Skip to main content

Body building for southern Africa’s lean soils: SOFECSA shows the way

CIMMYT E-News, vol 3 no. 5, May 2006

may02Paul Mapfumo throws his fist into the air and intones, “”Pamberi ne kurima! Pasi neNzara!” Shona for “Forward with agriculture! Down with hunger!” This is the greeting every speaker uses before addressing the gathering of farmers attending a field day in Rusape settlement, eastern Zimbabwe. The 40-odd farmers, young and old, men and women, are united in their desire to learn of ways to rebuild the fertility of their farms’ soils, for better maize harvests. And Mapfumo, the newly appointed coordinator, and members of the Soil Fertility Consortium for Southern Africa (SOFECSA) such as CIMMYT, are determined to help them do just that.

The soils at Rusape are derived from the granite ranges that frame the settlement and are shallow, sandy, and acidic. Their poor water retention capacity makes them prone to waterlogging and leaching during good rains, or drying out completely during the hot season. Maize yields have been falling ever since smallholder farmers were resettled there soon after Zimbabwe’s independence in 1982.

Another recent blow to maize farming at Rusape is the promotion of tobacco farming by the Zimbabwe Tobacco Association, through loans for seed and input purchase. Many farmers, frustrated by poor maize yields and the spiraling cost of inputs, have converted their maize farms to tobacco. But even with the money from their tobacco crop, they are finding they still do not have enough to eat. “From whom do you buy maize when everyone is growing tobacco?” asks Vincent Musindikhwa, an extension agent with the Agricultural Research and Extension (AREX) division. “We’ve had a maize shortage for 4-5 years now, and the granaries are empty.”

CIMMYT regional economist Mulugetta Mekuria (left) and SOFECSA coordinator Paul Mapfumo check the status of the soil on a smallholder farm in Zimbabwe.
CIMMYT regional economist Mulugetta Mekuria (left) and SOFECSA coordinator Paul Mapfumo check the status of the soil on a smallholder farm in Zimbabwe.

Soil infertility is a serious and widespread bottleneck to agricultural development and food security in sub-Saharan Africa. Resource-poor farmers are especially vulnerable, because their plots are traditionally the least fertile, and they lack the money or credit to purchase inorganic fertilizers. Therefore, they stand to benefit the most from the various soil-fertility-improving techniques in SOFECA’s Soil Fertility Management Technologies (SFMT) ‘basket’, particularly those that do not involve a cash outlay, according to CIMMYT economist Mulugetta Mekuria, who assists Mapfumo with SOFECSA management.

The “best bet” soil fertility approaches being promoted—so called because they minimize the risk to farmers—were arrived at by SOFECSA’s predecessor project, SoilFertNet. They include manures (leaf litter, farm, and woodland), inorganic fertilizers, lime, and rotation and intercropping with various legumes and green manure crops (soya bean, sugar bean, sun hemp, mucuna, pigeonpea, groundnut, and cowpea).

Legumes, for example, can fix nitrogen from the air and make it available in the soil. Typical farms in the region have between 3 and 15% of land devoted to legumes. The consortium has determined that increasing the intensity of legume cropping in maize-based systems through systematic rotations and intercrops can provide double the level of nitrogen that is typically provided by the limited use of inorganic fertilizers.

SOFECSA is regional partnership with funding from the Rockefeller Foundation and significant in-kind contributions from participants. Its broad membership spans international, national, and regional public and private organizations, including the agriculture ministries of the SADC countries. SOFESCA also works directly with farmers in four southern Africa countries: Zimbabwe, Malawi, Zambia, and Mozambique. Improved maize production is the primary target of consortium’s work, but once soils are fertile, all other crops—and farmers’ lots overall—will benefit. “Our work is a fulcrum for broader NRM problems, and an entry point to solve a spectrum of livelihood issues in the four countries,” says Mapfumo.

Farmers and researchers at the SOFECSA field days engage on topics ranging from crops, soil fertility improvement options, pests, seed, and even markets and pricing. Already, farmers are finding that manuring pays long-lasting dividends. “Manure is a key resource; its effects last up to 3 years,” says Florence Mtambanengwe, a soil scientist at the University of Zimbabwe, one of the SOFECSA partners. The researchers are also finding that liming is a priority for farmers in these acidic soils, and Mapfumo now wants to start discussions involving farmers, researchers, extension workers, and agro-dealers to design a sustainable way to deliver this option to farmers.

By stimulating farmer experimentation and open discussion, SOFECSA is encouraging what Mapfumo terms ”a sense of ownership in the farmers,” and its field sites are taking improved farming practices forward throughout southern Africa, no matter what local language is spoken.

For more information contact Mulugetta Mekuria (m.mekuria@cgiar.org).

Ravi Singh receives prestigious prize

The University of Minnesota recently announced CIMMYT distinguished scientist Ravi Singh as the recipient of its 2010 E.C. Stakman Award.  Established in 1955 by plant pathologist E.C. Stakman, a pioneer in combating wheat diseases, the award is given to individuals for outstanding achievements in plant pathology. Stakman was also a former professor of Norman Borlaug.

“I feel extremely honored and humbled to receive this highly prestigious award,” Singh said. “Dr. Stakman was a mentor to Dr. Borlaug and is largely responsible for sending him to Mexico in 1944. You wonder whether Dr. Stakman knew or even guessed that this decision was going to change history and save millions of lives.”

Singh, who has been with CIMMYT for over 25 years, is world-renowned for his efforts to control wheat rusts and has trained over 400 young scientists. With this award he joins a long list of notable scientists, including I. A. Watson, who was dean of Sydney University’s College of Agriculture and a former pupil of Stakman himself, and 2007’s recipient, the late Bent Skovmand, former head of wheat genetic resources at CIMMYT, director of the Nordic Gene Bank, and key player in the development of Svalbard International Seed Bank.

Congratulations, Ravi!

Global partnership protects Africa’s maize from parasitic plant

CIMMYT E-News, vol 5 no. 9, September 2008

sep01Looks can deceive. Striga, a deadly parasitic plant, produces a lovely flower but sucks the life and yields out of crops across Africa and Asia. A new strain of improved maize seed is helping farmers reclaim their invaded crop lands.

Striga, which typically attacks cereal crops, launches its takeover from the ground up: its deadly seedlings attach to sprouting maize plants and begin siphoning off water and nutrients before either plant emerges from the soil. The parasite also poisons its host, further stifling crop development.

Worse, Striga seems to seek out the farmers least suited to control it.

“Striga thrives in low-fertility soils, which are typically owned by the poorest farmers,” says Fred Kanampiu, CIMMYT maize agronomist. National experts estimate 14% of the maize area in sub-Saharan Africa is infested with Striga, amounting to 3.64 million hectares.

Big benefits seen for Kenya

Work by a multilateral partnership has resulted in a promising Striga control measure that has recently started moving from the laboratory to farmers’ fields. The practice is based on a type of maize with a natural mutation that allows it to resist the chemical imidazolinone—active ingredient in many herbicides. Seeds of this imidazolinone-resistant (IR) maize are coated with a herbicide and, when sown, the coated seed kills sprouting Striga, allowing the crop to flourish.

