Skip to main content

Aguas negras: An agricultural revolutions buds in Mexico

Just outside Mexico City, a group of farmers who grow maize and other crops using sewage water are adopting cutting-edge conservation agriculture techniques to save on irrigation and reduce their costs.

Geraldo GĂĄlvez Orozco is a man with wrinkles as deep as his voice and hair that is decidedly neither gray nor white. After concluding his 40-year career as a math professor GĂĄlvez went looking for a new challenge and found it in farming.

Gálvez is a 79-year-old Hidalgo native who has been farming in the Mezquital Valley for 15 years. The valley is nestled in the rolling mountains of southwest Hidalgo State, situated 60 kilometers north of the country’s capital, Mexico City. It is a region known for many things; the Mezquital trees that canvas its hills, an arid climate, and surprisingly, a thriving agricultural sector. Despite the region’s parched soils—the Mezquital Valley receives an average of only 527 mm of rainfall each year— about half of the valley’s residents are farmers.

Putting waste to work

Since 1789, Hidalgo’s farmers have relied heavily on an unusual form of irrigation—wastewater from Mexico City. The valley’s farmers use the sewage water, referred to as ‘aguas negras’ or black water, to irrigate 563 square kilometers of grain. It is the largest wastewater-irrigation system in the world.

Using sewage water to irrigate food crops may raise the suspicions of some, but 10% of the world’s crops are irrigated using some form of sewage, according to the IRC International Water and Sanitation Centre. Farmers in India, China, Pakistan, Jordan, and Israel apply the practice. Wastewater is spiked with nutrients or ‘natural fertilizers’, so crops are enriched without the added cost of fertilizer. Precautions are taken to ensure the crops irrigated by the aguas negras are of the highest quality. By Mexican law, farmers can only use sewage water to irrigate cereal and fodder crops. Maize and alfalfa are the most popular.

Adopting in the face of change

Today, the farmers of the Mezquital Valley are facing change. Within the next two years, the black water irrigation supply will decrease due to a new government initiative to purify Mexico City’s wastewater and reuse it within city limits.

To reduce their water use and maintain their soils, farmers in Hidalgo are switching from traditional agriculture practices to an innovative way of farming that is used extensively in Argentina, Australia, Brazil, Canada, and the USA.

From arithmetic to agronomy

GĂĄlvez started experimenting with conservation agriculture-based practices eight years ago when he heard of its benefits from a fellow farmer. He began by trying zero-tillage, a practice whereby crops are seeded directly into field residues without plowing, and a key proponent of resource-conserving farm practices. Today, on the three-hectare farm where GĂĄlvez grows maize and oats, maize husks and cobs litter the ground. Husks and cobs that assure any curious passer-bys that GĂĄlvez indeed practices conservation agriculture, as leaving crop residue is another foundational principle.

“Since switching to conservation agriculture, I have noticed a small increase in my yields compared to what I used to produce under irrigation, but I don’t do it for the yields. Living in a climate like this, keeping my soils in good condition is my number one priority,” Gálvez says, “that’s why I practice conservation agriculture.”

According to FermĂ­n HernĂĄndez MĂ©ndez, a graduate of CIMMYT’s conservation agriculture-certification course and a technician with the Mexican subsidiary of Monsanto, ASGROW seed company, GĂĄlvez isn’t the only farmer in Hidalgo changing his ways. “In Hidalgo, conservation agriculture is a revolution,” said HernĂĄndez, “Farmers are adopting the practice because they know that a change is coming— a change that is most likely going to strain their soils.”

The work of the Mexico-based Conservation Agriculture Program in the Mezquital valley is funded principally by the Mexican Agricultural Secretariat under the MasAgro initiative and by Monsanto-ASGROW, as well as with support from numerous foundations and local organizations.
The work of the Mexico-based Conservation Agriculture Program in the Mezquital valley is funded principally by the Mexican Agricultural Secretariat under the MasAgro initiative and by Monsanto-ASGROW, as well as with support from numerous foundations and local organizations.

For soil’s sake

It can be seen in the Mezquital Valley, as well as around the globe, that farmers who have practiced traditional agriculture for generations are adopting conservation agriculture. This is because today, more than ever before, global changes are threatening agriculture and food security worldwide.

