Skip to main content

CIMMYT Intensifies Efforts in Sub-Saharan Africa with Livelihoods Program

August, 2004

live2On 22 June 2004, CIMMYT culminated a year of hard work and planning to bring a new focus and intensity to the Center’s efforts in sub-Saharan Africa (SSA) by launching its new African Livelihoods Program (ALP) in Nairobi, Kenya. An extensive strategic planning exercise involving stakeholders, donors, and Center staff in the year before the launch resulted in a restructuring of the Center and its programs along with the creation of the ALP.

CIMMYT is no stranger to Africa. We began working with national research programs in the region even before our official opening in 1966. Today, around 40% of our budget is spent in the continent, representing one of the higher investments across the entire CGIAR. Outside of headquarters, CIMMYT’s largest contingent of international scientists is based in SSA, primarily in eastern and southern Africa. Center scientists based in Mexico provide active support, and a steady stream of African scientists have been training at headquarters.

Early work focused on the development of improved, higher yielding maize varieties adapted to African agroecosystems. Over time, the mission broadened to include the development of stress and disease tolerant varieties, crop management responses to declining soil fertility, overcoming the parasitic weed Striga, strengthening seed industry and distribution networks, and socioeconomic diagnostic and impact studies.

CIMMYT’s research foci in SSA, which have largely been on target, will not change drastically under the new African Livelihoods Program. However, CIMMYT is going to increase the emphasis on improving rural livelihoods through specific maize system interventions. That could include better nutrition through quality protein maize, higher profitability through intercropping/multicropping systems and access to technology and knowledge, or better and more sustainable land use through conservation agriculture techniques.

africalivThis new course relies on an integrated approach based on teams from diverse fields that bring their expertise to bear on specific problems. Projects will go beyond just the development of variety and technology to explore how to reach farmers with these improvements. CIMMYT cannot do this alone, and there will be a new focus on effective partnerships and networks to “deliver the goods” to farmers.

On hand for the launching event were Kenya’s Minister of Agriculture, Hon. Kipruto Arap Kirwa; the Permanent Secretary of the Ministry of Agriculture, Mr. Joseph Kinyua; CIMMYT Director General, Masa Iwanaga; Director of the Kenya Agricultural Research Institute, Dr. Romano Kiome; the ALP director, Shivaji Pandey; and other distinguished guests.

Activities and Impact Highlights

High yielding hybrids and open pollinated varieties (OPVs), and promotion of varieties resistant to maize streak virus, gray leaf spot, and E. turcicum.

Since the mid-1960s, more than 150 hybrids and open pollinated varieties (OPV) released and planted on more than two million hectares in SSA contain CIMMYT germplasm. About 55% of the disease resistant varieties released since 1988 have contained CIMMYT germplasm.

Abiotic stress tolerant maize varieties

SSA farmers say drought is one of their main constraints. In response, CIMMYT is trying to move stress tolerance into OPVs and hybrids. Seed companies and farming communities are producing seed, with deployment exceeding 250,000 hectares in southern Africa. Sales of these varieties have quadrupled over each of the past four years.

Insect Resistant Maize

Conventionally bred maize varieties with resistance to stem boring insects have entered Kenya’s National Performance Trials. Transgenic Bt maize is charting new ground and is expected in farmers’ fields in 2008. “Firsts” produced by the Insect Resistant Maize in Africa (IRMA) project include the development of insect resistance management strategies for smallholder farmers, extensive pre-release studies on non-target organisms in African cropping systems, marker-free Bt constructs for the African varieties, and construction of the only biosafety greenhouse in SSA outside of South Africa.

Striga resistance and control

Striga inflicts roughly US$2.7 billion in maize losses in SSA annually. CIMMYT and partners have developed a technology based on coating seeds with a herbicide that offers Striga resistance. More than 130 OPVs, inbreds, and hybrids have been converted to herbicide resistance. Five hybrids were nominated for the Kenya National Performance Trials and three have been pre-released.

Quality Protein Maize (QPM)

QPM provides more complete dietary protein, which improves people’s nutrition and also their incomes through its use as animal feed. QPM is rapidly being moved into locally adapted varieties in SSA for distribution to farmers. Uganda has released a QPM OPV (Nalongo) that garnered the interest of the World Food Program, which is encouraging local farmers to grow it for emergency food rations.

Regional approach to soil fertility research and diffusion

CIMMYT has served a prominent coordinating and facilitating role in the formation of the SoilFertNet and the soon to be launched Soil Fertility Consortium, which will serve four countries directly in southern Africa and other countries indirectly through the ECAMAW network.

Training and capacity building

Between 1998 and 2004, CIMMYT either sponsored or coordinated more than 150 training events ranging from PhD committee membership, to GMO awareness programs for parliamentarians, to farmer participatory research workshops. Participants from the region took advantage of about 2,500 individual training opportunities.

Socioeconomics

The CIMMYT Economics program has been active in Africa since the 1970s. It has been instrumental in developing the Farming Systems Research approach, which has been a key link in bringing agricultural research closer to farmers. CIMMYT economists in East Africa organized farm surveys, including 22 adoption studies, which provided the basis for most of the quantitative analysis on maize systems we have today.

Mother-Baby participatory research and diffusion

Participatory research has emerged as a major tenet of CIMMYT’s research efforts. This has been married with the need to improve technology transfer to farmers in the form of the mother-baby trials—a farmer-centered approach promoted and constantly refined by CIMMYT scientists in southern and eastern Africa. Mother-Baby trials, with the involvement of more than 100 partner organizations, are today grown in 12 African countries.

For more information: Dr. Shivaji Pandey

40th Anniversary Celebration of the CGIAR – Program

 Preston Auditorium, Wednesday, July 6, 2011, 9:15 a.m.
DRAFT AGENDA

Participants:

The Preston Auditorium is expected to be filled.  The audience will include CGIAR Consortium and Fund Council representatives, Directors General of Centers, agricultural research partners, IFPRI Center staff, past CGIAR chairs, World Bank staff, and other external guests.  In addition, the event will be webcast for the benefit of staff at all CGIAR Centers and other partners.

Mr. Zoellick, Ms. Andersen, Mr. Shah, and Mr. Castañeda, will be on stage in the Preston Auditorium, with the podium stage right. A backdrop will feature an image of the 40th anniversary of CGIAR.

Overall Objectives:

  • To celebrate CGIAR’s tremendous achievements in agricultural research over the past 40 years
  • To showcase, through the launch of a CGIAR Research Program (CRP), how the CGIAR has repositioned itself to continue to address emerging challenges for the next 40 years
  • To reiterate the World Bank’s and other donors’/partners’ support to the CGIAR in its drive to enhance food security

 

 

9:15 a.m. Roger V. Morier – Call to order and introduces Inger
9:15 a.m. Inger Andersen: Welcome remarks

  • Introduction of other platform personnel and introduction of each as they speak
  • Introduction of the short video preceding Mr. Zoellick’s remarks.
9:20 a.m. Video Presentation – The Story of the Start of the CGIAR, as told by Norman Borlaug and Robert McNamara
9:30 a.m. Inger Andersen: Invitation to Mr. Zoellick to make remarks (approximately 10 minutes)

  • Focus on state of food security, role of WB and challenge to CG
9:40 a.m. Rajiv Shah, Administrator, USAID invited to make remarks (TBC)

  • On behalf of developed country partners of the CG
  • USAID’s efforts re: food security
9:50 a.m. Mariano Ruiz-Funes, Deputy Secretary of Agriculture, Mexico, invited to make brief remarks