“Economic studies estimate that if a third of the Striga-infested area were planted with herbicide-coated seed, benefits to farmers in Kenya would be between USD 51 million and 102 million, after production costs,” says Kanampiu, who coordinates the Striga Management Project. “This would be topped off by a yield effect of similar magnitude, because the herbicide resistance comes in seed of improved, locally-adapted varieties.”

A complex, multilateral effort

The idea of using herbicide-resistant maize to control Striga was first proposed by the Weizmann Institute of Science in Israel in the 1990s. CIMMYT worked with that organization, as well as the Kenyan Agricultural Research Institute (KARI), BASF, the African Agricultural Technology Foundation (AATF), non-governmental organizations, and seed companies including Pioneer to develop, evaluate, and spread the practice, particularly among small-scale farmers for whom other control methods, such as spraying, are expensive or impractical. A key part of the work involved developing high-yielding, locally-adapted maize varieties that were also herbicide tolerant. The coating method was fine-tuned by Weizmann and the company Hi-Cap Formulations.

Support for more recent tests and promotion came from the German Federal Ministry for Economic Cooperation and Development (BMZ), the International Fund for Agricultural Development (IFAD), and the Rockefeller Foundation. By 2006 CIMMYT and KARI scientists had provided almost 300 herbicide-tolerant maize varieties for regional testing. Studies in randomly-selected farmers’ fields showed that with 30 grams (a little more than 1 ounce) of imazapyr herbicide per hectare as a seed coat in heavily infested fields, Striga was reduced by 81% and farmers enjoyed a 63% net return.

sept02

Striga meets its match

“The IR-maize reduces the Striga seed bank in the soil, lessening the need for future Striga control measures,” says Gospel Omanya, a Stewardship Manager from AATF, which is leading region-wide public awareness campaigns, field testing, and risk assessment. In addition, smallholder farmers who have tested the new maize and seed-coating practice on their land have obtained as much as a five-fold increase in grain yield.

Positive results like these led to the release of five IR varieties to farmers in Kenya, and nine other varieties are in performance evaluations for eventual release in Tanzania and Uganda.

More than 50,000 packages of IR-maize seed were distributed to farmers at 140 locations in Kenya for comparison with other Striga control practices. AATF surveyed more than 5,000 farmers and found they overwhelming favored the IR-maize seed. At least 10 seed companies, including Western Seed Company in Kenya and Tanseed International in Tanzania, are using IR maize and 60 tons of certified seed were marketed during 2007-2008.

“It was years of intense research and collaboration between partners dedicated to a unified objective, in addition to a willingness to invest human and financial resources, that allowed this concept to become a reality,” says Kanampiu. “The practice offers real, life-changing benefits for subsistence farmers like many in western Kenya, who tend 1.5 hectare plots of mostly maize just to feed their families. Their crops are normally so decimated by Striga that they harvest barely enough.”

Meanwhile, CIMMYT is working with the International Institute of Tropical Agriculture (IITA), a leader in the effort to identify and breed maize strains that contain genetic resistance to Striga. The aim is to offer farmers yet another way of controlling this lovely but lethal pest.

For more information, contact Fred Kanampiu (f.kanampiu@cgiar.org).

New maize hybrid in western Kenya: The farmers speak

CIMMYT E-News, vol 4 no.11, November 2007

nov03Two years after its release by Western Seed Company, WH502, a hybrid maize variety derived from research by CIMMYT and partners in eastern Africa, was being grown by nearly a fifth of the farmers surveyed in western Kenya for its high yields, resistance to lodging, tolerance to low nitrogen soils, and other good qualities.

Socioeconomist Beatrice Salasya, of the Kenya Agricultural Research Institute (KARI), had heard talk that farmers liked the hybrid WH 502, released by Kenya’s Western Seed Company. So she led a survey in the hybrid’s target region, western Kenya, to assess actual levels of adoption and to help breeders better understand the factors that influence a farmer’s choice to use a new variety or not.

Of the 504 households surveyed, 86—or 17%—had adopted the hybrid, which was derived from experimental maize developed as part of CIMMYT’s Africa Maize Stress (AMS) Project.1 “We found that farmers were growing it; although they were fewer than the talk had suggested,” says Salasya, who published her results in a joint KARI-CIMMYT report.2

According to the report, the households adopting the hybrid were characterized by higher levels of education than those that did not; had larger farm sizes and areas under maize, and had more cattle and land under cash crops, such as sugarcane or coffee. “These results are as expected, because more educated farmers have greater exposure to information about technology and better chances of learning about new varieties,” says Salasya. “Similarly, larger farm size and cattle are proxies for wealth, so that wealthier farmers are able to purchase farm inputs, including seed of improved varieties.”

The survey was conducted in an approximately 100,000-hectare area dominated by smallholder, low-input maize cropping. “In the region where the study was done, most farmers have less than two hectares of land,” says Salasya. Maize yields are very low on average, and harvests typically provide enough grain to meet household needs for no more than six months; thereafter, families must purchase more maize or substitutes. Most farmers grow local varieties and recycle their own seed. Few follow practices to replenish soil nutrients.

WH 502 selling points: More than just yield

The adopters liked the high yields of WH 502, according to the survey, and farmers also felt the hybrid was relatively early maturing, although it is not considered early by the breeders who developed it. “High yield, early maturity, and good storability are the three most commonly mentioned characteristics that households look for in a variety,” Salasya says. The study showed that the hybrid’s perceived advantages include resistance to lodging—that is, falling over in high winds—and tolerance to low nitrogen soil conditions. Finally, though the farmers did not mention these traits, WH 502 is resistant to maize streak virus, one of the most common and damaging diseases of the crop in sub-Saharan Africa, and also tolerates the parasitic weed Striga, which can destroy entire crop stands in western Kenya.

Notwithstanding these valuable traits of the hybrid, there is still more work for breeders, particularly on aspects that farmers identified as needing improvement. “The main characteristics of WH 502 that households did not like were poor storability and poor husk cover,” explains Salasya. Poor storability was mentioned as a weakness by 78% of surveyed farmers, and describes the susceptibility of the hybrid, which has a dent-type kernel, to maize weevil, a major pest of stored grain. The most popular local hybrid, H614, for example, features a harder, flint kernel type that better resists such pests. Poor husk cover was cited by 32% of the respondents, and means that the maize ears will be more prone to rotting, if there are heavy rains just before harvest time.

What actually holds back adoption?

Differing from the weaknesses described above, the key reasons cited by survey respondents for not adopting WH 502 were lack of cash to buy seed (36%) and satisfaction with the variety they were growing or not yet being convinced about the advantages of the new hybrid (41%). Most farmers (69%) who knew about WH 502 had heard about the hybrid from neighbors; underlining the significance of farmer-farmer technology transfer. “It’s also important to note that the time between farmers hearing about WH 502 and adopting it is fairly short,” says Salasya. “For example, 52% of all households interviewed had heard about the hybrid in 2005, the year the survey started. It may be necessary to carry out another adoption study when the hybrid has been with farmers for a longer period.”


1The AMS was begun in 1998 by CIMMYT and the International Institute of Tropical Agriculture (IITA) with researchers in the 21 main, maize-growing countries of West, Central, and eastern Africa to develop and deliver stress tolerant maize and related crop management practices. Work was co-supported by BMZ-Germany (2002–2005), IFAD (2004–present), the Rockefeller Foundation (2002-2005) , Sida-Sweden (1998–2001), and UNDP (1998–2001).

