Skip to main content

India transforms wheat for the world

India can applaud a hallmark in national food production: in 2023, the harvest of wheat—India’s second most important food crop—will surpass 110 million tons for the first time.

This maintains India as the world’s number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolution—the modernization of India’s agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.

“Newer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,” said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. “More than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Center’s international yield trials and nurseries or developed locally using CIMMYT parents.”

Wheat grain yield in Indian farmers’ fields rose yearly by more than 1.8 percent—some 54 kilograms per hectare—in the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.

“The emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,” Singh explained. “This both protected their crops and delivered breeding gains for yield and climate resilience.”

CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.

Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.

Farm innovations for changing climates and resource scarcities

Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.

New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.

Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.

Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)

“This ‘zero tillage’ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,” said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). “Also, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.”

Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.

Science and policies ensure future wheat harvests and better nutrition

Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. “Added to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.”

To safeguard India’s wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladesh’s wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.

“More than a dozen wheat blast resistant varieties have been deployed in eastern India to block the disease’s entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,” said Pawan Singh, head of wheat pathology at CIMMYT.

Building on wheat’s use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.

“At least 10 such ‘biofortified’ wheat varieties have been released and are grown on over 2 million hectares in India,” said Velu Govindan, CIMMYT breeder who leads the Center’s wheat biofortification research. “It is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.”

A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.

Celebrating joint achievements and committing for continued success

The April-June 2018 edition of the “ICAR Reporter” newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research “
one of the longest and most productive in the world
” and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.

Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts,  Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of India’s Ministry of Agriculture and Farmers Welfare and Director General of ICAR, “reaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.”

“The ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,” said Gyanendra Singh, director, ICAR-IIWBR. “This in turn advances global peace and prosperity.”

India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)

According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. “The way forward to the next milestone — say, harvesting 125 million tons of wheat from the same or less land area — is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,” he said.

Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workers’ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.

Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UK’s Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).

Transformative research provides pathways for including gender and socially marginalized groups

Intention, collaboration and commitment are critical to bridging the research and practice gap. Gender development practitioners and researchers from CGIAR centers, universities, national agricultural research and extension systems (NARES), civil society, and donor representatives this week shared insights from their research and work at the gender conference in New Delhi, India.

The discussion and exchange promises to create collaborations and opportunities devoted to improving the conditions and agency of women, youth and Indigenous communities in the Global South. “Transformative research can lead to meaningful impact,” said Angela Meentzen, senior gender researcher at CIMMYT. “We have been looking forward to this conference because coming together as researchers, scientists and development practitioners, we can discuss and share insights from each other’s practices and experiences from the field.”

Angela Meentzen (third from left) with CIMMYT colleagues from Asia and Africa at the CGIAR Gender 2023 conference in New Delhi. (Photo: Nima Chodon/CIMMYT)

Leading researchers and scientists from CIMMYT Asia and Africa presented their research and enriched the gender discussions at the conference. Meentzen said that CIMMYT is proud to support gender research that contributes meaningfully to transformative change and impact.

Below are highlights of four research poster presentations by our researchers (of the six presented by CIMMYT) at the conference:

Increased participation in agricultural processes does not mean more decision-making power for women farmers

Scientist Vijayalaxmi Khed examined how women manage excess workload (working inside and outside the house), a clear trade-off between productive and leisure time without change in domestic responsibilities. Due to domestic workload, she found that women’s time away from farms does not translate into leisure. Another important finding was that women with more agency had less time for leisure, unlike for men.

In her poster presentation, she concluded that rural women’s nexus of time poverty and decision-making has “clear implications for the development and diffusion of laborsaving technologies in agriculture.”

Working on the same study with Khed, Vijesh Krishna explored the relationship between women’s involvement in agricultural activities and decision-making. His presentation, ‘Farm managers or unpaid laborers?’, from the study covering 347 wheat-farming households across two years, concludes that “despite playing a crucial role in wheat farming in central India, most women lacked the ability to influence decisions.”

Gender-intentional maize breeding for better adoption and productivity in sub-Saharan Africa

Michael Euler, agriculture and resource economist, in his poster presentation explained how an on-farm trial to improve gender-intentional breeding and varietal adoption in maize was designed by CIMMYT breeders and researchers.

The study hypothesized that gender dynamics in household labor allocation and decision-making in maize systems influence trait preferences and farmers’ adoption of varieties. So, researchers conducted on-farm trials and household surveys with individual women and men household members to capture differences in their trait preferences in maize cultivation—production systems, seed demand and seed access—with 800 smallholder farmers in Zimbabwe and Kenya.

Euler emphasized the influence of socioeconomic and agroecological factors, including biotic–abiotic stress, in the household decisions on maize varietal adoption.

He concluded that the study results will help “guide the product development of regional maize breeding programs and strengthen communities’ adaptation to the changing environmental conditions for maize cultivation.”

Adoption of a weeding technology may lead to labor displacement of marginalized women laborers

Presenting a poster for the same session as Euler, Maxwell Mkondiwa—in a study coauthored with colleagues Khed and Krishna—highlighted how rapid diffusion of a laborsaving technology like herbicides could exclude the marginalized further. The study occurred in India’s state of Bihar, looking at nonfarming rural poor, primarily women, from socially marginalized groups.

From data on chemical weeding, the study analyzed the technology’s impact on inequality— highlighting how marginalized women laborers who work on manual weeding are then replaced by men who apply herbicides.

He stressed that not enough research is devoted to understanding whether farmer adoption of laborsaving technologies worsens economic inequalities or reinstates labor into better tasks. “We hope the evidence we generated will help researchers and policymakers develop relevant actions toward more inclusive innovations, and support laborers with new skills for the transitions,” said Mkondiwa.