  • On behalf of the developing country partners of the CGIAR
  • Mexico’s commitment to combating food insecurity
9:55 a.m. Presentation by the CGIAR Fund Office to Mr. Zoellick, Mr. Shah, and Mr. Castañeda of a book produced for the 40th anniversary of the CGIAR
10:00 a.m. Mr. Zoellick’s departure from Preston Auditorium. Platform personnel change
Launch of MAIZE CRP
10:05 a.m. Introductory remarks by Inger Andersen, Chair, Fund Council

  • Will emphasize the role and responsibility of donors in new compact
10:15 a.m. Remarks by Carlos Perez del Castillo, Board Chair, Consortium of International Agricultural Research Centers

  • Introduction of other platform personnel and introduction of each as they speak
  • Introduction of the exciting new CGIAR Research Program portfolio and makes the link to MAIZE
10:25 a.m. Video: African farmer and Asian farmer

  • Will emphasize perspective of farmers in developing countries in regard to food security issues
  • A view from the ground
10:35 a.m. Remarks by Ephraim Mukisira, Director, KARI

  • Will emphasize the need for cooperation to address complex challenges of food security
  • No one organization can do it alone
10:45 a.m. Launch of MAIZE Program, Tom Lumpkin, DG, CIMMYT

  • Will explain the composition of the plan including how it was developed, how it will be managed, and what the overall goals are
  • Will emphasize the need for cooperation and commitment over a long period of time
  • Will emphasize the immense challenge – but we can address it if we act now
10:55 a.m. Closing Remarks by Jonathan Wadsworth, Executive Secretary, Fund Council and Head of Fund Office

New Borlaug Institute for South Asia fosters improved farming for food security

CIMMYT visit in Bangladesh– Based in three key agricultural states of India

– Builds on legacy of Nobel Peace Prize Laureate Norman Borlaug

The Borlaug Institute for South Asia (BISA) was officially launched on Wednesday, 5 October 2011, at the A.P. Shinde Symposium Hall, NASC Complex in New Delhi, India.

The event commenced with a welcome by the Secretary, Department of Agricultural Research and Education (DARE) and Director General of ICAR, S. Ayyappan. The Agriculture Minister of Madhya Pradesh, Ramkrishna Kusmaria; Punjab Agriculture Minister, S. Sucha Singh Langah; and the Union Minister for Agriculture and Food Processing Industry, Sharad Pawar, accompanied by Pratibha Pawar, delivered speeches at the event. Also in attendance was Mr. Rajiv Mehrishi, Secretary of ICAR.

The three agricultural ministers of the states that will be hosting BISA facilities delivered speeches in recognition of the important role which BISA will play in improving food security not only in their own states, but throughout the whole of South Asia. Mr. Pawar highlighted the concerns of population growth both globally and especially in South Asia, in addition to rising food prices and unrest caused by food insecurity. He stated that “it would not be an overstatement to say that Norman Borlaug is a household name in India.” On a personal level, he also recalled his interaction with Dr. Borlaug in India in the 1960s.

BISA will have centers in Ludhiana in Punjab, Pusa in Bihar, and Jabalpur in Madhya Pradesh. Each of the states contains varied agro-ecological zones allowing for testing a variety of maize and wheat cultivars suited to the equally varied environments of South Asia.

Dr. Thomas Lumpkin, CIMMYT Director General, delivered the closing remarks, reminding the audience of the challenges of global food security as well as the humanitarian crisis in the Horn of Africa. He also highlighted the support of the Mexican government and CIMMYT’s role in facilitating and promoting cooperation through its centers in India, Mexico, and Africa. Dr. Lumpkin concluded his speech stating that “CIMMYT has been in India for 50 years. It’s time we laid down some roots.”

The official opening ceremony was marked by a cultural event featuring classical Indian dancing including choreographical styles from all three states. In addition to CIMMYT-India staff and speakers, also present at the launching ceremony were the management committee of CIMMYT and its Board of Trustees. The launching ceremony was attended by representatives from CIMMYT’s sister institutions ILRI, IRRI, and Bioversity, as well as by the Allan Mustard Institute of the US Dept. of Agriculture and the private sector. The event was closed by a dinner and a speech by the Board of Trustees Chair, Sara Boettiger.

BISA was officially approved by India’s Union Cabinet, based on a proposal by the Ministry of Agriculture, Department of Agricultural Research and Education on 30 September. In a press release issued by the government of India (http://pib.nic.in/newsite/PrintRelease.aspx?relid=76358), the approval of BISA is described as follows: “The establishment of BISA in India will enable India to harness the best of international science, in meeting food security challenges. India would be able to rapidly and effectively absorb the research output of BISA thus benefiting farmers of the country.”

The Borlaug Institute of South Asia was conferred international status as detailed in clause 3 of the United Nations (Privileges and Immunities) Act of 1947. The Department of Agricultural Research and Education (DARE), on behalf of the government of India, will be authorized in all matters regarding the establishment of the institute.

Read more:

India and CIMMYT agree to establish new research institute for South Asia

Borlaug Institute South Asia to address food security

Big Bang from World Wheat Breeding Bucks

CIMMYT E-News, vol 3 no. 5, May 2006

may01Global, collaborative wheat research brings enormous gains for developing country farmers, particularly in more marginal environments, according to an article in the Centenary Review of the Journal of Agricultural Science.

Forty years of worldwide, publicly-funded collaborative research to improve the yield potential and stress tolerance of wheat, along with efforts to extend the outputs of this science in developing countries, has lowered food costs for the poor, allowed food supplies to meet the demands of rising populations, brought harvest surpluses worth US$ 3-6 billion each year to farmers, and saved 1.8 billion hectares of natural ecosystems from conversion to farmland, to name a few results.

These and other findings appear in a recent review article by CIMMYT wheat physiologist Matthew Reynolds and 1970 Nobel Peace Laureate Norman E. Borlaug—one of a series of papers to celebrate 100 years of publishing by the Journal of Agricultural Science. The review traces how international wheat breeding over the last five decades has evolved into “
a global agricultural strategic and trouble-shooting network that plays a central role in providing food security in the developing world.” Led initially by CIMMYT and later with the partnership of the International Centre for Agricultural Research in the Dry Areas (ICARDA), the network for wheat and related crops provides a forum “
whereby institutional linkages are fostered and maintained globally, not only through exchange of germplasm, but also through knowledge sharing, training programmes, international visits and development of extended partnerships
” According to the article, centers like CIMMYT and ICARDA have also played a key role in collecting and conserving the landraces and other genetic resources that improved varieties have replaced, making those resources available worldwide and, more recently, ensuring that useful diversity is rechanneled into improved cultivars.

“Given its importance and accomplishments, it’s somewhat surprising that global wheat breeding struggles to find investors,” says Reynolds. Also noted by Reynolds and Borlaug was the fact that most of the increased area of adoption of improved wheat varieties since 1977 has occurred in more marginal, rainfed areas, rather than favored irrigated farmlands, and that yield increases from these varieties during 1979-95 were greater in semi-arid and heat-stressed environments (2-3% per year) than in irrigated areas (just over 1% per year).

“Considering the issue of food security and its positive influence on the livelihoods of poor people, it’s clear that publicly-funded international centers provide a continuity in agricultural development that would otherwise be lacking for many countries where economic, political, and social instability are commonplace,” the authors say.

A companion Centenary Review by Reynolds and Borlaug discusses the future of collaborative wheat improvement, in which, according to Reynolds, researchers will apply technology-assisted methodologies and powerful information tools to identify and breed value-added traits into wheat varieties. “At the same time, however, we’ll continue to seek farmer input to increase the amount of useful genetic diversity in the field and the local adaptation of varieties, as well as in testing and promoting conservation agriculture practices.”