2Salasya, B., W. Mwangi, M. Odendo, D. Mwabu, A. Diallo, and O. Odongo. 2006. Factors influencing adoption of stress-tolerant hybrid maize (WH 502) in western Kenya. Nairobi: KARI and CIMMYT.

For more information: Alpha Diallo, Maize breeder (a.o.diallo@cgiar.org)

SIDU + ISO = Quality assured

CIMMYT E-News, vol 4 no. 4, April 2007

apr04The Seed Health Laboratory, part of CIMMYT’s Seed Inspection and Distribution Unit (SIDU) has become the first in the Consultative Group on International Agricultural Research (CGIAR) to gain International Organization for Standardization (ISO) certification

For the past 10 months there has been a little extra edge at the Seed Health Laboratory at the CIMMYT campus in El Batán, Mexico. Everything every researcher and technician did when handling maize and wheat seeds was being scrutinized in the minutest detail by inspection teams from the Mexican Accreditation Entity (EMA) for the ISO. “It was sometimes tense, but I knew our procedures were already at a high level, so I wasn’t really worried,” says Monica Mezzalama, head of SIDU.

The routine shipment and reception of maize and wheat seed samples is the life blood of a global breeding center like CIMMYT. Its crop improvement research means breeding new types of seed that can enhance the livelihoods and food security of farm families in the developing world. You can improve all the seed you want at an experiment station, but eventually you have to ship seed for testing by farmers and national research programs outside of the country where the breeding was done. Also, given that CIMMYT holds the world’s largest collection of maize and wheat germplasm in trust in its genetic resources center, each year it sends hundreds of shipments of seed from those stores to breeders and other researchers from around the world, in response to their requests for samples.

Seed can carry pathogens—viruses, bacteria, or fungi—that reduce the viability of the seed itself or prevent the plants from growing well. When seed is consumed directly as food or feed, seed-borne organisms may cause chemical changes, degrade seed contents, or release powerful toxins that can harm humans and livestock. In the best of cases, food is simply wasted; in the worst, famine or poisoning can result. Certain seed-borne pathogens are endemic to specific areas of the world; great efforts are made to confine them and not allow their spread.

apr05

In 1989 CIMMYT established an independent Seed Health Laboratory and in 2004 the seed inspection and distribution unit (SIDU) to handle the inspection and shipment of seed, essentially ensuring that no seed with disease pathogens on board enters the center’s breeding programs or leaves its premises for other destinations. All CGIAR research centers with crop genetic resource collections produce and distribute seed from breeding trials or from their genebanks. All maintain their own, stringent standards and have shared their experiences. Until recently, seed health standards at CIMMYT were self-imposed, in cooperation with the government of Mexico. The implementation of free trade agreements between Mexico and other countries—particularly the USA and Canada—brought a commitment from Mexico to ensure that all seed originating from the country conformed to international norms.

The ISO is the world’s largest developer of standards. ISO standards have important economic and social repercussions, making a positive difference not just to organizations for whom they solve basic problems in production and distribution, but to society as a whole. Mexico adopted ISO standards for seed movement, to be administered by EMA. For CIMMYT it is the ISO/IEC 17025-2005 General requirements for the competence of testing and calibration laboratories. “We knew all along that our seed health procedures were the best,” says Masa Iwanaga, CIMMYT Director General. “But having the toughest outside inspection in the world confirm what we knew is very gratifying, not only for us but for our partners in more than an hundred countries.”

More information Monica Mezzalana, Head, SIDU (m.mezzalama@cgiar.org).

CIMMYT researchers say participatory research supports their achievements

CIMMYT E-News, vol 3 no. 9, September 2006

sep01Farmers participate in a significant portion of CIMMYT research and technology testing, according to center researchers, and the scientists believe this makes their efforts more effective.

The combined budgets of 19 CIMMYT projects cited by their principal investigators in a 2004 survey as including participatory research components exceeded US$9 million—roughly a quarter of the center’s total budget at the time. “Not all that money was spent on participatory activities, but the figure bespeaks a significant investment,” says Nina Lilja, Agricultural Economist in the on Participatory Research and CGIAR Systemwide Program Gender Analysis for Technology Development and Institutional Innovation (PRGA Program).

This conclusion was one outcome of a study on participatory research at CIMMYT by Lilja and Mauricio Bellon, Director, Diversity for Livelihoods Program, International Plant Genetic Resources Institute (IPGRI), and former Human Ecologist at CIMMYT. “Nearly all respondents felt that the use of participatory approaches had been worthwhile and most believed participatory methods had added value to the research,” says Lilja. “In support of this, many respondents provided evidence of project achievements through use of participatory approaches.”

Participatory research—particularly where farmers help evaluate and promote new crop varieties or farming practices—have been used increasingly in CIMMYT research in recent years. This study represents the first-ever analysis of participatory approaches, from the perspective of center researchers. Through the 2004 survey, the scientists reported on projects they considered as having a participatory component. The range of the study was broad: there was great variation in the types and characteristics of participatory research for which researchers provided information. The survey allowed characterization of the projects, but not further critical analysis of the quality or the appropriateness of the methods applied nor an objective assessment of impacts. Information was received for 19 projects from 18 scientists—15 male, 3 female; 5 social scientists, 13 biophysical scientists. Sixteen of the projects involved farmer-participatory research; three targeted national-program scientists and seed agronomists. Most of the projects covered work in sub-Saharan Africa and Asia; only two had activities in Latin America. About a third of the projects involved participatory testing of crop varieties or production practices; the remainder involved focus group activities or stakeholder meetings.

The issues most frequently addressed via participatory methods related to increasing productivity and understanding farmers’ needs and constraints. “Participatory research at CIMMYT was largely of the functional type—that is, aimed at improving the efficiency and relevance of the research, rather than specifically to empower farmers,” says Bellon. “Also, there was an overall lack of awareness of multiple beneficiaries or of differential effects owing to gender. None of the respondents had been trained previously in participatory methods.”

Two major recommendations of this report for adding value to CIMMYT’s participatory research efforts are to (1) create a more conducive environment within the center for scientists to share experiences and learn from each other, and (2) better document outcomes and impacts of the center’s participatory research.

To view or download a copy of the study, click here.

For further information, contact John Dixon (j.dixon@cgiar.org)

Stem Rust Shows Its Strength

March, 2005

noticias7The greatest pest of crops
-Roman philosopher Pliny, AD 100

Nearly 2000 years after Pliny’s description of stem rusts, plant disease scientist William Wagoire made a startling observation in a Ugandan wheat field. The telltale reddish brown spores he saw on the wheat plants were unmistakable and most unwelcome—they heralded a resurgence of stem rust.