Maxwell Mkondiwa presents his poster under the session Gender Dynamics in Agri-Food System Innovation at the CGIAR Gender 2023 conference. (Photo: M Mkondiwa/CIMMYT)

Women exhibit limited technical knowledge and experience social benefits differently in male-headed households of CASI technology adoption

Emma Karki, in her poster, explained that there is limited knowledge of the impact of technology adoption on women in a male-headed household in South Asia—with decision powers generally resting with male household members. The research tried to understand the gendered differences in the evaluation of technology adoption in male-headed households using conservation agriculture-based sustainable intensification (CASI) technology as a case study.

The study focused on identifying the commonalities and differences in the experiences and evaluation of CASI technology. Results indicated that “despite technology adoption, women had limited mechanistic understanding compared to men, with similar limitations on women’s time use and capacity development,” said Karki.

For future CASI promotion, Karki concluded: “Reducing information gaps and incorporating technological preferences of women needs prioritizing, including creating opportunities for them to access knowledge and engage both men and women in critical discussions surrounding gender norms.”

Similarly, Moti Jaleta’s research presentation highlighted the challenges of mechanization adoption for smallholder farmers in Ethiopia, primarily women. “Intentional research, whether in gender or social development, helps identify problems and opportunities for change,” endorsed Jaleta.

Meaningful research helps achieve gender and social inclusion goals

The ‘From Research to Impact: CGIAR GENDER Impact Platform and ICAR Conference 2023’, between October 9-12, 2023, in New Delhi, gathered researchers from 68 countries. In her inaugural address at the conference’s opening, the President of India Smt. Draupadi Murmu affirmed, “For ecologically sustainable, ethically desirable, economically affordable and socially justifiable production, we need research which can enable conditions to reach these goals.”

At the end of the four-day conference—with 60 research presentations and six plenary sessions—the organizers and participants reflected on their resolve ‘From Research To Impact,’ and the promise to recognize and collectively address the gender and social inequities in agrifood systems development.

Community Business Facilitator: providing a service to farmers while increasing community access to nutritious food

Bhumi Shara Khadka is a 35-year-old community business facilitator who has made significant strides in agriculture and community development. Her journey began after completing training in sales skill development and technical capacity building for community business facilitators (CBF) organized by the Cereal Systems Initiative for South Asia (CSISA) in June 2022 and April 2023, respectively. This training opened up new opportunities, and she soon secured a job as a CBF. However, her ambitions didn’t stop there.

In February 2022, the Cereal Systems Initiative for South Asia (CSISA) recognized her potential and recommended her for a role as a community business facilitator with Laxmi Agrovet, a local agribusiness. To prepare for her new position, Ms. Khadka underwent additional training in various areas, including running sales meetings, farm mechanization, post-harvest handling and the fundamentals of sales and marketing. With these tools in hand, she set out to make a difference in the lives of farmers and the broader community.

To date, Khadka has conducted 97 sales meetings with farmer groups where she explains improved production methods, plant protection, post-harvest handling and how to market agriculture products effectively. She also demonstrates and sells Laxmi Agrovet agri-inputs such as seeds, fertilizer and tools. She gets a 20% commission on sales, bringing her an average net monthly income of NPR3,375 (US$26). Her role as community business facilitator also involves linking farmers with the local government agriculture program. As a result of her efforts, three farmers have each acquired a mini power tiller at a 50% subsidy.

Bhumi Shara Khadka at her vegetable farm in Surkhet district, Nepal. (Photo: Nabin Maharjan/CIMMYT)

Inspired by Khadka’s example, Chitra Bahadur Rokaya, acting director of the Agricultural Regional Directorate in Surkhet, Nepal, has expressed his desire to visit farmers and learn more about the activities of community business facilitators like Khadka during the technical capacity-building training to CBF in April 2023. Rokaya has expressed gratitude to trainees who attended the IPM training organized by CSISA and would visit the field sites of the trainees, if possible.

Khadka has also used her knowledge as a business facilitator and IPM trainee to establish her commercial vegetable farm, which, with her investment and CSISA’s technical support, now occupies five ropani (0.01 hectares). Her husband helps out and Bhumi sells the produce at local markets in Melkuna and Badichour, Surkhet, with traders often coming to the farm to buy from her directly. Last year, she earned NPR227,000 (US$1,733) of which her net income was NPR63,500 (US$485). Since starting the farm, the family’s food habits and those of her neighbors have changed for the better. Last year, the family kept a quarter of the vegetables she produced for their consumption, and she gave about 10% to neighbors.

Last year, under Khadka’s facilitation, 48 farmers cultivated vegetables on an average of 0.02 hectares each, each achieving an average net profit of NPR63,500 (US$485). Khadka also owns a power tiller, which she rents out for others to use, earning NPR35,000 (US$267) last year from this service provision activity.

In addition to her business and professional success, Khadka completed high school in 2014, underlining the significance of her accomplishments. Khadka’s remarkable journey is an inspiring agriculture success story, showcasing the transformative power of women empowerment in rural communities. Her dedication, knowledge and entrepreneurial spirit have improved farmers’ lives and elevated the entire community’s access to nutritious food. Her unwavering commitment to her work has brought her well-deserved recognition, and she is a beacon of hope for others in similar fields of endeavor.