Regarding the future, the authors say: “Policy-makers need to balance the appeal of high-risk investments in the latest technologies with the realities of resource-poor farmers, for whom tried and tested technologies offer immediate and reliable solutions.”

To access abstracts or full-text versions of the articles:

Impacts of breeding on international collaborative wheat research

Applying innovations and new technologies for international collaborative wheat improvement

For more information contact Mathew Reynolds (m.reynolds@cgiar.org).

Willkommen, Herr BundesprÀsident!

alemania-300x227The long-standing and fruitful relationship between Germany and CIMMYT received a boost on 01 May 2011 when, as part of an official tour of Latin America, the President of the Federal Republic of Germany, Christian Wulff, visited CIMMYT headquarters to learn more of the center’s work and discuss strengthened partnerships. President Wulff was accompanied by his wife, Bettina, and nearly 60 distinguished guests including German vice ministers and members of parliament, embassy personnel, and business and media representatives. Greeting the guests were CIMMYT Director General Tom Lumpkin and several of the center’s German and German-speaking staff.

After touring the main exhibition hall showcasing Dr. Norman Borlaug’s achievements and contributions to agricultural development, including his Nobel Prize of 1970 and the Aztec Eagle of the same year from Mexico, the entourage attended a presentation by Hans-Joachim Braun, Director of CIMMYT’s Global Wheat Program. The talk addressed food security and related constraints—climate change, the rising demand for grains, the increasing scarcity of resources like land, water, and fertilizer—as well as CIMMYT’s work in the developing world and its relationship with Germany, a long-term and significant supporter of the center. To name just a few examples, German contributions have funded work on stress tolerant maize for Africa, a regional wheat network for Central Asia, and wheat pathology research for South Asia. German staff at CIMMYT and our partnerships with German universities and institutes have been of enormous value in getting improved technology to farmers.

The whirlwind tour then moved to the seed bank, with exhibitions of maize and wheat genetic resources outside and a visit inside to the upper seed storage chamber. In an impromptu closing statement, President Wulff thanked CIMMYT and described his positive impression of the visit and Braun’s presentation, which he called one of the clearest and most fact-based he had ever heard. Reports on the visit in the German media have referred to CIMMYT as a “highly-regarded research center.”

In addition to Lumpkin and Braun, CIMMYT staff interacting with the guests included Marianne BĂ€nziger, deputy director general, research and partnerships; Scott Ferguson, deputy director general, corporate services; Peter Wenzl, head of the crops research informatics lab; Susanne Dreisigacker, molecular biologist and head of marker applications in wheat; GIS expert Kai Sonder; agricultural economist Tina Beuchelt; Marc Rojas, coordinator of the International Strategy for Maize Improvement; and Petr Kosina, assisting with the event management.

Click here to view/hear


Improved maize varieties and partnerships welcomed in Bhutan

CIMMYT E-News, vol 5 no. 11, November 2008

nov02Sandwiched between China and India, the Kingdom of Bhutan is a small country that relies on maize in a big way. But maize yields are typically low due to crop diseases, drought, and poor access to seed of improved varieties, among other reasons. CIMMYT is committed to improving Bhutan’s food security by providing high-yielding, pest-resistant maize varieties to farmers and capacity-building for local scientists.

“If there is no maize there is nothing to eat,” says Mr. S. Naitein, who farms maize on half a hectare of land in Bhutan. But it’s not easy to grow, he says, citing challenges such as animals (monkeys and wild boars), insects, poor soil fertility, drought, poor access to improved seed varieties, and crop diseases like gray leaf spot (GLS) and turcicum leaf blight (TLB).

But since planting Yangtsipa—an improved maize variety derived from Suwan-1, a variety introduced from CIMMYT’s former regional maize program in Thailand—Naitein has seen a real improvement in his maize yields. The local maize variety yielded 1,700 kilograms per hectare, whereas Yangtsipa gave him 2,400 kilograms per hectare, a 40% yield increase.

“It’s no wonder that Yangtsipa is by far the most popular improved variety among Bhutanese farmers,” says Guillermo Ortiz-Ferrara, CIMMYT regional cereal breeder posted in Nepal. “Nonetheless, many local varieties of maize still occupy large areas of the country and don’t yield well.”

Maize is a staple food in Bhutan. Many people eat Tengma (pounded maize) as a snack with a cup of tea and Kharang (maize grits) are also popular. “Among the food crops, maize plays a critical role in household food security, especially for the poor,” says Ortiz-Ferrara. About 38% of the rural Bhutanese population lives below the poverty line and some 37,000 households cultivate maize. It’s estimated that 80% of this maize is consumed at the household level, according to Bhutan’s Renewable Natural Resources Research Center (RNRRC).

Leaf us alone: CIMMYT maize varieties help combat foliar diseases

Many farmers in Bhutan have been struggling with crop diseases that cut maize yields. “The recent outbreak of gray leaf spot and turcicum leaf blight affected 4,193 households and destroyed over 1,940 hectares of maize crop,” says Thakur Prasad Tiwari, agronomist with CIMMYT-Nepal. He estimates that maize is grown on 31,160 hectares in the country.

Gray leaf spot is a devastating leaf disease that is spreading fast in the hills of Bhutan and Nepal. To deal with this threat, CIMMYT sent more than 75 maize varieties with possible resistance to GLS and TLB to Bhutan in 2007. Tapping into the resources of its global network of research stations, CIMMYT sent seed from Colombia, Zimbabwe, and Mexico that was planted in GLS and TLB ‘hot spot’ locations in the country.

Ortiz-Ferrara and Tiwari then worked with Tirtha Katwal, national maize coordinator-Bhutan, and his team to evaluate these materials for their resistance.

“Together we identified the top performing lines for gray leaf spot and turcicum leaf blight which will be excellent candidates for Bhutan’s maize breeding program,” says Ortiz-Ferrara. “We are now combining their disease resistance with Yangtsipa, because we know it is high-yielding and well-adapted to Bhutan.”

Kevin Pixley, associate director of CIMMYT’s Global Maize Program, helped to develop a detailed breeding scheme or work plan for Bhutan’s national GLS breeding program. “We want to provide capacity-building for local maize scientists so they themselves can identify and breed varieties that show resistance to crop diseases,” he says.

“We feel more confident in moving forward with the next steps in our breeding program,” said Katwal. He and his team also attended a training course on seed production, de-tasselling, and pollination given by Dr. K.K. Lal, former CIMMYT maize trainee and former chief of the Seed Quality Control Center at the Ministry of Agriculture and Cooperatives (MoAC) in Nepal.

nov03

That’s what friends are for: CIMMYT, Nepal, and Bhutan collaboration

In 2001, Bhutan began collaborating on maize research with CIMMYT-Nepal, the National Maize Research Program (NMRP) of Nepal, and the Hill Maize Research project (HMRP) funded by the Swiss Agency for Development and Cooperation (SDC) in Nepal. The terrain and agro-climatic conditions of Bhutan and the Nepalese highland are similar, meaning that technologies adapted for Nepal will likely work well in neighboring Bhutan.

CIMMYT aims to facilitate regional and national partnerships that benefit farmers. For instance, during the past 7 years CIMMYT-Nepal has worked with NMRP and RNRRP to introduce 12 open-pollinated varieties (OPVs) to Bhutan. These modern varieties yield more than the local varieties whose seed farmers save to sow from year to year. Included in these 12 OPVs were several quality protein maize (QPM) varieties; these have nearly twice as much usable protein as other traditional varieties of maize.

nov04“Our CIMMYT office in Nepal has assisted Bhutan with maize and wheat genetic material, technical backstopping, training, visiting scientist exchange, and in identifying key consultants on research topics such as grey leaf spot and seed production,” says Tiwari.