The interim between Pliny and Wagoire’s sightings saw the scourge, which is capable of destroying 100% of a crop, emerge and dissipate countless times at various locations worldwide. Ancient Greeks struggled with it, the Romans sacrificed red animals such as foxes and dogs every spring to appease their rust god Robigus, and the US epidemics of 1916 and 1957 ravaged the nation’s wheat belt. A reprieve came in the 1960s with Norman Borlaug’s semi-dwarf wheat lines, which carried resistance to rust and wiped the worry from farmers’ and scientists’ minds. But now a new strain, called UG99, has reared its head—it is destroying harvests in East Africa and moving fast.

noticias2

Wheat’s nemesis, rust is a fungus that spreads quickly over large areas. Tiny spores readily take to the wind and can travel thousands of kilometers via the atmospheric jet streams. With the proliferation of intensive agricultural systems since the 1970s, the stem rust fungus has greater opportunity to multiply, mutate, and evolve, and this is what we may now be witnessing. Since Wagoire’s discovery in Uganda, it was found in Kenya in 2000, Ethiopia in 2002, and there is no reason to believe it will halt its march.

“Stem rust has been a severe disease in the Indian Subcontinent, and it is only a matter of time until the new strain reaches across the Saudi Arabian peninsula and into the Middle East, South Asia, and eventually East Asia,” says Ravi Singh, CIMMYT wheat pathologist. It could also reach Australia and the Americas in the clothes of people who travel in and out of East Africa.

For those Eastern African farmers who can afford it, fungicides offer a short-term defense. When the disease is in epidemic form, however, greater and greater amounts of chemicals are needed to achieve control. Also, this method exerts a considerable toll on the environment. Breeding for new genetic resistance is the preferred technique, especially given the estimates that half of the world’s bread wheat is susceptible.

“The situation is ready for an explosive disaster,” warns Borlaug, who is leading a campaign for concerted action against the new strain.

Funding is currently being sought for a CIMMYT-led Global Rust Initiative (GRI), promoted by Borlaug and others, which will allow breeders to better monitor the spread of the disease and to develop resistant wheat varieties. There is also a vital need to revive training for rust research, and to support such work at the national level.

For further information, contact Dr. Ravi Singh (r.singh@cgiar.org).

 

Helping to Reinvigorate Agriculture in Afghanistan

CIMMYT E-News, vol 2 no. 8, August 2005
whtVariety
Ghulam m Aqtash, Executive Director, KRA

“The maize brought by CIMMYT and implemented by Kunduz Rehabilitation Agency is doing wonders.”
Years of war (1979-1989) and subsequent internal instability, plus a prolonged drought and an earthquake, devastated Afghanistan’s agricultural infrastructure, production capacity, and agricultural research capabilities. As a result, agricultural production fell to an estimated 45% of 1978 levels, with crop yields declining to about 50% of pre-war levels.
Wheat is the number-one staple crop in Afghanistan, and maize is the third. Together they occupy 80% of the area planted to annual crops in the country. A central aim of CIMMYT in Afghanistan is to make improved, high quality seed of both crops available to farmers, along with appropriate crop management technologies. To date CIMMYT has responded to Afghanistan’s most urgent needs by:

  • Distributing 300 tons of quality seed of the locally-adapted wheat MH-97 to 9,000 farmers in four provinces of Afghanistan.
  • Producing and delivering tons of breeder’s and foundation maize seed.
  • Planting 35 wheat variety trials at 6 sites and 24 maize trials at 8 sites to identify additional materials suited to farmers’ needs.
  • Training Afghan researchers through courses in-country and at CIMMYT in Mexico.

CIMMYT has collaborated with Afghan researchers for over three decades—even during the war. Thanks to the Swedish Committee for Afghanistan and the FAO, Afghan researchers maintained contact with the Turkey-CIMMYT-ICARDA International Winter Wheat Improvement Program (IWWIP) and continued to select the best new wheats from international nurseries. The new seed moved from farmer to farmer; without it, people would have suffered even more hunger and malnutrition than they did. All winter and facultative wheat cultivars currently registered in Afghanistan are derived from those nurseries. In total, several hundred CIMMYT wheat and maize nurseries have been evaluated in Afghanistan over the past 30 years.

Recent Update from the Field

kunduzAn important component of a current ACIAR-funded project (“Wheat and Maize Productivity Improvement in Afghanistan”) has included collaborative work with farmers and non-government and international organizations to verify in farmers’ fields the performance and acceptability of improved wheat and maize varieties. For wheat, the project uses two approaches:

  1. A traditional approach where demonstrations are planted in farmers’ fields and the farmer assessments are recorded informally through topic focused interviews during field days. The varieties included in these demonstrations are released in the country and made available where security allows. Using this approach in Parwan Province, farmers showed a keen interest for the variety ‘Sohla,’ which yielded well and showed superior resistance to diseases like rust. The project is helping to ensure that demand for seed of the variety is met.
  2. A participatory technology development approach implemented by the Aga Khan Foundation brings farmers to research stations to observe yield trials of promising varieties. Farmers identify preferred varieties with red tags; their assessments determine the selection of wheat lines for advancement and subsequent release.

For maize, the project provided non-government organizations with seed of open-pollinated varieties that were distributed to rural communities. Farmer testing and feedback resulted in the identification of two promising varieties: Rampur 9433 and PozaRica 8731. Farmers said the varieties performed well but did not mature quickly enough to fit local cropping systems, so project participants are identifying earlier-maturing varieties. To offer farmers sufficient seed, the project is pursuing two approaches:

  1. A formal scheme whose main partners are the Agricultural Research Institute of Afghanistan (ARIA) and the FAO, through the Improved Seed Enterprise (ISE), and under which breeder’s seed will be offered to recognized producers of certified seed.
  2. Informal farmer-to-farmer distribution systems, which have resulted in up to a 10-fold increase in some areas under improved varieties. For example, the Norwegian Project Office-Rural Rehabilitation Association for Afghanistan (NPO-RRAA) reported that farmers who had planted open-pollinated varieties from the project in 2003 had bartered and sold more than two tons of seed of the varieties in 2004.

afghanFarmers

The project has built human capacity through in-country, technical workshops, five of which have been conducted since 2000 on topics including: agricultural development potential and constraints in specific zones; yellow rust and field scoring for the disease; research methodologies; variety evaluation; and several field days. The workshops have drawn 70 participants, including farmers, workers from non-government organizations, and officers from research stations.

CIMMYT partners in Afghanistan include:
  • The Future Harvest Consortium to Rebuild Agriculture in Afghanistan, funded by USAID and coordinated by ICARDA.
  • AusAID and the Australian Centre for International Agricultural Research (ACIAR).
  • The FAO.
  • The International Fertilizer Development Center (IFDC)-USAID.
  • The French non-government organization, ACTED.
  • The Aga Khan Development Network.
  • Improved Seed Enterprise.
  • The Afghan Ministry of Agriculture.
  • ARIA.

For further information, contact Mahmood Osmanzai (m.osmanzai@cgiar.org).

This write-up draws on contributions from Alma McNab, former CIMMYT science writer and the CIMMYT team in Afghanistan, including team leader Mahmood Osmanzai and former CIMMYT maize agronomist Julien de Meyer. De Meyer manages the Effective Development Group (EDG), a non-government organization based in Australia and has been commissioned by ACIAR to assist the Afghanistan project in data analysis, training, planning workshops, and reporting.

Fellows Program, World Food Prize Laureates Highlight Borlaug’s 90th

March, 2004

borlaug_photo1US Secretary of State Colin Powell paid tribute to Iowa and in particular to one man, known as the father of the Green Revolution, who was born there 90 years ago.