Fostering agricultural innovation: collaborative meetings with NARC and NSSRC in Nepal

On October 4, 2023, Sieglinde Snapp, program director of the Sustainable Agrifood System (SAS) program, along with the country representative of CIMMYT and project lead of the Nepal Seed and Fertilizer Project (NSAF) Dyutiman Choudhary, visited the National Soil Science Research Center (NSSRC) under the Nepal Agricultural Research Council (NARC). The chief of NSSRC, Shree Prasad Vista, and his team welcomed Snapp and the team from CIMMYT. In the meeting, Vista presented an overview of NSSRC’s work and emphasized the collaborative work with NSAF. He focused on the achievements NSSRC has accomplished with the joint efforts of NSAF. He highlighted the launch of the Digital Soil Map and new fertilizer recommendations. He also reflected on the benefits of soil health cards to the farmers that NSAF supported. In addition, he prioritized the importance of collaboration to improve the livelihood of farmers. He appreciated the cross-learning that CIMMYT has been providing for knowledge transfer and adopting best management practices. After the meeting, the team visited the NSSRC’s laboratory, which provided insights about their soil research activities.

The chief of NSSRC briefs Sieg Snapp on farmers’ health card. (Photo: CIMMYT)

Following the visit to NSSRC, Snapp and CIMMYT colleagues visited the NARC Head Office within the same premises. The Executive Director of NARC, Dhurbaraj Bhattari, welcomed the delegates in his office. The ED presented an overview of NARC and its primary focus. He emphasized the importance of collaborative work with CIMMYT. After the presentation, the delegates from CIMMYT, NARC and NSSRC discussed critical issues regarding sustainable agricultural practices. The primary focus of the meeting was the strategies to boost sustainable agricultural productivity to enhance crop yields, value chain enhancement for farmer’s benefits, policy development for collaboration and harmonization to encourage horizontal and vertical cooperation between different stakeholders, need for investment in research and infrastructure at the grassroots level for addressing the challenges faced by farmers.

Addressing the meeting, Snapp focused on the importance of partnership aligning with CIMMYT’s latest strategies to facilitate knowledge transfer and the adoption of best practices. She also raised her concerns regarding the loss of crops between harvest and storage. She reflected on the commitment of CIMMYT to improving agriculture through science and innovation to change the livelihood of farmers. She showed her commitment to ongoing collaboration for sustainable agricultural development.

The meeting provided a platform to strengthen the longstanding collaboration between CIMMYT and NARC to address the challenges faced by farmers to enhance agricultural productivity through sustainable approaches. The Executive Director of NARC extended heartfelt gratitude for CIMMYT’s support, which has played a pivotal role in transforming the lives of countless farmers. He also expressed hope for continued collaboration in the future.

The CIMMYT and NSSRC team at NSSRC offices. (Photo: CIMMYT)

Snapp visited CIMMYT Nepal from October 3-7, 2023. 2023. During her visit, she interacted and engaged with various stakeholders, including Nepal staff, farmers in the field, agricultural cooperatives, government authorities, seed growers, suppliers and feed mills.

Bridging the communication gap in genetic improvement tools in agriculture

The Africa Biennial Biosciences Communication (ABBC 2023) Symposium, held in Nairobi, Kenya, provided a platform for experts, scientists, policymakers and stakeholders to discuss the evolution of genetic improvement tools in agriculture and the critical role that communication plays in ensuring these advancements are aligned with societal needs. The theme of the symposium, “Evolution of Genetic Improvement Tools in Agriculture: Is Communication Matching Up?” sparked insightful discussions and revelations regarding the intersections of technology, communication and sustainability.

Biotechnology underpins sustainable agriculture by providing potential solutions that enable agricultural systems to better address underlying health, livelihood and nutrition challenges. The quest for innovative and tech-enabled options for sustainable agriculture offers valuable lessons contributing to long-term food security. For example, through the applications of genome editing technologies, nutritional enhancements and reduced reliance on agrochemicals are both possible.

A case study presentation by Kevin Pixley, director of the Dryland Crops Program (DCP) and interim director of the Global Wheat Program, “How will communication about new breeding tools impact the development of sustainable food systems and one health-focus on crop science,” detailed how communication plays a vital role in informing consumers and society at large about the positive impacts that new breeding tools can have by contributing to sustainable food systems.

Kevin Pixley speaks during the panel discussion at the ABBC 2023 symposium in Nairobi. (Photo: Marion Aluoch/CIMMYT)

Transparent communication builds trust and impacts consumers’ ability to make informed decisions regarding genome-edited or other products. “In order to communicate effectively, we need to be transparent and provide information that consumers are seeking,” Pixley said. “Understanding their questions and concerns is the first step.” He gave examples of communication challenges, discussed various levels of transparency and urged for proactive approaches to communicate the benefits of genetic improvement technologies. Pixley further pointed out that the credibility of the communicator plays a crucial role in shaping public perception and emphasized the importance of tailoring communication to different cultural contexts and audiences.

During the panel discussion, “Systems thinking toward sustainable food/feed supply and one health. What is the role of communication?” experts from various fields, discussed the interconnectedness of food systems, human and animal health, the environment and communication. Acknowledging the complexity of the interconnected food production and consumption cycle, Pixley suggested that a holistic approach is necessary and called for a paradigm shift towards a thriving agricultural ecosystem.

The discussions delved into the role of communication in promoting economic, social and environmental sustainability solutions. The dialogue revealed the importance of involving farmers, policymakers and development partners to ensure holistic solutions.

Miscommunication and misinformation were also addressed, with the speakers recognizing the need to address perceived risks and demonstrate the safety and benefits of genetic advancements. Also discussed was the importance of simplicity and tailored messaging for various stakeholders, including policymakers, farmers and consumers.

In conclusion, the panelists agreed that effective communication is essential to realize the potential benefits offered by biotechnologies.