Simply put, CIMMYT has useful contacts. For example, at the request of Bhutan’s Renewable Natural Resources Research Center (RNRRC), CIMMYT-Nepal put forward Dr. Carlos De Leon, former CIMMYT regional maize pathologist, to conduct a course on identifying and controlling maize diseases in February 2007. In September 2008, CIMMYT and HMRP also recommended two researchers (Dr. K.B. Koirala and Mr. Govinda K.C.) from Nepal’s NMRP to give a course on farmer participatory research that has been successful in the dissemination of new technologies.

“Ultimately, our goal is to improve the food security and livelihood of rural households through increased productivity and sustainability of the maize-based cropping system,” says Thakur Prasad Tiwari.

For information: Guillermo Ortiz-Ferrara, cereal breeder, CIMMYT-Nepal (g.ortiz-ferrara@cgiar.org) or Thakur Prasad Tiwari, agronomist, CIMMYT-Nepal (tptiwari@mos.com.np)

Saving Mexican maize farmers’ soil

CIMMYT E-News, vol 4 no. 10, October 2007

Resource-conserving practices introduced by a CIMMYT project are taking root among farmers in the central Mexican Highlands.

In the fields above the community of San Felipe del Progreso, in the central Mexican Highlands, smallholder farmers grow maize year after year in conventionally-plowed fields. Feliciano Cruz says his neighbors think he’s crazy for trying new resource-conserving practices and other crops, but nonetheless many are interested. While he’s showing a group of visiting researchers his fields, a neighboring farmer comes along and asks if Cruz can help him to try the new system. “I want to get involved,” he explains. “My fields are getting too dry, and when that happens the soil becomes really hard.” Cruz enthusiastically explains the benefits of keeping crop residues on the soil to stop it drying out. “We’re learning step by step,” he says. It seems that farmers here are willing to take a risk on something unorthodox.

“There are two major challenges for farmers in this area: soil erosion and labor shortages,” says Bram Govaerts, CIMMYT postdoctoral fellow in crop systems management, “and we think conservation agriculture will help with both.” The region’s volcanic soils are fertile but relatively thin, and when dry and exposed are easily washed away by the heavy, irregular rains, leaving behind rocky, infertile material. This process is clearly visible in the landscape’s scanty topsoils and eroded gullies, and all too apparent to farmers. Few farmers here are able to harvest surpluses to sell, and most rely on supplementary sources of income. Meanwhile, most of the region’s young men leave to seek work in the USA, and many fields lie fallow.

In the new system, introduced by a collaborative project between CIMMYT and local institutions involving local farmers, maize is sown directly into permanent raised beds, and the stalks and leaves, or “residues” of the crop are retained on the fields. These innovations protect the structure of the soil, retain soil moisture, and prevent erosion. Direct seeding is also less labor-intensive; conventional tillage requires several plowings and harrowings, whereas fields with permanent beds require only a single surface pass each year to reshape the beds. CIMMYT has also introduced new crops for farmers to try in rotation with maize.

The project is based on CIMMYT science and involves a number of Mexican partners: ICAMEX, the agricultural research institute for the state of Mexico (providing funding and receiving training), Mexico’s Research and Advanced Studies Center (Cinvestav), and the Autonomous University of the State of Mexico (UAEM), with funding from the Flemish Interuniversity Council – University Development Cooperation (VLIR-UDC). CIMMYT has several long-term conservation agriculture trial plots on its research stations in Mexico. These provide valuable scientific data about management practices, but they are also being used for training and capacity building. The project began with a field day at the Toluca station, where Fernando Delgado, station manager and local conservation agriculture champion, demonstrated resource-conserving practices to farmers from partner communities. CIMMYT is now working to test these in farmers’ fields. “This is a mutual learning process,” says Govaerts. “We’re trying to extend the technology to farmers’ fields; at the same time we are developing on-farm research modules and we’re bringing back what we learn—both from successes and failures.” Next year will be the project’s third planting year, and Govaerts anticipates real success, with good crops under the new system.

The two systems are being tested side by side: on one half of his test plot Olegario Gonzalez has planted conventionally-tilled maize (foreground), on the other he is growing a wheat crop in rotation with maize using resource-conserving practices.

Farmers see the benefits of the system and are as determined as the scientists to stick with it, even where things haven’t gone according to plan. For example, the residues of the first year’s maize crop were left on the fields, but other locals took it for fuel and fodder. In Cruz’s test maize field, this meant that in the second year the soil was too dry for zero-tillage planting (which is shallower than conventional planting) and the maize crop failed. However, in a few places where the residues remained the seedlings grew well, convincing Cruz and other participating farmers that residue retention could work. They themselves decided to replant the field with maize, even though it was too late in the season to yield any grain, just to grow plenty of biomass to retain as residues for the following year. The project will assist the farmers to fence their plots to protect this year’s residues.

“I will definitely continue with the new system,” says Cruz, who is in no doubt as to its advantages. “Firstly, it is less work. There is no plowing or harrowing, which saves a lot on costs. Secondly, it conserves the soil—water filters in and doesn’t run off. Finally, the maize doesn’t fall over as much, as it grows less and the roots go deeper.”

 

Olegario Gonzalez (second from right) discusses his wheat crop; his neighbors are already asking to buy his grain.

Cruz is also enthusiastic about the alternative crops that project members planted with the farmers. “It’s important that we have the option to try new things,” he says. “The land gets tired if we just plant maize, maize, maize.” Oats and triticale are his favorites so far, growing well enough to be used for fodder and still leave good residues. In the neighboring community of San Pablo, farmer Olegario Gonzalez is growing wheat, and he has found that there is a local demand. “My neighbors are already asking to buy my wheat to add to tortillas [the staple Mexican flatbread] and for seed,” he says, indicating the rows of ripening grain.

“Now that we’ve seen that farmers like the system, the next stage is to scale it up,” says Govaerts. “Farmers need zero-tillage machinery suitable for small tractors, so we’re working with companies to commercialize a multi-use, multi-crop machine. We’ll also be helping farmers to find and develop local markets.” The project is currently working with a few farmers who are respected in their communities, and next year plans to invite more farmers to the test plots to see and learn about the system in action.

CIMMYT has been involved in testing conservation agriculture and testing it with farmers all over the world. This project is one of several throughout Mexico developed together with local partners. Govaerts hopes that CIMMYT’s long-term trial plots will act as hubs for farmer visits, sowing the seeds for resource conservation in many more local communities.

For more information: Bram Govaerts, postdoctoral fellow, crop systems management (b.govaerts@cgiar.org)

Farmers get their yield back and more

CIMMYT E-News, vol 4 no. 3, March 2007

mar06Solving a major disease problem in durum wheat was not enough to satisfy farmers. They need and will get quality too.

Karim Ammar, a durum wheat breeder with CIMMYT, is proud of his new wheat lines growing green and disease-free this season in the Yaqui valley of northern Mexico. Even with the efficiency of a shuttle system between the Yaqui valley and the highland research station at Toluca, Mexico which allows wheat breeders to plant and select wheat twice a year, it still takes six years to get to where Karim is now.

“Between preliminary yield trials and elite yield trials we’ve got about 2500 lines and they are all resistant to leaf rust,” he says.

This is good news for the durum wheat farmers of the world. Durum wheat is the kind used for pasta, couscous and semolina. Today, 85% of spring durum wheat grown in developing countries traces its origins to the durum wheat program at CIMMYT in Mexico. The Center regularly sends out seed samples to national breeding programs around the developing world, and the most suitable in each region are used to breed local varieties. When mutations in the leaf rust fungus allowed it to bypass the resistance mechanisms in durum wheats, the breeding team at CIMMYT was faced with a serious problem.