“On behalf of the American people, on behalf of President Bush, we gather to thank heaven for the great state of Iowa,” Powell said at a State Department ceremony to announce the 2004 World Food Prize Laureates on 29 March. “Most of all, we salute Iowa’s own, Norman Borlaug, for creating the World Food Prize and for his own prize winning work against hunger.”

US Secretary of Agriculture Ann Veneman joined Powell in honoring Dr. Borlaug’s 90th birthday in Washington DC. In front of more than 200 guests, including FAO Director General Jacques Diouf, USAID Administrator Andrew Natsios, World Bank Vice President and CGIAR Chair Ian Johnson, CGIAR Director Francisco Reifschneider, and CIMMYT Director General Masa Iwanaga, Veneman described the Norman E. Borlaug Agricultural Science and Technology Fellows Program to be inaugurated by the United States Department of Agriculture.

“Thanks to Dr. Borlaug’s pioneering work in the 1960’s to develop varieties of high-yielding wheat, countless millions of men, women and children, who will never know his name, will never go to bed hungry,” Powell said. “Dr. Borlaug’s scientific breakthroughs have eased needless suffering and saved countless lives. And Dr. Borlaug has been an inspiration to new generations across the globe who have taken up the fight against hunger and have made breakthroughs of their own.”

A tribute to Dr. Borlaug’s individual pursuit of using science and technology to fight hunger, the Fellows Program will focus on strengthening agriculture in developing countries by incorporating and advancing new science and technology. Proposed by Texas A&M University’s Agriculture Program and established by the USDA, it will give scientific training to fellows from developing countries and support exchanges among university faculty, researchers, and policy makers.

borlaug_photo2

The program aims to prepare professionals who want to lead developing countries in agricultural research and education while embracing the values that Dr. Borlaug’s life and work represent. It will be managed by the USDA’s Foreign Agricultural Service, the US Agency for International Development, the US Department of State, land grant colleges, and Texas A&M University, where Dr. Borlaug is professor emeritus.

In 2004, an initial group of fellows from around the world—especially Africa, Latin America, and Asia—will begin training or research programs at US schools, government agencies, private companies, international agricultural research centers such as CIMMYT, and nonprofit institutions. The program will span such diverse areas as biotechnology, food safety, marketing, economics, and natural resource conservation, and it will include studies of policies and regulations to foster the use of new technology.

The US$ 2 million research grant given to the Texas Agriculture Experiment Station by USDA-Cooperative State Research, Education, and Extension Service will be managed by a Consultative Committee, which comprises representatives from universities, foundations, government agencies, and countries affiliated with Dr. Borlaug’s work. This committee will serve as a donor council, advise on the selection and placement of fellows, and evaluate the program.

At the US State Department, Secretary of State Powell named the new World Food Prize Laureates: Yuan Long Ping of China and Monty Jones of Sierra Leone, who have made advances in high-yielding rice.

borlaug_photo3
Borlaug founded the World Food Prize in 1986 to honor people who have made important contributions to improving the world’s food supply. Endowed since 1990 by businessman and philanthropist John Ruan, this international award recognizes achievements of people who have improved the quality, amount, or accessibility of food in the world to advance human development.

World Food Prize Laureate Yuan has revolutionized rice cultivation in China. Known as the Father of Hybrid Rice, he helped cultivate the first successful and widely grown hybrid rice varieties in the world. More than 20 countries have adopted his hybrid rice, and his breeding methods have helped provide food for tens of millions of people.

World Food Prize Laureate Jones, formerly a rice breeder at WARDA—the Africa Rice Center—in Cîte d’Ivoire, successfully made fertile inter-specific African and Asian rice crosses that combined the best characteristics of both gene pools. This “New Rice for Africa,” or NERICA, has higher yields and better agronomic characteristics for African conditions.

Jones and Yuan will receive a $250,000 prize to share in October.

borlaug_photo4

Dr. Borlaug has dedicated 60 years to building knowledge and fostering development in poor countries. Since the mid-1940s, when he arrived in Mexico to work on an agricultural project that was the forerunner of CIMMYT, he has worked tirelessly in the cause of international agricultural research. The innovative wheat varieties that he and his team bred in Mexico in the 1950s enabled India and Pakistan to prevent a massive famine in the mid-1960s and to initiate the Green Revolution. This achievement earned Dr. Borlaug the Nobel Prize in 1970 and created extensive support for a network of international agricultural research centers, known as the Consultative Group on International Agricultural Research (CGIAR).

In order to meet the 1996 World Food Summit goal of cutting in half the number of chronically hungry people by 2015, Powell said the international community must reduce the number of undernourished people by an average rate of 22 million people per year. The current rate is only a decrease of 6 million people per year. Of the more than 800 million severely malnourished people in the world, 80 percent are women and children, he said, but famine is entirely preventable in the 21st century.

More information on the Borlaug Fellows Program: http://www.usda.gov/Newsroom/0125.04.html

More information on the World Food Prize: http://www.worldfoodprize.org

CIMMYT Intensifies Efforts in Sub-Saharan Africa with Livelihoods Program

August, 2004

live2On 22 June 2004, CIMMYT culminated a year of hard work and planning to bring a new focus and intensity to the Center’s efforts in sub-Saharan Africa (SSA) by launching its new African Livelihoods Program (ALP) in Nairobi, Kenya. An extensive strategic planning exercise involving stakeholders, donors, and Center staff in the year before the launch resulted in a restructuring of the Center and its programs along with the creation of the ALP.

CIMMYT is no stranger to Africa. We began working with national research programs in the region even before our official opening in 1966. Today, around 40% of our budget is spent in the continent, representing one of the higher investments across the entire CGIAR. Outside of headquarters, CIMMYT’s largest contingent of international scientists is based in SSA, primarily in eastern and southern Africa. Center scientists based in Mexico provide active support, and a steady stream of African scientists have been training at headquarters.

Early work focused on the development of improved, higher yielding maize varieties adapted to African agroecosystems. Over time, the mission broadened to include the development of stress and disease tolerant varieties, crop management responses to declining soil fertility, overcoming the parasitic weed Striga, strengthening seed industry and distribution networks, and socioeconomic diagnostic and impact studies.

CIMMYT’s research foci in SSA, which have largely been on target, will not change drastically under the new African Livelihoods Program. However, CIMMYT is going to increase the emphasis on improving rural livelihoods through specific maize system interventions. That could include better nutrition through quality protein maize, higher profitability through intercropping/multicropping systems and access to technology and knowledge, or better and more sustainable land use through conservation agriculture techniques.

africalivThis new course relies on an integrated approach based on teams from diverse fields that bring their expertise to bear on specific problems. Projects will go beyond just the development of variety and technology to explore how to reach farmers with these improvements. CIMMYT cannot do this alone, and there will be a new focus on effective partnerships and networks to “deliver the goods” to farmers.

On hand for the launching event were Kenya’s Minister of Agriculture, Hon. Kipruto Arap Kirwa; the Permanent Secretary of the Ministry of Agriculture, Mr. Joseph Kinyua; CIMMYT Director General, Masa Iwanaga; Director of the Kenya Agricultural Research Institute, Dr. Romano Kiome; the ALP director, Shivaji Pandey; and other distinguished guests.