Mithika Linturi, cabinet secretary for Agriculture and Livestock Development, engages with the DCP team at CIMMYT’s exhibition stand. (Photo: Marion Aluoch/CIMMYT)

At the sorghum festival, Pixley and the DCP team showcased CIMMYT’s efforts in sorghum breeding and genetic improvement. They underscored the collaborative work with NARES partners and emphasized the importance of co-designing, co-developing and co-implementing projects to ensure sustainability and shared ownership. “A successful program requires collaboration, sharing resources and building sustainable networks,” said Pixley. “Our efforts are driven by the collaboration of various stakeholders.” The symposium also witnessed CIMMYT showcasing millet and sorghum at the exhibition, where the DCP team engaged with many participants.

All these discussions demonstrated the critical role that communication plays in shaping the trajectory of genetic improvement tools in modern agriculture. Transparent, culturally sensitive and proactive communications are essential to achieve social license for novel technologies, such as genome editing, to contribute to sustainable food systems, improved farmers’ livelihoods and food security for farmers and consumers.

Breaking barriers in agriculture

In Nepal, the International Water Management Institute and CIMMYT conducted research on Sustainable Intensification of Mixed Farming System (SI-MFS) in collaboration with local governments in Gurbakot Municipality of Surkhet and Haleshi Tuwachung Municipality of Khotang.

The research found a noticeable shift in farmers’ interest in farming practices, where successful implementation of innovation and scaling, it’s crucial to have farmers’ interest and ownership in interventions.

Read the full story.

In sub-Saharan Africa, mineral fertilization and agroecology are not incompatible

Are agroecological approaches, based for example on the use of legumes and manure, enough by themselves to ensure a long-term increase in annual crop yields in sub-Saharan Africa (SSA), without using more mineral fertilizer?

The answer is no, according to a team of agronomists who have published an in-depth analysis of 150 scientific articles on annual crops (maize, sorghum, millet, rice, cassava, etc.) and tropical legumes, both annual grain legumes (cowpea, groundnut) and legume trees (acacia, sesbania) in tropical environments.

These publications collate 50 years of knowledge on nutrient balances in sub-Saharan Africa, biological nitrogen fixation by tropical legumes, manure use in smallholder farming systems and the environmental impact of mineral fertilizer.

“When we look at comparable climate conditions and physical soil constraints, yields of maize – the main source of calories for people – in sub-Saharan Africa are three to four times lower than elsewhere in the world. This is largely due to the fact that mineral fertilizer use (nitrogen, potassium) is on average four times lower there”, says Gatien Falconnier, a researcher at CIRAD based in Zimbabwe and lead author of the article. “On average, 13 kg of nitrogen are used per hectare and per year in sub-Saharan Africa, for all crops, bearing in mind that the poorest farmers have no access to nitrogen fertilizers and therefore do not use them. It is mainly agri-business and vegetable farmers that have access to fertilizers”, adds François Affholder, an agronomist at CIRAD based in Mozambique and co-author of the article.

Maize and cowpea intercropping in the Maravire field. (Photo: CIMMYT)

“Our objective is not to produce like Europe or North America, but to produce more and more regularly according to the seasons and the years, and thus to increase the economic sustainability of our farming systems. To do so, we must ensure a minimum level of nutrients for crops, which require essential mineral elements for efficient photosynthesis, and therefore growth. Soils are typically lacking in mineral elements in sub-Saharan Africa, and the largely insufficient organic inputs lead to nutrient deficiencies in crops. This is the main limiting factor for crop yields, excluding drought situations”, says Pauline Chivenge of the African Plant Nutrition Institute (APNI). “The work by Christian Pieri showed as early as 1989 that it is possible to restore high levels of fertility to African soils through a balanced approach to organic and mineral nutrient inputs”, says François Affholder.

The article highlights five reasons why more mineral fertilizer is needed in sub-Saharan Africa:

  1. Farming systems are characterized by very low mineral fertilizer use, widespread mixed crop-livestock systems, and significant crop diversity, including legumes. Inputs of mineral elements to crops by farmers are insufficient, resulting in a widespread decline in soil fertility due to soil nutrient mining.
  2. The nitrogen requirements of crops cannot be met solely through biological nitrogen fixation by legumes and manure recycling. Legumes can only fix atmospheric nitrogen if symbiosis with soil bacteria functions correctly, which requires absorption of different mineral elements by the plant. Ken Giller of Wageningen University highlights that the ability of legumes to capture nitrogen from the air through their symbiosis with rhizobium bacteria is a fantastic opportunity for smallholder farmers, “but the amounts on nitrogen fixed are very small unless other nutrients such as phosphorus are supplied through fertilizers”.
  3. Phosphorus and potassium are often the main limiting factors of the functioning of plants and living organisms, including symbiotic bacteria: if there is not enough phosphorus and potassium in soils, then there is no nitrogen fixation. These nutrient elements, phosphorus, potassium and micro-elements, need to be provided by fertilizers, since they cannot be provided by legumes, which draw these elements directly from the soil. In the case of manure, this is simply a transfer from grazing areas to cultivated areas, which gradually reduces fertility in grazing areas.
  4. If used appropriately, mineral fertilizers have little impact on the environment. The greenhouse gas emissions linked to nitrogen fertilizer use can be controlled through a balanced and efficient application. In addition, mineral fertilizers can be produced more efficiently in order to reduce the impact of their production on greenhouse gas emissions, keeping in mind that this impact is low, at around 1% of total anthropogenic emissions.
  5. Further reducing mineral fertilizer use in SSA would hamper productivity gains and would contribute directly to increasing food insecurity and indirectly to agricultural expansion and deforestation. Producing for a population that will double by 2050 is likely to require the use of more agricultural land. An extensive strategy thus harms biodiversity and contributes to increasing greenhouse gas emissions, contrary to an agroecological intensification strategy combined with efficient and moderate mineral fertilizer use.