“We had to rebuild the program, because you can no longer use something that becomes susceptible to a disease. That’s no service to the national programs or farmers in developing countries,” says Ammar, who comes from Tunisia. He is acutely aware that the work he is doing will have a major impact in developing countries where durum wheat is grown.

It might have been easy to look this as a single problem—producing disease-resistant plants or plants that can produce more grain—but the team realized the challenge was much more complicated. Farmers in developing countries need more than grain if their livelihoods are to improve. They need grain that is high in quality and for which there is a market.

mar07

Breeding itself is a process of combination and then elimination—selecting potentially good parent seeds with desirable characteristics and crossing them, then eliminating the offspring plants that don’t measure up. The process is cyclical and repeated until the breeder is satisfied that all required characteristics have been incorporated into the new wheat plants.

Leaf rust reduces yields enough to make growing susceptible varieties a losing proposition for farmers. Their needs were at the heart of the breeding strategy devised by the breeding team.

“So their priority becomes ours and once objectives are defined with our clients and their respective markets in mind, then I start thinking about the plants—how would a plant or a certain cross or combination of genes achieve that objective in the most efficient, fastest way possible,” Ammar says.

The breeders knew that disease resistance was vital but quality that was acceptable to farmers and their markets was equally essential. At the same time they thought they could enhance the performance of the wheats under drought stress and incorporate resistance to other diseases. In the beginning they had to sacrifice yield and other key characteristics to be sure they had resistance to the leaf rust, the biggest problem durum wheat growers were facing. But once that was done, the team focused on making the best possible wheats from all other perspectives.

“Now we’re back to the point where we can address yield, drought tolerance and quality very effectively because we know we have enough variability for rust resistance. It’s no longer the critical trait,” says Ammar.

The most critical trait now might well be the color or the quality of the gluten in durum wheat grains. Last year farmers in the Yaqui Valley of Mexico grew close to 150 000 ha of a durum wheat variety that yielded well and stood up to leaf rust. Unfortunately, because its grain did not have enough yellow pigment, desired by the export market, there was little market for the wheat except as pig feed. Many of the 2500 new lines that Ammar is testing outperform that variety in yield and in the most important quality traits

The best of the lines at the CIMMYT breeding station will be sent to national programs for evaluation. Mexico has already begun to evaluate in parallel so it will be ready as soon as possible to release new varieties based on the CIMMYT lines to the national production system .

For more information Karim Ammar, Wheat Breeder (k.ammar@cgiar.org)

People of the Clouds

CIMMYT E-News, vol 3 no. 9, September 2006

sep02The Nepal Hill Maize Research Project, supported by the Swiss Agency for Development and Cooperation (SDC), reaches out to Nepal’s poorest farmers with new varieties and farming practices selected by the farmers themselves.

Coca Cola, arguably the world’s most ubiquitous commercial beverage, has not yet reached the villagers and farmers who live on top of the cloud-shrouded hills of eastern Nepal. That’s how remote they are. There is a road, but it is 600 meters below in the valley and the only way in and out of the village is via a precarious, rubble-strewn and sometimes terrifyingly steep foot-path. Everything must be carried up and down this track on people’s backs. Here the staple food for centuries has been maize but many farmers in the region cannot grow enough maize to last the year. Their needs have provided a focus for work in which CIMMYT, the Nepal Agricultural Research Council (NARC), SDC, and other partners, reach these “unreached” people.

sep02-7
One of them is Bishnu Maya. She is a single mother of three who farms 0.6 hectares of terraced land on the steep slopes. She is a very good farmer but it takes every penny she earns to make sure her children can go to school. “With education they can get jobs and have a better life,” she says. Bishnu Maya is a ‘dalit’; the poorest of the poor in Nepal, an untouchable often shunned by better-born villagers. Nevertheless, her tiny farm is a marvel. She grows maize, millet, tomatoes, and cucumbers on her land. She has a water buffalo, two cows, some chickens, and goats. A year ago electricity came to the village and now she has a small radio and a light bulb. What she has not had until now is enough maize to last the year. The traditional varieties have small ears, one per plant, and the maize plants themselves grow very tall and often fall down in the wind, not only reducing the maize yield but also damaging the intercropped plants below them.

Maya agreed to help in participatory evaluations of maize varieties developed with material from CIMMYT and NARC that could overcome the main barriers to production on her land. She uses some of her land for a demonstration plot of the variety she has selected as the best replacement for her traditional maize. It is shorter with a sturdier stalk, has two large ears per plant and matures earlier than the maize she has been used to growing. On top of that the new variety stays green after the maize is mature, so it makes a better feed for her livestock.

sep02-8

The project has intentionally focused on women farmers and those who cannot produce enough food to feed their families, testing and promoting technologies that can be implemented by the farmers themselves. While the initial trials are conduced at the NARC research station at Pakhribas, an hour’s drive away once you reach the road in the valley, vital research work is conducted with farmers like Maya on their farms. In the past recommendations about varieties and agricultural practices were based on trials conducted exclusively at research stations, rarely taking into account the real world in which the hill farmers like Maya live and work. “Even on-farm research tended to try to create conditions on farms that matched the research stations, rather than finding solutions to existing farm problems,” says CIMMYT’s Memo Ortiz-Ferrara, who leads the project.

The new approach has helped farmers choose more appropriate varieties based on their own criteria from a “basket of choices” (5-10 varieties are offered in one season). It has also helped to expand areas growing new varieties on one hand, and improve crop management practices on the other. Depending on the location, farmers have observed 20-50% higher grain yield with the new varieties.

“Now I have enough and can sell some surplus to pay for my children’s education,” Bishnu says.

The second phase of the project is just coming to an end and an evaluation team has begun a series of in depth interviews with participating researchers and farmers to determine the overall impact.

Participatory research is a vital part of many CIMMYT projects around the world (see the companion story: CIMMYT researchers say participatory research supports their achievements).

For information contact Memo Ortiz-Ferrara (g.ortiz-ferrara@cgiar.org)

 

Nutrition Better but Maize Diversity Down in Chiapas

March, 2005

noticias1Farmer Juan Castillejos Castro of the village Dolores, Jaltenango, state of Chiapas, in southeastern Mexico, leaned forward in the humid, mid-morning heat and pondered the question: had household nutrition improved in the last 10 years? “From the mid-1970s to the mid-1980s, even I was malnourished to the point I couldn’t work,” he says. “Now things have gotten better, and the credits have helped a lot.”

Like many farmers in the “La Frailesca” region of Chiapas, Castillejos has been growing improved, hybrid maize, through a state-sponsored program that offers seed plus other inputs (fertilizer, pesticides, among them) and services (technical advice, crop loss insurance, to name two) on credit, to be repaid at harvest. For the last decade, government policy has also discouraged the burning of crop residues. Burning helped farmers control weeds and pests, but bared often steep, hillside plots to eroding winds and rain and deprived soils of organic matter. Castillejos and most peers now practice a more resource-conserving style of agriculture, sowing with a stick directly into the last year’s crop residues, without plowing or burning.