Activities and Impact Highlights

High yielding hybrids and open pollinated varieties (OPVs), and promotion of varieties resistant to maize streak virus, gray leaf spot, and E. turcicum.

Since the mid-1960s, more than 150 hybrids and open pollinated varieties (OPV) released and planted on more than two million hectares in SSA contain CIMMYT germplasm. About 55% of the disease resistant varieties released since 1988 have contained CIMMYT germplasm.

Abiotic stress tolerant maize varieties

SSA farmers say drought is one of their main constraints. In response, CIMMYT is trying to move stress tolerance into OPVs and hybrids. Seed companies and farming communities are producing seed, with deployment exceeding 250,000 hectares in southern Africa. Sales of these varieties have quadrupled over each of the past four years.

Insect Resistant Maize

Conventionally bred maize varieties with resistance to stem boring insects have entered Kenya’s National Performance Trials. Transgenic Bt maize is charting new ground and is expected in farmers’ fields in 2008. “Firsts” produced by the Insect Resistant Maize in Africa (IRMA) project include the development of insect resistance management strategies for smallholder farmers, extensive pre-release studies on non-target organisms in African cropping systems, marker-free Bt constructs for the African varieties, and construction of the only biosafety greenhouse in SSA outside of South Africa.

Striga resistance and control

Striga inflicts roughly US$2.7 billion in maize losses in SSA annually. CIMMYT and partners have developed a technology based on coating seeds with a herbicide that offers Striga resistance. More than 130 OPVs, inbreds, and hybrids have been converted to herbicide resistance. Five hybrids were nominated for the Kenya National Performance Trials and three have been pre-released.

Quality Protein Maize (QPM)

QPM provides more complete dietary protein, which improves people’s nutrition and also their incomes through its use as animal feed. QPM is rapidly being moved into locally adapted varieties in SSA for distribution to farmers. Uganda has released a QPM OPV (Nalongo) that garnered the interest of the World Food Program, which is encouraging local farmers to grow it for emergency food rations.

Regional approach to soil fertility research and diffusion

CIMMYT has served a prominent coordinating and facilitating role in the formation of the SoilFertNet and the soon to be launched Soil Fertility Consortium, which will serve four countries directly in southern Africa and other countries indirectly through the ECAMAW network.

Training and capacity building

Between 1998 and 2004, CIMMYT either sponsored or coordinated more than 150 training events ranging from PhD committee membership, to GMO awareness programs for parliamentarians, to farmer participatory research workshops. Participants from the region took advantage of about 2,500 individual training opportunities.

Socioeconomics

The CIMMYT Economics program has been active in Africa since the 1970s. It has been instrumental in developing the Farming Systems Research approach, which has been a key link in bringing agricultural research closer to farmers. CIMMYT economists in East Africa organized farm surveys, including 22 adoption studies, which provided the basis for most of the quantitative analysis on maize systems we have today.

Mother-Baby participatory research and diffusion

Participatory research has emerged as a major tenet of CIMMYT’s research efforts. This has been married with the need to improve technology transfer to farmers in the form of the mother-baby trials—a farmer-centered approach promoted and constantly refined by CIMMYT scientists in southern and eastern Africa. Mother-Baby trials, with the involvement of more than 100 partner organizations, are today grown in 12 African countries.

For more information: Dr. Shivaji Pandey

40th Anniversary Celebration of the CGIAR – Program

 Preston Auditorium, Wednesday, July 6, 2011, 9:15 a.m.
DRAFT AGENDA

Participants:

The Preston Auditorium is expected to be filled.  The audience will include CGIAR Consortium and Fund Council representatives, Directors General of Centers, agricultural research partners, IFPRI Center staff, past CGIAR chairs, World Bank staff, and other external guests.  In addition, the event will be webcast for the benefit of staff at all CGIAR Centers and other partners.

Mr. Zoellick, Ms. Andersen, Mr. Shah, and Mr. Castañeda, will be on stage in the Preston Auditorium, with the podium stage right. A backdrop will feature an image of the 40th anniversary of CGIAR.

Overall Objectives:

  • To celebrate CGIAR’s tremendous achievements in agricultural research over the past 40 years
  • To showcase, through the launch of a CGIAR Research Program (CRP), how the CGIAR has repositioned itself to continue to address emerging challenges for the next 40 years
  • To reiterate the World Bank’s and other donors’/partners’ support to the CGIAR in its drive to enhance food security

 

 

9:15 a.m. Roger V. Morier – Call to order and introduces Inger
9:15 a.m. Inger Andersen: Welcome remarks

  • Introduction of other platform personnel and introduction of each as they speak
  • Introduction of the short video preceding Mr. Zoellick’s remarks.
9:20 a.m. Video Presentation – The Story of the Start of the CGIAR, as told by Norman Borlaug and Robert McNamara
9:30 a.m. Inger Andersen: Invitation to Mr. Zoellick to make remarks (approximately 10 minutes)

  • Focus on state of food security, role of WB and challenge to CG
9:40 a.m. Rajiv Shah, Administrator, USAID invited to make remarks (TBC)

  • On behalf of developed country partners of the CG
  • USAID’s efforts re: food security
9:50 a.m. Mariano Ruiz-Funes, Deputy Secretary of Agriculture, Mexico, invited to make brief remarks

  • On behalf of the developing country partners of the CGIAR
  • Mexico’s commitment to combating food insecurity
9:55 a.m. Presentation by the CGIAR Fund Office to Mr. Zoellick, Mr. Shah, and Mr. Castañeda of a book produced for the 40th anniversary of the CGIAR
10:00 a.m. Mr. Zoellick’s departure from Preston Auditorium. Platform personnel change
Launch of MAIZE CRP
10:05 a.m. Introductory remarks by Inger Andersen, Chair, Fund Council

  • Will emphasize the role and responsibility of donors in new compact
10:15 a.m. Remarks by Carlos Perez del Castillo, Board Chair, Consortium of International Agricultural Research Centers

  • Introduction of other platform personnel and introduction of each as they speak
  • Introduction of the exciting new CGIAR Research Program portfolio and makes the link to MAIZE
10:25 a.m. Video: African farmer and Asian farmer

  • Will emphasize perspective of farmers in developing countries in regard to food security issues
  • A view from the ground
10:35 a.m. Remarks by Ephraim Mukisira, Director, KARI

  • Will emphasize the need for cooperation to address complex challenges of food security
  • No one organization can do it alone
10:45 a.m. Launch of MAIZE Program, Tom Lumpkin, DG, CIMMYT

  • Will explain the composition of the plan including how it was developed, how it will be managed, and what the overall goals are
  • Will emphasize the need for cooperation and commitment over a long period of time
  • Will emphasize the immense challenge – but we can address it if we act now
10:55 a.m. Closing Remarks by Jonathan Wadsworth, Executive Secretary, Fund Council and Head of Fund Office

New Borlaug Institute for South Asia fosters improved farming for food security

CIMMYT visit in Bangladesh– Based in three key agricultural states of India

– Builds on legacy of Nobel Peace Prize Laureate Norman Borlaug

The Borlaug Institute for South Asia (BISA) was officially launched on Wednesday, 5 October 2011, at the A.P. Shinde Symposium Hall, NASC Complex in New Delhi, India.