“If we take account of biophysical production factors, such as climate and soil, and shortages of land and agricultural workers, it will be impossible to reach a satisfactory production level by fertilizing soils only with manure and using legumes”, says Leonard Rusinamhodzi, an agricultural researcher at the Ghana International Institute of Tropical Agriculture.

However, “agroecological principles linked directly to improving soil fertility, such as recycling of mineral and organic elements, crop efficiency and diversity, with for example agroforestry practices and cereal-legume intercropping, remain essential to improve soil health. Soil fertility is based on its organic matter content, provided by plant growth that determines the biomass that is returned to the soil in the form of roots and plant residues. Efficient mineral fertilizer use starts a virtuous circle. These nutrients are crucial for the sustainability of agricultural productivity”, says Gatien Falconnier.

The researchers therefore argue for a nuanced position that recognizes the need to increase mineral fertilizer use in sub-Saharan Africa, in a moderate manner based on efficient practices, in conjunction with the use of agroecological practices and appropriate policy support. This balanced approach is aimed at ensuring long-term food security while preserving ecosystems and preventing soil degradation.

Référence
Falconnier, G. N., Cardinael, R., Corbeels, M., Baudron, F., Chivenge, P., Couëdel, A., Ripoche, A., Affholder, F., Naudin, K., Benaillon, E., Rusinamhodzi, L., Leroux, L., Vanlauwe, B., & Giller, K. E. (2023).

The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook on Agriculture, 0(0). https://doi.org/10.1177/00307270231199795

*CIRAD, CIMMYT, International Institute of Tropical Agriculture (IITA), Wageningen University and the African Plant Nutrition Institute (APNI)

Contact: presse@cirad.fr

Scientists: 

Gatien Falconnier
gatien.falconnier@cirad.fr

Pauline Chivenge
P.CHIVENGE@apni.net

Leonard Rusinamhodzi
L.Rusinamhodzi@cgiar.org

Exploring alternative solutions: the case for synthetic mulch in a changing world

Food security remains elusive for most smallholder farmers reliant on rainfed crop production, given the erratic rainfall patterns induced by climate change in Southern Africa. Among others, conservation agriculture (CA) is a concept often considered to be effective to adapt to these erratic rainfall patterns, enabling farmers to cope better with the prolonged dry spells that are characteristic of the semi-arid regions in Zimbabwe.

Conservation agriculture essentially involves three key pillars, namely, reduced soil disturbance, the use of crop rotations or intercrop associations, and the provision of permanent soil cover. The soil-cover component often requires the use of previous crop residues or other organic materials as a surface mulch. However, local farmers consider this task to be the most laborious aspect of implementing CA, which poses a significant challenge to its widespread uptake.

Collecting insights on influence of synthetic mulch. (Photo: CIMMYT)

Traditionally, farmers are advised to use organic mulch, such as maize residues, for soil cover. However, in most communal areas, there is a growing scarcity of organic mulches as they are predominantly used as livestock feed in mixed crop-livestock farming systems. Ironically, semi-arid regions that benefit from the use of crop residues as soil cover are also regions where the residues are the scarcest due to competing uses as livestock feed or as firewood. These competing interests pose a dilemma, as it is essential to cover the soil while also necessary to feed the animals. In neighboring countries like Malawi, maize residues are also used as fuel for firewood, further increasing the demand. It is clearly important, therefore, to develop alternative solutions to address this pressing issue.

“Since I embarked on my journey in conservation agriculture back in 1998, the matter of residues has been a topic of discussion. It is imperative that we walk the talk and develop practical solutions to meet the needs of farmers who rely on residues to feed their animals. One potential solution we are exploring is the use of synthetic mulches to cover the soil. By employing this method, we can cover the soil, apply fertilizer, and hopefully witness a positive impact. We certainly must develop synthetic materials that can be used sustainably as surface mulches in the semi-arid environments where organics are most scarce yet most needed,” stated Isaiah Nyagumbo, regional cropping systems agronomist.

To test such innovations, some water-conservation experiments were established in Buhera and Mutoko, Zimbabwe, during the last two seasons, and the results have been encouraging.

“I am grateful to work with the CIMMYT team on these water conservation trials, and I hope they continue. Before the trials, we were using organic mulch, but after using the synthetic approach and comparing it with organic mulches and none at all, we are seeing so many positive results. But there are challenges we can’t escape, including affordability. But I have seen higher yield returns this year as I harvested close to 15 by 50kgs of maize,” said Nyawasha, a farmer from Mutoko, Zimbabwe, ward 16.

Further detailed studies to understand these systems have also been established in the current dry season at the CIMMYT campus in Harare, to test the effectiveness of these synthetic mulches under conditions of severe moisture stress. The different treatments include clear synthetic mulch, black synthetic mulch, organic mulch and no mulch. So far, for the maize crop now at flowering stage, the growth and yield are strikingly better in plots under the synthetic mulches compared with the organic and no mulch plots. This clearly shows the importance of finding viable alternatives. The crop with synthetic mulches also developed much faster, all the way from crop emergence.