Folk Varieties Fading in La Frailesca

Unlike many farmers adopting the hybrids, Castillejos still grows small plots of the local maize varieties developed through selection by millennia of predecessors. The local varieties feature a better grain type for tortillas and other preferred foods. Their weaknesses include tallness and a tendency to topple easily. This and their relatively low yields have put them on the road to extinction, according to Dagoberto Flores, research assistant in CIMMYT’s Impacts Assessment and Targeting Program.

noticias3

“We still need a systematic study on this,” says Flores, “but I would guess that half the local varieties have disappeared, and only 30% of farmers are growing any local materials.” Flores and an associate, Alejandro Ramírez López, just spent a month surveying 120 farm households in 4 communities in the region. With funding from the United Nations Food and Agriculture Organization (FAO), they are comparing the costs to farmers of obtaining seed through formal versus informal supply systems and evaluating farmers’ risks, from village to village.

The village of Dolores Jaltenango lies in the mountainous countryside that bred the Zapatista uprising and is a gateway for undocumented immigrants from Central America. Nine-tenths of maize is relegated to steep hillsides—cattle raising and plantation agriculture claim the choice lowlands. “Dolores is one of the poorer communities in the area,” says Flores. “Dwellings are adobe with dirt floors. There’s normally one large sleeping quarters for an average 10 people, including parents, children, and married children’s spouses.”

Flores and Ramírez are concerned about La Frailesca’s farmers. The prices of the seed technology packages are rising steadily, and subsidies are being reduced. They fear that if farmers lose their native seed, they may have no fallback position. “Farmers look at their neighbor’s yields or the size of the ears, but most haven’t done the math on all the costs and benefits of the new technology,” Ramírez says. He cites the results of last year’s serious drought as an example: “Many farmers had poor crops. But some didn’t qualify for crop loss insurance benefits. Now they’re having trouble paying back their credit debts.”

CIMMYT’s Role: Conserving and Replenishing Diversity

According to Flores, CIMMYT staff have collected and preserved important samples of the Frailesca’s farmer varieties in the center’s germplasm bank. The bank contains seed collections for an estimated 80% of all Latin American maize diversity, including many varieties no longer sown by farmers. The seed is kept in trust for humanity, under a 1994 agreement with FAO. Working with partners in 13 countries in the Americas, center staff have coordinated the rescue, regeneration, and back-up storage of more than 10,000 seed samples of unique maize varieties from this hemisphere. CIMMYT and partners from the Mexican National Institute of Agriculture, Forestry, and Livestock Research (INIFAP) recently restored seed of local varieties to farmers in Oaxaca, Mexico, and could do the same for Chiapas farmers, should this become necessary, Flores says.

Fitting into FAO Research Efforts

Environmental economist Leslie Lipper at FAO will draw on the survey and its results in an emerging, multi-country study on how market access to crop genetic resources affects farmers’ welfare and on-farm crop biological diversity, according to Kostas Stamoulis, Chief of the FAO Agricultural Sector in Economic Development Service (ESAE). “CIMMYT’s work will provide unique data on farmer seed sourcing choices,” says Stamoulis. “Among other things, we’ll get a better read on how those choices are affected by the transaction costs of market participation and farmer’s perceptions of risk.” The study is one of three major ESAE efforts to understand the role of markets in rural livelihoods and environmental sustainability.

Good-bye Good Friend

CIMMYT E-News, vol 2 no. 8, August 2005

RHavenerRemembering the life of Dr. Robert Havener, former Director General of CIMMYT.

August 3rd was a sad day in the life of CIMMYT and for the world of agricultural research for development. Former Director General Robert D. Havener died in California at the age of 75. The Chair of the CIMMYT Board of Trustees, Dr. Alex McCalla, represented the center at the memorial service, held on August 20th in Los Olivos, California.

Dr. Havener was one of the true pioneers in the global agricultural research system, working for the world’s rural poor for more than five decades. He led CIMMYT from 1978 to 1985 as the center’s third Director General, bringing our center recognition as one of the leading international agricultural research organizations in the world. When he came, Dr. Norman Borlaug was director of the wheat program and Dr. Earnest Sprague the director of the maize program. During his leadership CIMMYT expanded its regional presence and strengthened the economics program. Dr. Havener believed that the program should not work in isolation but in tight integration with the main crop programs. Around CIMMYT he was known for his ability to make quick but sound judgments and for his office that was open to all, even the most junior scientist. With donors he was a forceful and successful advocate for CIMMYT and CIMMYT’s mission. He stewarded the center through a financial crisis in the 1980s and by the end of his term as Director General had increased dramatically the number of core donors.

Of course Robert Havener was more than just the former DG of CIMMYT. For 14 years he worked as a senior agricultural program officer for the Ford Foundation. He served as interim Director General at both CIAT (1994) and IRRI (1998) and was instrumental in the founding of ICARDA and ILRI. He served as Chair of the ICARDA Board of Trustees from 1999 to 2003. He was the founding President of the Winrock International Institute for Agricultural Development, a Fellow of the American Association for the Advancement of Science, an advisor for the World Food Prize and sat on the Board of Directors of Sasakawa Africa Association / Global 2000 Program, whose president is Dr. Borlaug.

Dr. Havener was always a friend of CIMMYT, right to the end and could always be counted upon for wise council and sage advice. He followed with interest and passion the changes taking place at CIMMYT. Bob Havener devoted his life to making a difference for the rural poor. We are all diminished by his loss.

In Quest for Drought-Tolerant Varieties, CIMMYT Sows First Transgenic Wheat Field Trials in Mexico

March, 2004

sowing2On 12 March 2004, CIMMYT took a modest but historic step in the development of drought tolerant wheat, when a small trial plot was sown to genetically modified (transgenic) wheat in a screenhouse at the Center’s headquarters in Texcoco, Mexico. This is the first time that transgenic wheat has been planted under field-like conditions in Mexico, and rigorous biosafety procedures are being followed.

Drought is arguably the world’s most important agricultural production problem. In developing countries, millions of hectares of wheat are grown in areas that often experience drought, and the problem is projected to worsen with climate change. A plant’s ability to withstand dry conditions at critical periods in its growth can make the difference between food and famine for poor households. Developing drought-tolerant wheat and maize varieties that perform well under diverse conditions is a top priority at CIMMYT, where innovative research—conventional as well as transgenic—is pursued to meet this complex and difficult challenge.

CIMMYT researchers have well-founded hopes that the wheat they are testing will withstand serious droughts. This wheat carries the DREB1A gene from the plant Arabidopsis thaliana. The gene has been shown to confer tolerance to drought, low temperatures, and salinity in Arabidopsis, a plant species related to wild mustard (see Nature Biotechnology 17:287-291).

sowing
Previous experiments with DREB wheat grown in pots in CIMMYT’s biosafety greenhouse provided very encouraging results. The new screenhouse trial will enable researchers to see whether the DREB wheat responds similarly under more “natural” conditions.

This trial is the first time that a food crop carrying the DREB gene has advanced to this level of testing. If the results are positive, there are major implications for its use in other cereal crops, such as rice, maize, and barley. CIMMYT is considering testing the DREB gene in the drought-tolerant wheat it has developed through conventional breeding, to see if the resulting plants can use water even more efficiently.

comparisoncomparison_2
A comparison of DREB and control wheat plants (DREB plants on the left, control plants on the right in both of the above photographs), after 10 days without water.

The promising work with the DREB wheat would not have been possible without the generosity of the Japan International Research Center for Agricultural Sciences (JIRCAS), which provided the gene construct, and funding from Australia’s Molecular Plant Breeding-Cooperative Research Centre.

The transgenic wheat trials were approved in December 2003 by Mexican authorities under strict biosafety provisions to ensure that the plants do not inadvertently cross with conventional wheat plants:

  • Access to the enclosed screenhouse trial is tightly restricted.
  • No wheat plants are grown within 10 meters of the screenhouse trial.
  • The spikes (flowers) of the plants are covered and isolated from the environment by glassine bags.
  • Plant materials are destroyed in an autoclave at the end of the trial.
  • The trial is monitored by Mexican authorities and the CIMMYT Biosafety Officer.