The event commenced with a welcome by the Secretary, Department of Agricultural Research and Education (DARE) and Director General of ICAR, S. Ayyappan. The Agriculture Minister of Madhya Pradesh, Ramkrishna Kusmaria; Punjab Agriculture Minister, S. Sucha Singh Langah; and the Union Minister for Agriculture and Food Processing Industry, Sharad Pawar, accompanied by Pratibha Pawar, delivered speeches at the event. Also in attendance was Mr. Rajiv Mehrishi, Secretary of ICAR.

The three agricultural ministers of the states that will be hosting BISA facilities delivered speeches in recognition of the important role which BISA will play in improving food security not only in their own states, but throughout the whole of South Asia. Mr. Pawar highlighted the concerns of population growth both globally and especially in South Asia, in addition to rising food prices and unrest caused by food insecurity. He stated that “it would not be an overstatement to say that Norman Borlaug is a household name in India.” On a personal level, he also recalled his interaction with Dr. Borlaug in India in the 1960s.

BISA will have centers in Ludhiana in Punjab, Pusa in Bihar, and Jabalpur in Madhya Pradesh. Each of the states contains varied agro-ecological zones allowing for testing a variety of maize and wheat cultivars suited to the equally varied environments of South Asia.

Dr. Thomas Lumpkin, CIMMYT Director General, delivered the closing remarks, reminding the audience of the challenges of global food security as well as the humanitarian crisis in the Horn of Africa. He also highlighted the support of the Mexican government and CIMMYT’s role in facilitating and promoting cooperation through its centers in India, Mexico, and Africa. Dr. Lumpkin concluded his speech stating that “CIMMYT has been in India for 50 years. It’s time we laid down some roots.”

The official opening ceremony was marked by a cultural event featuring classical Indian dancing including choreographical styles from all three states. In addition to CIMMYT-India staff and speakers, also present at the launching ceremony were the management committee of CIMMYT and its Board of Trustees. The launching ceremony was attended by representatives from CIMMYT’s sister institutions ILRI, IRRI, and Bioversity, as well as by the Allan Mustard Institute of the US Dept. of Agriculture and the private sector. The event was closed by a dinner and a speech by the Board of Trustees Chair, Sara Boettiger.

BISA was officially approved by India’s Union Cabinet, based on a proposal by the Ministry of Agriculture, Department of Agricultural Research and Education on 30 September. In a press release issued by the government of India (http://pib.nic.in/newsite/PrintRelease.aspx?relid=76358), the approval of BISA is described as follows: “The establishment of BISA in India will enable India to harness the best of international science, in meeting food security challenges. India would be able to rapidly and effectively absorb the research output of BISA thus benefiting farmers of the country.”

The Borlaug Institute of South Asia was conferred international status as detailed in clause 3 of the United Nations (Privileges and Immunities) Act of 1947. The Department of Agricultural Research and Education (DARE), on behalf of the government of India, will be authorized in all matters regarding the establishment of the institute.

Read more:

India and CIMMYT agree to establish new research institute for South Asia

Borlaug Institute South Asia to address food security

Big Bang from World Wheat Breeding Bucks

CIMMYT E-News, vol 3 no. 5, May 2006

may01Global, collaborative wheat research brings enormous gains for developing country farmers, particularly in more marginal environments, according to an article in the Centenary Review of the Journal of Agricultural Science.

Forty years of worldwide, publicly-funded collaborative research to improve the yield potential and stress tolerance of wheat, along with efforts to extend the outputs of this science in developing countries, has lowered food costs for the poor, allowed food supplies to meet the demands of rising populations, brought harvest surpluses worth US$ 3-6 billion each year to farmers, and saved 1.8 billion hectares of natural ecosystems from conversion to farmland, to name a few results.

These and other findings appear in a recent review article by CIMMYT wheat physiologist Matthew Reynolds and 1970 Nobel Peace Laureate Norman E. Borlaug—one of a series of papers to celebrate 100 years of publishing by the Journal of Agricultural Science. The review traces how international wheat breeding over the last five decades has evolved into “
a global agricultural strategic and trouble-shooting network that plays a central role in providing food security in the developing world.” Led initially by CIMMYT and later with the partnership of the International Centre for Agricultural Research in the Dry Areas (ICARDA), the network for wheat and related crops provides a forum “
whereby institutional linkages are fostered and maintained globally, not only through exchange of germplasm, but also through knowledge sharing, training programmes, international visits and development of extended partnerships
” According to the article, centers like CIMMYT and ICARDA have also played a key role in collecting and conserving the landraces and other genetic resources that improved varieties have replaced, making those resources available worldwide and, more recently, ensuring that useful diversity is rechanneled into improved cultivars.

“Given its importance and accomplishments, it’s somewhat surprising that global wheat breeding struggles to find investors,” says Reynolds. Also noted by Reynolds and Borlaug was the fact that most of the increased area of adoption of improved wheat varieties since 1977 has occurred in more marginal, rainfed areas, rather than favored irrigated farmlands, and that yield increases from these varieties during 1979-95 were greater in semi-arid and heat-stressed environments (2-3% per year) than in irrigated areas (just over 1% per year).

“Considering the issue of food security and its positive influence on the livelihoods of poor people, it’s clear that publicly-funded international centers provide a continuity in agricultural development that would otherwise be lacking for many countries where economic, political, and social instability are commonplace,” the authors say.

A companion Centenary Review by Reynolds and Borlaug discusses the future of collaborative wheat improvement, in which, according to Reynolds, researchers will apply technology-assisted methodologies and powerful information tools to identify and breed value-added traits into wheat varieties. “At the same time, however, we’ll continue to seek farmer input to increase the amount of useful genetic diversity in the field and the local adaptation of varieties, as well as in testing and promoting conservation agriculture practices.”

Regarding the future, the authors say: “Policy-makers need to balance the appeal of high-risk investments in the latest technologies with the realities of resource-poor farmers, for whom tried and tested technologies offer immediate and reliable solutions.”

To access abstracts or full-text versions of the articles:

Impacts of breeding on international collaborative wheat research

Applying innovations and new technologies for international collaborative wheat improvement

For more information contact Mathew Reynolds (m.reynolds@cgiar.org).

Willkommen, Herr BundesprÀsident!

alemania-300x227The long-standing and fruitful relationship between Germany and CIMMYT received a boost on 01 May 2011 when, as part of an official tour of Latin America, the President of the Federal Republic of Germany, Christian Wulff, visited CIMMYT headquarters to learn more of the center’s work and discuss strengthened partnerships. President Wulff was accompanied by his wife, Bettina, and nearly 60 distinguished guests including German vice ministers and members of parliament, embassy personnel, and business and media representatives. Greeting the guests were CIMMYT Director General Tom Lumpkin and several of the center’s German and German-speaking staff.

After touring the main exhibition hall showcasing Dr. Norman Borlaug’s achievements and contributions to agricultural development, including his Nobel Prize of 1970 and the Aztec Eagle of the same year from Mexico, the entourage attended a presentation by Hans-Joachim Braun, Director of CIMMYT’s Global Wheat Program. The talk addressed food security and related constraints—climate change, the rising demand for grains, the increasing scarcity of resources like land, water, and fertilizer—as well as CIMMYT’s work in the developing world and its relationship with Germany, a long-term and significant supporter of the center. To name just a few examples, German contributions have funded work on stress tolerant maize for Africa, a regional wheat network for Central Asia, and wheat pathology research for South Asia. German staff at CIMMYT and our partnerships with German universities and institutes have been of enormous value in getting improved technology to farmers.