Climate change, drought, soil degradation, and a rapidly growing populace are taking effect, and traditional farming practices can’t keep up. In the face of this adversity, farmers are switching to sustainable farming practices –practices that use fewer resources, facilitate healthy, nutrient-rich soils, and improve farmers’ yields.

Conservation agriculture is a forward-thinking way of farming based on three principles: minimum soil movement, covering the soil surface with crop residues and/or living plants, using crop rotations to avoid the build-up of pests and diseases. These principles are widely adaptable and can be used for a variety of different crops in varied soil types and environments.

Sustainable and beneficial

Mezquital Valley farmers receive record yields due to their nutrient-rich irrigation system. Farmers in Mexico’s highlands – where crops rely on precipitation alone – are not so lucky, but because of conservation agriculture’s water-saving benefits, these farmers have produced acceptable yields in dry years when neighboring fields withered. During the 2009 drought in the Central Highlands, farmers who practiced conservation agriculture harvested up to 125% more maize than those who farmed the traditional way.

Other attractive benefits of conservation agriculture are its cost and labor savings. Reducing or eliminating plowing allows farmers to sow and fertilize a field in a single sweep, rather than multiple passes. Decreasing machinery use saves time, fuel, money, and wear and tear on machinery.

Combining higher yields with lower costs, conservation agriculture allows farmers in rainfed areas to earn more and save more. This meant an average net return that was almost twice as high as the earnings of traditional practitioners. The average net return of Mexican highlands farmers who practice conservation agriculture was more than 800 USD per hectare compared to the approximate 400 USD per hectare that conventional highlands farmers reaped. It is no secret that conservation agriculture is putting more money in farmers’ pockets and more food in mouths around the world.

A smooth transition

Although the benefits of conservation agriculture are numerous, its adoption worldwide faces hurdles. One is the competition for crop residues, which often have great value as forage. Also, farmers are skeptical about shifting from the traditional farming method, including tillage, which they and their peers have practiced for generations.

As a conservation agriculture-certified technician, Hernández works to help smooth the transition. “It’s nothing more than a question of culture,” he replied, when asked why some farmers are hesitant to adopt the new principles. “It’s not that they don’t believe us or think we mean ill, it’s simply that they are afraid of change.”

Yet these hurdles begin to appear less daunting as farmers face rising temperatures, sky-rocketing fuel prices, and looming water shortages, not to mention mounting demands to grow more food grains locally, rather than importing them. To help farmers, researchers are exploring and promoting flexible ways to apply conservation agriculture. For instance, they suggest that farmers keep a minimum of 30% ground cover year-round. The remaining residues can be used or sold as forage. The new system also opens opportunities for more diversified cropping, including growing fodder crops, which can provide additional income for farmers.

Patience paying off

“I’m not worried for myself, I have all I need. I am worried for my children. The land needs to stay healthy and fertile for the future generations,” Gálvez says as his shoes, one step behind his wooden cane, crunch through the corn husks and stalks that blanket his fields. The air is dry and the sun is searing, yet Gálvez’s crops seem at home in their arid environment.

Colombian perennial-crop farmers cash in with maize

dec05
Coffee and oil palm farmers in Colombia are turning a profit by adding high-yielding CIMMYT maize hybrids to their cropping systems.

For about six years, CIMMYT and the large Colombian producer federations for coffee (FEDERECAFE) and cereals (FENALCE) have partnered to help coffee growers profit by cropping maize in the rows between pruned coffee plants, obtaining as many as three maize harvests while the coffee plants grow back.

Led by maize breeder Luis Narro, CIMMYT has contributed hybrids that yield as much as 10 tons per hectare and are resistant to locally-important fungal diseases, particularly those caused by Cercospora zeae-maydis and Phyllachora maydis. As one result, over the short life of this work the maize area in coffee zones has already gone from 5,000 to 60,000 hectares, with a potential of 150,000 hectares.

Moving to palms

Carlos Peluha works for the Colombian Cereal Producers Federation (FENALCE) coordinating a project between CIMMYT and FENALCE, the Oil Palm Producers Federation (FEDEPALMA), and the Colombian Palm Oil Research Center (CENIPALMA). He appears here in a stand of maize at La Vizcaina, Colombia's chief research station for palm oil plants.
Carlos Peluha works for the Colombian Cereal Producers Federation (FENALCE) coordinating a project between CIMMYT and FENALCE, the Oil Palm Producers Federation (FEDEPALMA), and the Colombian Palm Oil Research Center (CENIPALMA). He appears here in a stand of maize at La Vizcaina, Colombia’s chief research station for palm oil plants.