But the greatest biosafety measures are provided by the wheat plant itself. Wheat is a “perfectly self-pollinated crop,” with 99% of fertilization occurring within the sheathed spike of the plant, where male and female plant components share the same floret. Even in conventional breeding, researchers have to resort to a series of carefully executed, laborious procedures to cross one wheat plant with another. This makes wheat very different from maize, which freely pollinates and thus exchanges genes with other maize plants. Cross-pollination is further limited because wheat pollen is heavy and does not travel far, and because the pollen remains viable for only 20-30 minutes.

Details
CIMMYT Research Team
Alessandro Pellegrineschi, Matthew Reynolds, Richard Trethowan, Mario Pacheco, Rosa Maria Brito, Rosaura Almeraya, Scott McLean, and David Hoisington.

Trial Purpose
To evaluate the performance under water-stress and normal irrigation conditions of transgenic bread wheat lines containing the Arabidopsis thaliana DREB1A under the control of the stress inducible promoter rd29a.

Trial Design
MPB-Bobwhite26 lines, each containing the DREB1A gene driven by the rd29A promoter are planted in a randomized lattice design. The non-transformed MPB-Bobwhite26 line is used as a control and 10 drought tolerant lines are used for comparison purposes. Two water regimes are being evaluated: full irrigation versus no irrigation, except one at planting.

For further information, contact

Download pdf version (170 KB)

CIMMYT Scientists Recognized For Contributions to Agriculture

August, 2004

CIMMYT scientists Guillermo Ortiz Ferrara, Craig Meisner, and Mujeeb Kazi have recently been recognized for contributions they have made to agriculture and science over the years.

  • The government of the Mexican state of Coahuila awarded Dr. Guillermo Ortiz Ferrara with the Medal of Agronomic Merit in research in June 2004. This year the medals honored graduates of the Universidad Autonoma Agraria Antonio Narro in Coahuila, where Ortiz Ferrara studied from 1966 to 1971 and majored in agronomy. He was one of six agronomists selected by former university presidents and government representatives for carrying out work that produced significant developments in their respective fields. In July 2004, Ortiz Ferrara also received the Presea Saltillo award, which recognizes native citizens of the Mexican city of Saltillo who have distinguished careers. Ortiz Ferrara is a principal scientist in CIMMYT’s South Asia regional office and CIMMYT’s country representative in Nepal.
  • Dr. Craig Meisner accepted an international adjunct professorship with the International Agriculture Program at Cornell University in February 2004. This position recognizes Meisner’s collaboration with Cornell in Bangladesh, including work on their Soil Management CRSP with USAID, the Bangladesh Country Almanac, rickets research, arsenic in the environment, and virus-free transgenic papaya. “Together we have made and are continuing to make impacts in growers’ fields,” says Meisner, a Bangladesh-based agronomist in CIMMYT’s Intensive Agroecosystems Program.
  • Dr. Mujeeb Kazi was awarded the Kansas State University Gamma Sigma Delta Eta Chapter Outstanding Alumnus Award for 2004. The award recognizes Kazi’s contributions to science as an alumnus of KSU’s College of Agriculture, where he received a Ph.D. in plant breeding in 1970. Kazi, a principal scientist, began working at CIMMYT in 1979 and became head of the Wheat Wide Crosses Unit in 1980. His research in crossing wheat with its wild relatives has made a great impact and expanded the pool of genetic diversity available for wheat improvement. Kazi received the 2003 CGIAR Outstanding Scientist Award for this work.

Kernels with a kick: Quality protein maize improves child nutrition

Throughout the developing world, 32% of children under the age of five are stunted and 20% are underweight. Improving the quality of protein in maize can help alleviate this problem in areas where people eat a lot of maize. Here a mother feeds her child QPM during a QPM feeding program hosted by Self-Help International in Ghana.
Throughout the developing world, 32% of children under the age of five are stunted and 20% are underweight. Improving the quality of protein in maize can help alleviate this problem in areas where people eat a lot of maize. Here a mother feeds her child QPM during a QPM feeding program hosted by Self-Help International in Ghana.

It looks and tastes like any other maize, but hidden inside each bite of quality protein maize (QPM) are specialized natural molecules waiting to give the diner an extra boost. A new study evaluates the nutritional impact of QPM on target populations.

Eating quality protein maize (QPM) increases the growth rate of moderately malnourished children who survive on a maize-dominated diet, according to a new study co-authored by five scientists, including two CIMMYT maize experts.

QPM grain is a biofortified, non-transgenic food that provides improved protein quality to consumers. It looks and tastes like normal maize, but QPM contains a naturally-occurring mutant maize gene that increases the amount of two amino acids—lysine and tryptophan—necessary for protein synthesis in humans. The total amount of protein in QPM is not actually increased, but rather the protein is enhanced so that it delivers a higher benefit when consumed by monogastric beings, like humans and pigs. Drawing on three decades of previous studies on QPM and using sophisticated statistical analysis, the paper “A meta-analysis of community-based studies on quality protein maize,” published in Food Policy, shows that when children suffering from malnutrition in maize-dependent areas consume QPM instead of conventional maize, they benefit from a 12% increased growth rate for weight and a 9% increased growth rate for height.

“We tried to bring together all the relevant work we could find on QPM and analyze and discuss it as transparently as possible,” said Nilupa Gunaratna, statistician at the International Nutrition Foundation and the paper’s lead author. “We discussed all the strengths and weaknesses of past studies, and took these into account in our evaluation. We also proceeded very conservatively, trying different methods, studying the effects of individual studies and outliers. In every approach, we came to the same conclusion: QPM has a positive effect on the growth of undernourished infants and young children for whom maize is a staple food.”

Scientists use a light box to select maize seed expressing the quality protein trait. Light is projected through the seed, and kernels that appear dark at the base but translucent elsewhere are prime QPM candidates.
Scientists use a light box to select maize seed expressing the quality protein trait. Light is projected through the seed, and kernels that appear dark at the base but translucent elsewhere are prime QPM candidates.

Give the people what they eat
Maize is the third-most important cereal crop for direct consumption (after rice and wheat), and is particularly significant in developing areas, such as Africa, where it is the main food source for more than 300 million people. In 12 developing countries, it accounts for more than 30% of total dietary protein. And though maize alone cannot provide all the nutrients needed for a healthy diet, maize with extra essential nutrients can go a long way toward helping the nearly 200 million children in poor nations who suffer stunted growth from malnutrition and for whom a diversified diet is currently unattainable.

“Staple foods are the cheapest foods, and the poorer you are, the more you depend on them, which often does not provide a balanced diet,” said co-author Kevin Pixley, who divides his time between CIMMYT and HarvestPlus. “We would all prefer to see each and every person eating a healthy and balanced diet, but that isn’t always possible. Biofortification is one part of the strategy to help combat malnutrition.”

QPM complexities
Though QPM is more nutritious than conventional maize and many of its varieties yield as well as or better than popular conventional maize varieties, widespread acceptance of QPM remains elusive. Of the 90 million hectares of maize grown in Mexico, Central America, sub-Saharan Africa, and Asia, only an estimated 1% or less is QPM.

Many seed companies lack interest in QPM because of the research costs and challenges of assuring its superior nutritional quality. If QPM is grown next to fields of conventional maize, cross-pollination will dilute the QPM trait, and QPM also requires separate storage and quality testing/monitoring. This and the fact that the enhanced maize brings no market premium—largely because its quality trait is not visibly distinguishable—have often deterred seed companies from marketing QPM altogether.