Exploring the tied-ridging system

In these trials, mulching treatments are being tested in conventionally tilled plots, CA basins (pfumvudza basins) and under the tied-ridging system. Tied ridging has been developed in Zimbabwe for use by smallholder farmers since the 1980s and is well known for its effectiveness in reducing sheet erosion and water run-off. This system employs ridges 15–20 cm high, with crossties in the furrows at 1–2 m intervals that trap rainwater and prevent runoff and soil erosion. However, in a typical rainfed system, poor germination challenges can arise when planting on top of these ridges due to excessive drying of moisture from the raised ridges. Furthermore, during prolonged dry spells, the exposed ridges tend to cause crops to wilt more than flat-planted conventional crops. To address these issues, scientists at CIMMYT in Zimbabwe are also exploring innovative ways to improve the tied-ridging system through ways that minimize water loss through direct soil evaporation.

“This has been one of the shortcomings of the tied-ridging system, and we need ways to overcome this excessive moisture evaporation. Once the water has gone into the soil, it should only leave through plant uptake and not be wasted through direct soil evaporation,” said Nyagumbo.

Integrating synthetic mulch into the tied-ridge system. (Photo: CIMMYT)

One approach being considered is incorporating mulch into the system to reduce evaporation and ensure that captured water is retained. The results are evident in the vibrant greenery of the plants with mulch compared with those without. Observing the number of plants with tassels and silk, it is clear that the plots with clear synthetic material have faster growth and reach maturity sooner compared with the plots with black synthetic mulch.

“My outlook on the use of synthetic mulch on ridges is that they are much more effective, as it makes the soil very loose for good aeration to the plant and encourages high growth rate. I noticed that plants germinated in three days and the little water provided will directly benefit the plant without escaping. I am encouraged to continue doing this tied ridge approach using synthetic material,” said Nyekete, a farmer in Buhera, Zimbabwe, ward 7.

While exploring various options, it has also been important to prioritize and focus on one aspect at a time. The initial focus has been on maize residue, as it is a valuable resource for both soil cover and livestock feed. However, the scarcity of maize residue poses a significant challenge for many farmers, especially in regions like Buhera, Mberengwa and Shurugwi, where animals consume all available resources. Placing maize residues in open fields is not a very viable solution, as freely roaming livestock will just consume it. Fencing or creating structures to protect the residues from livestock also requires substantial effort and resources, thereby making this mulching a daunting task for farmers.

Food for thought

While the challenges faced in providing mulch for conservation agriculture are multifaceted, there is a growing need to develop innovative solutions that address the scarcity of organic mulch and explore alternative methods such as synthetic coverings. By continuously adapting and refining our practices, we can ensure the sustainability of agriculture in this region and improve the livelihoods of farmers.

Former CIMMYT wheat scientist, Mohan Kohli, receives Paraguay’s National Order of Merit award

Paraguay’s Minister of Foreign Affairs, Ambassador Julio CĂ©sar Arriola, recently bestowed on Man Mohan Kohli, retired wheat geneticist of CIMMYT the “Comendador” award of the country’s National Order of Merit, highlighting the scientist’s “
exceptional contribution to Paraguayan agriculture and economy.”

A dedicated field specialist, on 2 August 2023 retired CIMMYT wheat geneticist Man Mohan Kohli was recognized as “Comendador” of the Paraguay’s National Order of Merit. In his acceptance speech, Kohli cited the benefits of public-private partnerships to profit farmers and catalyze food grain value chains. (Photo: CIMMYT)

A native of India, where he completed schooling including a Ph.D. in wheat genetics, Kohli worked at CIMMYT during 1971-2004 on topics including spring x winter wheat crosses, resistance in wheat to the rust and other diseases, and the improvement and promotion of triticale, a wheat x rye hybrid.

In 1978 he was assigned to a CIMMYT regional program involving wheat breeding, development and training in collaboration with countries of the Southern Cone of South America, which included facilitating the regional testing and exchange of wheat breeding lines and selection data.

As of 2004, Kohli has been an active part-time consultant with Paraguay’s national wheat program and the Bioceres Group in Argentina.

“Funding ended for CIMMYT wheat research in Paraguay in 1993,” Kohli said. “In 2003 we started direct cooperation again through a joint venture including the Ministry of Agriculture and Livestock, the Paraguayan Chamber of Cereals and Oilseeds Exporters, and CIMMYT.”

“Back in 2003, Paraguay was producing about 320,000 tons of wheat each year and importing over 200,000 tons. Now, yearly output is around 1 million tons and the country exports almost a third of that.”

Kohli said the joint initiative had promoted higher-yielding wheat varieties and farming methods, lowered the costs of agrochemicals, and helped form associations involving farmers and millers—the complete cycle from sowing to marketing for wheat.

Paraguayans eat an average of over 85 kilograms of wheat each year as pasta, bread and other bakery products.

Kohli’s career has led him to work with science luminaries such as M.S. Swaminathan, Glenn Anderson, Joe Rupert, Cal Qualset, Warren Kronstad, Frank Zillinsky, and Sanjaya Rajaram, among others.

“I met CIMMYT scientist and eventual Nobel Peace laureate, Dr. Norman E. Borlaug, in 1967,” Kohli said. “We continued to meet every year on his visits to India and, when I was about to finish my Ph.D. in 1970, he invited me to join the team at CIMMYT.”

“It has been a privilege and honor to have worked alongside many dedicated colleagues at CIMMYT and national programs who have contributed significantly to building research capacities and global food security over the last 50 years. This award is dedicated to all of them and the farmers who have been the primary source of inspiration for our work”.

For more information in Spanish, see:

Paraguay le otorga la Orden Nacional del Mérito a Mohan Kohli, respetada figura del sector agrario

Millets: Climate-resilient crops for food and nutrition security, experts reveal

A recent webinar organized by CIMMYT brought together three experts to discuss the importance of millets as key contributors to improving food and nutrition security and resilience to climate change. Offering a wealth of knowledge and insights, the panel discussion was moderated by Kevin Pixley, director of the Dryland Crops Program (DCP), who led a dynamic and engaging discussion highlighting CIMMYT’s work on dryland crops, the climate resiliency and versatility of millets, and biofortification initiatives.