This success has also bred a new partnership involving CIMMYT, FENALCE, and the Federation of Oil Palm Growers (FEDEPALMA). The plan is for palm plantations to grow three or four maize crops, while young palm plants complete their growth cycle. Oil palms are grown on 350,000 hectares in Colombia, though the potential is 10 times that area, according to Narro.

The palm-maize intercrop seems especially attractive, given that many Colombian plantations are completely renewing their oil palm stands due to severe attacks of bud rot disease (Phytophthora palmivora). This disease and other constraints are severely affecting small-scale (less than five hectares) palm growers in locations like Tumaco, who previously earned at least USD 1,500 per month selling palm for oil extraction. Critically, farmers’ production losses also represent lost employment for farm laborers, who are typically economically-disadvantaged. Growing maize offers a profitable hedge for all, while producers wait for the new generation of palm plants to come on line.

To date, 500 experimental maize hybrids have been tested in trials in 4 oil palm plantation zones. According to 90 farmers who took part in a field day at Tumaco in October 2009, the trial results have been good. The highest yields surpassed 10 tons per hectare, with yields of 7 tons and profits of USD 1,500 per hectare on small-scale farmers’ plots.

“An interesting advantage of this intercrop,” says Narro, “is that incorporating maize residues into fields makes the young palms mature to their productive stage in three years instead of four.”

For more information: Luis Narro, maize breeder (l.narro@cgiar.org)

Battle of the tills

CIMMYT E-News, vol 4 no. 6, June 2007

A new experiment, using precision water control, gives hard data about the gains that can be made growing wheat under zero-tillage conditions.

This was a classic showdown. On the right one hundred wheat lines (from the 14th and 15th International Semi-Arid Wheat Yield Trials) planted in the conventional way on tilled soil. On the left an identical one hundred wheat lines, but this time planted without tillage into the residue of a zero-tilled sorghum crop (the field had previously been tilled normally). The objective? To determine which cropping method would give the best results under different water conditions. Biggest yield wins.

When the team at the CIMMYT experimental station near ObregĂłn in northwest Mexico planted the two identical sets of seeds, they had high hopes that they would find significant differences. This relatively straightforward experiment was designed by CIMMYT rainfed wheat breeder Yann Manes. It took advantage of the fact that it rarely rains during the growing season at ObregĂłn, so precision irrigation could be used to simulate various rainfall conditions. Manes expected the zero-tillage field would give higher yields when there was water stress but he needed to prove it. “The stubble from the sorghum should help the soil retain water,” says Manes. “But this was the real test. No one had actually done the zero-tillage face off under different but carefully-controlled water conditions on a large set of wheat varieties.”

The two plots were divided into three strips, each one receiving a different, carefully-controlled amount of water. They used what the ObregĂłn teams calls “the dinosaur”, a fifty-meter-long, three-armed machine that can deliver water precisely to each growing row, simulating rainfall. One set of plants in each plot received a normal amount of water (320 mm). The middle strip was water-stressed, receiving a reduced amount of water (175 mm), and the last strip in each plot was grown under drought-like conditions, receiving only 105 mm of water during the whole growing season.

As the wheat approached maturity, some differences started to appear in the two plots. Manes was pretty excited. “You can see there is a difference in biomass,” he says. “Look here to the left, in the drought-stressed wheat on the zero-tillage side there is more than in the same strip on the right.”

But biomass and yield are not the same thing. What if the wheat plants under zero-tillage conditions just made bigger leaves and stalks but did not have larger or more grains in their spikes? The team had to wait until each strip was harvested and the results from all the lines, all the strips, and both plots were computed.

 

What the team found was that under normal rainfall conditions there were no appreciable differences in yield between the two plots. This reflects what has been seen in long-term trials of various tillage practices run in ObregĂłn; that the advantage of zero over normal tillage starts to show only after four or five years. But under water stress conditions, it was a totally different story. Under both reduced-water conditions and simulated drought there was an average yield advantage of between 8 and 9% to the wheats on the zero-tillage side. Zero-tillage wins, plows down.