Yet in areas where there has been a substantial effort to promote it and make quality seed available, QPM has gained ground. For example, in 1992 Ghana released its first QPM variety, Obatanpa. Obatanpa is an open-pollinated variety, meaning its grain can be saved by farmers and re-sown as seed without any major decline in yield. In 2005, it was calculated that Obatanpa accounted for over 90% of improved seed sales in Ghana. In 2008, Wayne Haag of the Sasakawa Africa Association estimated that 350,000 hectares of QPM were grown in Ghana, making it the world’s largest QPM grower. Strong support and effort by multidisciplinary institutions, including the Ghanaian government, made this possible. Four of the QPM studies used in the meta-analysis were based in Ghana. Obatanpa’s high and stable yields and end-use quality have made it popular not only in Ghana but in several other sub-Saharan African countries, where it has been released under other names.

Nilupa Gunaratna, the paper’s main author, helps a farmer and his daughter fill out a QPM survey in Karatu, Tanzania.
Nilupa Gunaratna, the paper’s main author, helps a farmer and his daughter fill out a QPM survey in Karatu, Tanzania.

Fortifying future research

The authors of the QPM meta-analysis—two statisticians, an economist, a nutritionist, and a plant breeder—hope its clear results will finally dissuade QPM critics, many of whom have questioned whether QPM offers nutritional benefits for humans, and that the paper will lead to renewed efforts to explore improved nutrition through biofortified crops. “While there is still interesting and important nutritional research to be done on QPM, I hope the focus will start to shift from whether QPM has a benefit to how QPM can be promoted, disseminated, and used by farmers and consumers to have the most impact,” said Gunaratna. CIMMYT is currently involved in several QPM projects, including the QPM Development (QPMD) project in Africa, which is funded by the Canadian International Development Agency (CIDA). Launched in 2003, the project uses QPM as a key tool for improving food security, nutrition, and the incomes of resource-poor farming families in four countries (Ethiopia, Kenya, Tanzania, and Uganda). In the project’s first five years, seven new QPM varieties were released (bringing the total in the region to 12) and education efforts resulted in 270 field days attended by over 37,000 farmers, roughly 40% of whom were women. CIDA also funds AgroSalud, a five-year project that started in 2005 to extend the benefits of nutritionally improved staple crops to Latin America and the Caribbean. In 2002, two CIMMYT scientists received the World Food Prize for their work to develop QPM.

What will Yunnan farmers do when the rain stops?

farmer-yunnanprovince
comparison-drought-tolerant-maize
cimmyt-yunrui47
farmers-huanyanmin
maizebreeders

Farmers in Yunnan Province are increasingly reacting to climate change by using maize seed for drought conditions developed by CIMMYT in collaboration with the Yunnan Academy of Agricultural Sciences.

Forming part of southwest China’s rugged terrain, the Yunnan Province mountain chains create spectacular vistas in every direction. Unfortunately, the scenic landscapes also make life tough for farmers. Only 5% of the province is cultivated land. Still, agriculture is a pillar of the provincial economy, and maize is the most commonly grown crop.

Faced with a mean elevation of over 2,000 meters and average slopes as steep as 19 degrees, Yunnan farmers have adapted by growing maize on the hills and mountains. This so-called “down-slope cultivation” has fed Yunnan for generations, but it has drawbacks, like increased erosion. Yunnan is one of the areas in China most seriously affected by erosion.

Missing the monsoon?
Besides their tremendous ability to adapt, farmers have one other ally in the continual struggle to grow maize in this unlikely environment: the monsoon. Yunnan Province has a subtropical climate and an average annual rainfall of more than a meter—very generous for maize—and most of which normally falls during the growing season, May to October.

But today’s farmers in Yunnan have a new concern: what happens when the monsoon fails to appear? It’s not a hypothetical question. In 2010, severe weather in southwest China resulted in the region’s worst drought in a century. In the months prior, large swaths of Yunnan hadn’t received adequate rainfall. Then the rainy season ended early, temperatures rose, and drought set in, ultimately affecting more than 60 million people and destroying billions of dollars worth of crops. In 2011, drought re-occurred in eastern Yunnan, affecting a large area of maize.

Now farmers are left wondering if these phenomena are flukes or part of a larger trend. In fact, climate change models suggest the fluctuations in rainfall will continue and increase in intensity. Yunnan’s maize farmers may no longer be able to count on the monsoon.

Better maize: Part of the answer
The solution, put simply, is to change. And helping farmers to change from the only thing they’ve ever known takes patient expertise. Some of that has come from a team led by Dr. Fan Xingming, Director General, Institute of Food Crops, Yunnan Academy of Agricultural Sciences (YAAS), in partnership with CIMMYT.

Drawing on sources from CIMMYT’s maize and wheat seed bank—which conserves 27,000 unique collections of maize seed—Fan and his group have developed 22 hybrids, several of which possess improved performance under drought and multiple disease resistance. Because they produce consistently higher yields and better incomes for Yunnan farmers, the hybrids have been a hit. Today they cover approximately 200,000 hectares—15% of Yunnan’s annual maize area—and have increased farmers’ incomes by approximately USD 200 million between 2000 to 2010. One of those developed, Yunrui 47, is drought tolerant and performed well in 2011 in severely droughted areas in Yunnan, including Zhaotong, Wenshan, Xuanwei, and Huize.

Some are more resistant to insect infestation and rot than older maize varieties. Because of this, their grain can be stored longer. Instead of selling their harvest in January when prices are low, farmers can keep it until June, when prices are better. The hybrid Yunrui 88 is high-yielding and resistant to several of the region’s most damaging maize diseases, according to Dan Jeffers, a CIMMYT maize breeder based in Kunming. “Yunrui 88 has been highly resistant to maize dwarf mosaic, resistant to leaf blights, and shows intermediate resistance to ear rot,” he says. “In addition, it yields an average of around 9 tons per hectare of grain.”

Another of the hybrids, Yunrui 8, is an example of quality protein maize, a high-lysine and high-oil hybrid that is more nutritious for humans and farm animals, as well as being highly resistant to ear rots. Yunrui 8 has been recommended by the Ministry of Agriculture of China as the leading national variety in 2010. It is the most popular hybrid in Yunnan, with a cumulative coverage of 0.5 million hectares in the province.

Farmers have testified to the nutritional quality of the hybrid grain. Huan Yuanmin and her husband grew Yunrui 8 on 4.6 hectares for 3 years. Utilizing the profits from their surplus harvests, they bought 200 pigs and fed them hybrid maize grain. “We noticed that with the hybrid maize, our animals grew faster and were more robust,” says Huan. “The sows gave more milk, so suckling pigs could be weaned three-to-five days ahead of the normal of 28 days.” This in turn raised the family’s profits. “Even the skin and hair of the pigs became shinier,” she added.

International partnerships bring benefits for farmers
Staff of YAAS began collaborating with CIMMYT in 1976. Over the decades, that relationship was strengthened by the personal visits of CIMMYT regional maize staff and the late Nobel Peace Prize Laureate and wheat breeder, Dr. Norman Borlaug. According to Fan, CIMMYT germplasm was the basis for Yunnan’s strong maize production and breeding program. “CIMMYT experts have helped Yunnan in many ways, including training and sharing expertise,” he said. “I really appreciate this and sincerely hope we can continue cooperating, progressing in maize breeding, and developing more hybrids that will allow farmers to contribute to the food security of people in less developed areas.”

For more information: Dan Jeffers, maize breeder (d.jeffers@cgiar.org)


Related story:

  • HarvestPlus-China field day exhibits maize hybrids in southwestern China