“Millet improvement programs are central to regional dryland crop improvement networks”, stated Harish Gandhi, breeding lead for DCP. Providing a comprehensive overview of the program, Gandhi emphasized its significance in addressing food and nutrition security as well as climate resilience. “With partners, we are co-designing and co-implementing crop improvement strategies, catalyzing the development of effective and sustainable crop improvement networks”, he said. The dryland crop improvement networks bring together 17 National Agricultural Research and Extension Systems (NARES) in Western, Central, Eastern and Southern Africa working jointly to cultivate the potential and impacts of sorghum, pearl millet, groundnut, cowpea, bean, pigeon pea and chickpea. The program is aligned with CGIAR and the CIMMYT 2030 Strategy to transform agrifood systems through a dense network of impactful partnerships for enhanced sustainability, productivity and profitability.

The climate resiliency and adaptability of millets to arid and semi-arid regions make them a staple for smallholder farmers in Africa. “Millet is a drought-tolerant, climate-resilient crop with profound nutritional benefits. It’s rich in iron, zinc and other essential nutrients, making it a promising food against malnutrition and diet-related diseases”, emphasized Maryam Dawud, project lead at the Lake Chad Research Institute in Nigeria. Highlighting the significance of millets in building resilient agricultural systems, Dawud also explored innovations in millet consumption in diverse food products, including gluten-free options.

Biofortified pearl millets from South Asia and West Africa. (Photo: CIMMYT)

Mahalingam Govindaraj, senior scientist at HarvestPlus-Alliance Bioversity and CIAT, gave insights into crop biofortification, underlining the pressing need for crop nutritional enhancement due to widespread deficiencies, especially in the Global South. He introduced the HarvestPlus developed Biofortification Priority Index (BPI) which enables decision makers to make informed decisions about crop selection, target nutrients and countries. Additionally, Govindaraj highlighted the success of biofortification in enhancing essential micronutrients, especially in pearl millet, and discussed the science, technology and innovations that help to drive the mainstreaming of biofortification within CGIAR and NARES breeding and testing programs.

During the Q&A session, the speakers addressed questions from the audience of more than 150 participants, clarifying misconceptions and expanding on their subjects. Questions from the engaging audience span a wide range of themes and included the significance of different millet types and why they are frequently grouped together; the correlation between zinc and iron content in pearl millets, particularly in relation to their high fiber content; and the strategic approach of dryland crops in supporting capacity building for the NARES, among many other topics.

As the webinar came to a close, it was evident that millets are more than just cereals; they offer a promising solution to a variety of global food system challenges. From their resilience in harsh climates to their rich nutritional value and potential for innovation in various food products, millets stand as a beacon of hope in developing climate-resilient agriculture for a sustainable future.

The webinar is also accessible in Spanish, French and Hindi.

Breeding for the traits of tomorrow

Climate change poses a significant challenge to agricultural production and food security worldwide. “Rising temperatures, shifting weather patterns and more frequent extreme events have already demonstrated their effects on local, regional and global agricultural systems”, says Kevin Pixley, Dryland Crops Program director and Wheat Program director a.i. at CIMMYT. “As such, crop varieties that can withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximizing risk avoidance, productivity and profitability under climate-changed environments.”

In a new study published in Molecular Plant, scientists from CIMMYT, Alliance of Bioversity International and CIAT, the International Institute of Tropical Agriculture (IITA) and national agricultural research programs in Burkina Faso, Ethiopia, Nigeria, Tanzania and Uganda to predict novel traits that might be essential for future varieties of popular crops. Having surveyed nearly 600 agricultural scientists and stakeholders, they identify likely agronomic changes in future cropping systems seeking sustainability, intensification, resilience and productivity under climate change, as well as associated essential and desirable traits, especially those that are not currently prioritized in crop improvement programs.

Focusing on six crops which hold vital importance for African food security and CIMMYT and CGIAR’s mission—maize, sorghum, pearl millet, groundnut, cowpea and common bean—the authors review opportunities for improving future prioritized traits, as well as those they consider ‘blind spots’ among the experts surveyed.

Predicting future essential traits

The results of the study speak to the need for considering cropping systems as central to climate change resilience strategy, as well as the need to reconsider the crop variety traits that will eventually become essential.

Overall, experts who participated in the survey prioritized several future-essential traits that are not already targeted in current breeding programs — mainly water use efficiency in pearl millet, groundnut, and cowpea; adaptation to cropping systems for pearl millet and maize; and suitability for mechanization in groundnut. The survey confirmed that many traits that are already prioritized in current breeding programs will remain essential, which is unsurprising and consistent with other recent findings. While smarter and faster breeding for currently important traits is essential, the authors suggest that failure to anticipate and breed for changing needs and opportunities for novel characteristics in future varieties would be a big mistake, compromising farmers’ resilience, improved livelihood opportunities, and food security in the face of changing climate.

Groundnuts. (Photo: CIMMYT)

Importantly, the authors explain, the predicted future-essential traits include innovative breeding targets that must be prioritized. They point to examples such as improved performance in inter- or relay-crop systems, lower nighttime respiration, improved stover quality, or optimized rhizosphere microbiome, which has benefits for nitrogen, phosphorous and water use efficiency.

The authors emphasize that the greatest challenge to developing crop varieties to win the race between climate change and food security might be innovativeness in defining and boldness to breed for the traits of tomorrow. With this in mind, they outline some of the cutting-edge tools and approaches that can be used to discover, validate and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision and speed.

