generational change that is gradually taking place in this Central American country.

Activities began on October 24 and 25 with the course on Statistics Applied to Genetic Resources given by Juan Burgueño, Head of CIMMYT’s Biometrics and Statistics Unit, to students from the aforementioned universities and ICTA staff interested in the analysis of molecular data for the purpose of characterizing accessions and the formation of core collections in germplasm banks. On the 26 and 27 of the same month, César Petroli, a specialist in high-throughput genotyping at CIMMYT, offered a course on biotechnology and high-throughput genotyping.

ICTA seed production leaders and CIMMYT course facilitators. (Photo: CIMMYT)

At the same time, Alberto Chassaigne, curator of the Maize Collection of CIMMYT’s germplasm bank, participated in the course on Genetic Resources and Management of Germplasm Banks. He explained the management of CIMMYT’s germplasm bank, the processes that are carried out and the partnerships with ICTA on work with community seed banks and the plans of both institutions for 2023. Also, as a specialist in Seed Systems, Chassaigne and Ubaldo Marcos, research assistant in CIMMYT’s Maize Seed Systems area, gave a course on Maize Seed Production. This course was aimed at staff in charge of the production of basic and certified seed at ICTA. This course concluded with a field day at the Regional Research Center of the South (CISUR, in Spanish), Cuyuta, Escuintla, where participants asked the specialists questions while visiting a maize seed production plot.

In turn, María de los Ángeles Mérida, a researcher specializing in genetic resources from ICTA, who organized these courses, spoke about the collection and conservation of native varieties of maize in Guatemala. Additionally, César Azurdia, CONAP biodiversity advisor, gave a presentation on wild relatives of different crops in Guatemala. Leslie Melisa Ojeda C. (CONAP) also participated, and spoke about the issue of legislation on crop wild relatives; and, Mynor Otzoy, a researcher from Universidad de San Carlos de Guatemala, spoke about the collection and morphological characterization of cocoa germplasm in Guatemala.

Along the path of constant strengthening of collaboration ties with countries, course participants highlighted their interest and need to continue this type of training. In 2023, it is expected to facilitate a team training with Ubaldo Marcos and Félix San Vicente, CIMMYT maize breeder for Latin America. It should be noted that, within the framework of the CGIAR germplasm bank initiative, the objective will be to replicate this experience in other Latin American countries and increase participation in community seed banks (ex situ and in situ banks).

Seven new CIMMYT maize hybrids available from Southern Africa Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce seven new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM21SAPP1-14 Intermediate-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB, and ear rots
CIM21SAPP1-10
CIM21SAPP1-01 Late-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to MSV, TLB, and ear rots
CIM21SAPP1-08
CIM21SAPP2-12 Early-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB
CZH1815A Early-maturing, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CZH1805A
Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019, 2021, and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 10 January 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2021/22 Southern Africa Stage 5 Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Rear fish in a rice paddy? Old ways can future-proof food production

In an op-ed for the South China Morning Post, Bram Govaerts, Director General at the International Maize and Wheat Improvement Center (CIMMYT), and Essam Yassin Mohammed, Interim Director General of WorldFish and acting Senior Director of Aquatic Food Systems of CGIAR, explore the role of the research community in developing future-proof strategies to address challenges to the global agrifood system.

Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.

This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.

Read the original article: Rear fish in a rice paddy? Old ways can future-proof food production