Samples taken during the crop cycle confirmed that zero-tilled soil held moisture better than conventionally-tilled soil in this experiment. The data also gave other interesting insights into how different wheats respond to drought conditions as well as to the cropping practice, and Manes says that opens the door to a whole new line of research—determining whether you get different results in breeding when you make your selections from zero-tillage rather than conventional plots.

The work was done in collaboration with CIMMYT’s agronomy team led by Ken Sayre, who analyzed the soil samples, and with Jose Crossa, from the Crop Research Informatics Laboratory (CRIL), who did the statistical analysis.

Manes cautions that this is just one season of data. He intends to repeat the experiment again next year, and in the meantime former CIMMYT breeder Richard Trethowan is doing a similar experiment in Australia.

Manes cautions that this is just one season of data. He intends to repeat the experiment again next year, and in the meantime former CIMMYT breeder Richard Trethowan is doing a similar experiment in Australia.

“I think next season the results might be even better,” says an optimistic Manes. “The soil will have had another year of zero-tillage, with more organic residue available to hold water. At least that is what I would expect. Of course, I won’t know until I try it.”

For more information: Yann Manes, rainfed wheat breeder (y.manes@cgiar.org)

What’s Wheat Got to Do with It?

CIMMYT E-News, vol 3 no. 2, February 2006

feb_wheat11The CIMMYT-convened Rice Wheat Consortium for the Indo-Gangetic Plains (RWC) reaches out to the poorest of the rural poor in India’s Bihar state.

Mrs. Lal Muni Devi and her family live in a windowless, single-room, thatched roof house in the village of Azad Nagar, half an hour’s drive from the city of Patna in Bihar state in India, in the impoverished eastern section of the vast Indo-Gangetic Plains. Most farms here are small and almost all farmers grow two crops a year; rice during the wet, monsoon season, and wheat on the same fields during the dry winter. The RWC conducts farmer-managed trials and demonstrates practices that conserve soil quality and water and cut farmers’ production costs. These include direct seeding of wheat and rice without previously cultivating the soil—a practice known as zero-tillage. In the case of rice, this involves the radical measure of growing it on dry land; that is, without flooding fields or puddling the soil.

But there’s a catch: Devi is not a farmer. She and her family are among the landless poor who cannot directly benefit from the new, resource-conserving practices that are starting to make a difference for smallholder farmers in her community. In fact, what little income she and her family earn comes from selling their labor to the farmers. They prepare the land for rice, for example, and transplant the rice seedlings from nurseries to the paddies. They also weed the wheat fields and harvest the crops, all by hand.

Providing opportunities for people like Devi is one part of an RWC project being implemented in partnership with the Indian Council for Agricultural Research (ICAR) and supported by the International Fund for Agricultural Development (IFAD) in the district. “The landless are typically the core rural poor”, says Olaf Erenstein, CIMMYT socioeconomist in South Asia. “But they are relatively invisible, difficult to reach, and often forgotten by agricultural research and development organizations. The challenge is to provide them with significant income-generating options by building on their skills and the limited assets they command.”

Devi’s house is lit only by small kerosene lamps. Inside, balls of wheat straw hang on twine from the roof. Oyster mushrooms grow on each ball, thriving in the relatively dark and damp interior of the house. There is a market for them in the nearby city and wheat straw is plentiful. The spores are readily available and, at 50 rupees a bag (the equivalent of about US$ 1.20), not expensive. The economics are good and the mushrooms don’t require much labor.

feb_wheat2

“I’ve just sold my first kilo and received 250 rupees,” she smiles, happy at the prospect of having cash for household needs. In Azad Nagar, women have formed a self-help group and are all growing the mushrooms, a proficiency they acquired through the project

This is the first season and the group represents a small, pilot initiative, but the impacts are already being felt. “Now we have tasted the delicacy ourselves, the oyster mushrooms, for the first time,” Devi says. The women recognize new bonds among themselves in their community and control the money they earn. “I need to buy some new clothes for the family,” Devi says. “And if there is something left, I want to buy some jewelry.”

For more information contact Olaf Erenstein (o.erenstein@cgiar.org)

The Word on Wheat

June, 2005
Farmers talk: The human face of CIMMYT wheat

I’m helping to select for CIMMYT wheat on my farm, which has actual production conditions. This way I have the opportunity to see with my own eyes how varieties perform and then I can choose the good ones. This year there are 160 different wheat lines on my farm—I can see the good ones and so can other farmers.”