Read the full study: Redesigning crop varieties to win the race between climate change and food security

Seed fairs set for Mwenezi, Masvingo

CIMMYT holds the fourth edition of seed and mechanization fairs in Mwenezi and Masvingo rural districts, and introduces a groundbreaking mechanization component thanks to the Feed the Future Zimbabwe Mechanization and Extension Activity.

Read the full story.

Canola’s opportunities abound as breeding, uses advance: IRC

The future direction of oilseeds appears to be closely tied to patents around seed technology, as industry and governments plan for a net-zero future. CIMMYT’s germplasm bank is available worldwide and relies heavily on collaborations with public and private entities, where breeding is a critical part of partnerships to further foster thriving markets.

Read the full story.

 

Breaking barriers in agriculture

Nepal’s traditional farming system faces labor shortages, and climate-induced risks to crop production, infrastructure, investment, and agro-advisory tools. This calls for urgently redesigning agriculture practices and addressing the challenges and a noticeable shift in farmers’ interests in farming practices.

The International Water Management Institute and CIMMYT, in collaboration with local governments in Gurbakot Municipality of Surkhet and Haleshi Tuwachung Municipality of Khotang, conducted research on Sustainable Intensification of Mixed Farming System (SI-MFS), the research found a noticeable shift in farmers’ interests in farming practices.

Read the full story.

Farewell to the “Father of the Green Revolution in India”, M.S. Swaminathan

CIMMYT joins with members of the international development community to mourn the passing of renowned wheat geneticist and “Father of the Green Revolution in India,” Monkombu Sambasivan Swaminathan who died on September 27 at the age of 98.

Swaminathan devoted his life to sustainably feeding the world. His vision reshaped India almost overnight to a breadbasket for South Asia, through adoption of innovative high-yield wheat varieties and efficient farming techniques for Indian farmers. TIME magazine acclaimed him as one of the twenty most influential Asians of the 20th Century, making him one of three from India to be named alongside Mahatma Gandhi and Rabindranath Tagore.

M.S. Swaminathan. (Photo: MSSRF)

Swaminathan began his career in the world of academia. After earning his Ph.D. in plant genetics from Cambridge University in 1952, he moved to the United States to continue his research as a professor; however, his home country India eventually called him back home. With the crisis of a rapidly increasing population and low food production, Swaminathan returned to become a scientist at the Indian Agricultural Research Institute (IARI), where he later served as Director from 1961 to 1972.

It was during this time that he began his collaboration scientist Norman Borlaug, future Nobel Prize laureate and soon to be leader of CIMMYT wheat research. Swaminathan saw the value of the Mexican semi-dwarf wheat varieties, which were developed by Borlaug, for wheat production in India and requested that Borlaug send him a range of breeding materials containing the Norin dwarfing genes. The seeds arrived in 1963 along with Borlaug and the pair travelled the wheat-belt of India. Swaminathan arranged multi-location trials for the varieties and established an inter-disciplinary team to adapt the new varieties for Indian conditions.

Norman Borlaug with Swaminathan and Kohli, key promoters of modern varieties, in a seed production plot, India, 1964. (Photo: CIMMYT)

The next step was convincing local farmers to grow the varieties. By 1966, Swaminathan had established 2,000 model farms where farmers could see for themselves the benefits of the new wheats. Swaminathan’s final act in kickstarting the Green Revolution in India was to successfully lobby the Indian government to import 18,000 tons of the Mexican seed.

Just 4 years later India’s wheat harvest had doubled to 20 million tons, ending the nation’s dependence on wheat imports and saving millions from starvation. Swaminathan continued to work with the Indian government to maintain food security and long-term self-sufficiency across the country and the impact of his work earned him the first World Food Prize in 1987.

Swaminathan held a number of leadership roles in world agricultural and conservation organizations over his lifetime, including the FAO council, the International Union for the Conservation of Nature and Natural Resources, the World Wide Fund for Nature (India), and the National Academy of Agricultural Sciences. He also served as Director General of the Indian Council of Agricultural Research (ICAR), and Secretary to the Government of India at the Department of Agricultural Research and Education from 1972-79, as well as Director General of the International Rice Research Institute in the Philippines from 1982-88.

A humanitarian at heart

Not just a scientist, Swaminathan was an advocate and humanitarian. Shortly after winning the World Food Prize, he used the award funds to establish a research center, the M.S. Swaminathan Research Foundation (MSSRF), in Chennai, India. The MSSRF allowed him to work on his other passion, sustainable development, where he coordinated research and action on conservation of endangered species, protection of coastal ecosystems, precision farming, ecotechnology, community education and technical training, and programs for rural internet access.

M.S. Swaminathan won the World Food Prize in 1987. (Photo: World Food Prize)

He has received 84 honorary doctorate degrees from universities around the world and multiple awards including the Padma Shri (1967), Padma Bhushan (1972) and Padma Vibushan (1989) – the fourth, third and second highest civilian awards in India. He has also won numerous international awards including the 1994 UNEP Sasakawa Environment Prize, the UNESCO Gandhi Gold Medal in 1999 and the Franklin D. Roosevelt Four Freedoms Award in 2000.

“He was a real gentleman with a sharp memory,” recalls CIMMYT distinguished scientist Ravi Singh. “I always admired his capacity and his ability to link complicated topics into a nice synthesis.”

He was an inspiration to thousands and will be greatly missed for his scientific brilliance, his pioneering advocacy and humanitarianism, and his life mission to reduce world hunger through improved technology for citizens from all levels of society.

The CIMMYT family extends its deepest condolences to the Swaminathan family.