The whirlwind tour then moved to the seed bank, with exhibitions of maize and wheat genetic resources outside and a visit inside to the upper seed storage chamber. In an impromptu closing statement, President Wulff thanked CIMMYT and described his positive impression of the visit and Braun’s presentation, which he called one of the clearest and most fact-based he had ever heard. Reports on the visit in the German media have referred to CIMMYT as a “highly-regarded research center.”

In addition to Lumpkin and Braun, CIMMYT staff interacting with the guests included Marianne BĂ€nziger, deputy director general, research and partnerships; Scott Ferguson, deputy director general, corporate services; Peter Wenzl, head of the crops research informatics lab; Susanne Dreisigacker, molecular biologist and head of marker applications in wheat; GIS expert Kai Sonder; agricultural economist Tina Beuchelt; Marc Rojas, coordinator of the International Strategy for Maize Improvement; and Petr Kosina, assisting with the event management.

Click here to view/hear


Improved maize varieties and partnerships welcomed in Bhutan

CIMMYT E-News, vol 5 no. 11, November 2008

nov02Sandwiched between China and India, the Kingdom of Bhutan is a small country that relies on maize in a big way. But maize yields are typically low due to crop diseases, drought, and poor access to seed of improved varieties, among other reasons. CIMMYT is committed to improving Bhutan’s food security by providing high-yielding, pest-resistant maize varieties to farmers and capacity-building for local scientists.

“If there is no maize there is nothing to eat,” says Mr. S. Naitein, who farms maize on half a hectare of land in Bhutan. But it’s not easy to grow, he says, citing challenges such as animals (monkeys and wild boars), insects, poor soil fertility, drought, poor access to improved seed varieties, and crop diseases like gray leaf spot (GLS) and turcicum leaf blight (TLB).

But since planting Yangtsipa—an improved maize variety derived from Suwan-1, a variety introduced from CIMMYT’s former regional maize program in Thailand—Naitein has seen a real improvement in his maize yields. The local maize variety yielded 1,700 kilograms per hectare, whereas Yangtsipa gave him 2,400 kilograms per hectare, a 40% yield increase.

“It’s no wonder that Yangtsipa is by far the most popular improved variety among Bhutanese farmers,” says Guillermo Ortiz-Ferrara, CIMMYT regional cereal breeder posted in Nepal. “Nonetheless, many local varieties of maize still occupy large areas of the country and don’t yield well.”

Maize is a staple food in Bhutan. Many people eat Tengma (pounded maize) as a snack with a cup of tea and Kharang (maize grits) are also popular. “Among the food crops, maize plays a critical role in household food security, especially for the poor,” says Ortiz-Ferrara. About 38% of the rural Bhutanese population lives below the poverty line and some 37,000 households cultivate maize. It’s estimated that 80% of this maize is consumed at the household level, according to Bhutan’s Renewable Natural Resources Research Center (RNRRC).

Leaf us alone: CIMMYT maize varieties help combat foliar diseases

Many farmers in Bhutan have been struggling with crop diseases that cut maize yields. “The recent outbreak of gray leaf spot and turcicum leaf blight affected 4,193 households and destroyed over 1,940 hectares of maize crop,” says Thakur Prasad Tiwari, agronomist with CIMMYT-Nepal. He estimates that maize is grown on 31,160 hectares in the country.

Gray leaf spot is a devastating leaf disease that is spreading fast in the hills of Bhutan and Nepal. To deal with this threat, CIMMYT sent more than 75 maize varieties with possible resistance to GLS and TLB to Bhutan in 2007. Tapping into the resources of its global network of research stations, CIMMYT sent seed from Colombia, Zimbabwe, and Mexico that was planted in GLS and TLB ‘hot spot’ locations in the country.

Ortiz-Ferrara and Tiwari then worked with Tirtha Katwal, national maize coordinator-Bhutan, and his team to evaluate these materials for their resistance.

“Together we identified the top performing lines for gray leaf spot and turcicum leaf blight which will be excellent candidates for Bhutan’s maize breeding program,” says Ortiz-Ferrara. “We are now combining their disease resistance with Yangtsipa, because we know it is high-yielding and well-adapted to Bhutan.”

Kevin Pixley, associate director of CIMMYT’s Global Maize Program, helped to develop a detailed breeding scheme or work plan for Bhutan’s national GLS breeding program. “We want to provide capacity-building for local maize scientists so they themselves can identify and breed varieties that show resistance to crop diseases,” he says.

“We feel more confident in moving forward with the next steps in our breeding program,” said Katwal. He and his team also attended a training course on seed production, de-tasselling, and pollination given by Dr. K.K. Lal, former CIMMYT maize trainee and former chief of the Seed Quality Control Center at the Ministry of Agriculture and Cooperatives (MoAC) in Nepal.

nov03

That’s what friends are for: CIMMYT, Nepal, and Bhutan collaboration

In 2001, Bhutan began collaborating on maize research with CIMMYT-Nepal, the National Maize Research Program (NMRP) of Nepal, and the Hill Maize Research project (HMRP) funded by the Swiss Agency for Development and Cooperation (SDC) in Nepal. The terrain and agro-climatic conditions of Bhutan and the Nepalese highland are similar, meaning that technologies adapted for Nepal will likely work well in neighboring Bhutan.

CIMMYT aims to facilitate regional and national partnerships that benefit farmers. For instance, during the past 7 years CIMMYT-Nepal has worked with NMRP and RNRRP to introduce 12 open-pollinated varieties (OPVs) to Bhutan. These modern varieties yield more than the local varieties whose seed farmers save to sow from year to year. Included in these 12 OPVs were several quality protein maize (QPM) varieties; these have nearly twice as much usable protein as other traditional varieties of maize.

nov04“Our CIMMYT office in Nepal has assisted Bhutan with maize and wheat genetic material, technical backstopping, training, visiting scientist exchange, and in identifying key consultants on research topics such as grey leaf spot and seed production,” says Tiwari.

Simply put, CIMMYT has useful contacts. For example, at the request of Bhutan’s Renewable Natural Resources Research Center (RNRRC), CIMMYT-Nepal put forward Dr. Carlos De Leon, former CIMMYT regional maize pathologist, to conduct a course on identifying and controlling maize diseases in February 2007. In September 2008, CIMMYT and HMRP also recommended two researchers (Dr. K.B. Koirala and Mr. Govinda K.C.) from Nepal’s NMRP to give a course on farmer participatory research that has been successful in the dissemination of new technologies.

“Ultimately, our goal is to improve the food security and livelihood of rural households through increased productivity and sustainability of the maize-based cropping system,” says Thakur Prasad Tiwari.

For information: Guillermo Ortiz-Ferrara, cereal breeder, CIMMYT-Nepal (g.ortiz-ferrara@cgiar.org) or Thakur Prasad Tiwari, agronomist, CIMMYT-Nepal (tptiwari@mos.com.np)