-Viktor Surayev, Kazakh farmer

“Our wheat looks better than our neighbor’s crops, probably due to the new wheat we planted.”

-Shodi Mirzobedov, Tajikistan

“A lot of people say good things, but CIMMYT says and does good things. They don’t just show and talk about the technologies. They do more than just demonstrate them in the field, they get down on the ground, get under the planters, and change and adjust the adapted planting units.”

-Darynov Auezkhaz, Kazakhstan Farmers Union

“Previously we had no linkages with agencies or persons to obtain knowledge or information. We used to grow only the old varieties—we sowed the same seed for ten years! Now we are looking to diversify and intensify farming to get more cash.”

-Anil Singh, farmer from Karhat Village, eastern Uttar Pradesh, India, who has launched a successful seed enterprise using CIMMYT-derived wheat varieties.

In participatory varietal selection in several villages of Nepal, the choice of both men and women farmers was the recently released, CIMMYT-derived variety BL-1473. Farmers like the one here liked its ability to stand up under a full head of grain, the large, white grains it produces, its abundant straw yield, and its rapid growth. As a result, Nepal’s public seed enterprise is hastening production of BL-1473 to make the seed available to farmers.

A new study reports on the extensive use and benefits of CIMMYT wheat.

The advantage is clear: the use of CIMMYT wheat creates enormous benefits for those who grow them. Even by conservative estimates, every US $1 invested in wheat research by CIMMYT generates at least US $50 for those involved in growing CIMMYT-related wheats. According to the publication, Impacts of International Wheat Breeding Research in the Developing World, 1988-2002, farmers sowed CIMMYT-improved varieties on 62 million hectares in 2002.

“This report reaffirms the major contributions of CIMMYT wheat around the world, including areas of smallholder, resource-poor farmers,” says John Dixon, director of CIMMYT’s Impacts Targeting and Assessment Program. Farmers in developing countries yield 14 million more tons of wheat per year because of international wheat breeding research. In addition, 80% of wheat grown in developing countries has CIMMYT wheat in its family tree.

Because this report documents the successful adoption of modern wheat lines, policy-makers will be able to assess progress and set priorities for future research investment. Its conclusions support those found in two earlier studies, and the coverage extends to include many countries in Eastern Europe and the former Soviet Union.

In countries such as Argentina, Brazil, Chile, and Uruguay, more than 75% of wheat marketed by private companies has CIMMYT ancestry. Widespread adoption of CIMMYT lines reflects the extensive use of partnerships and networks with other breeding programs to reach farmers with relevant varieties. This adoption and the subsequent higher on-farm yields generate enormous benefits for farmers, enhancing their food security and livelihoods (see box)—a central part of CIMMYT’s mission.

Check out our website to order this publication and click here to view a research summary of this report. (PDF)

Knowing the Enemy: Foliar Blight

CIMMYT E-News, vol 2 no. 11, November 2005

pict1CIMMYT-Nepal makes progress against a disease in wheat that disguises itself as drought.

CIMMYT and partners in Nepal have identified new sources of genetic resistance to a disease that makes wheat plants looks as though they have been through a drought. The symptoms of foliar blight result from fungal infections, either spot blotch or the less well-known but related tan spot. These pathogens dry the wheat plant and shrivel grain. In the warm areas of South Asia, that appearance can lead farmers to blame drought rather than an infection. By “knowing the enemy,” as CIMMYT partner Ram Sharma puts it, it is easier to win the fight against the disease.

pict2
CIMMYT pathologist Etienne Duveiller and Sharma, who have both done work on the pathogens, have found an effective method to select for resistance: finding wheat with a heavy grain weight, early maturity, and resistance to both pathogens. Wheat that carries these three traits together makes for wheat with higher resistance. Through regional collaborative trials in South Asia, they have bred and identified wheat lines that look promising. While better than anything previously seen in the area, these wheats can still suffer up to 35% yield losses—and have a huge impact on resource poor farmers who grow their wheat for food, as most do in Nepal.

When the temperature soars to 26-28°C, however, no wheat can resist the disease. This is why it is so important to find wheat that matures early to avoid the abrupt rise in temperature accompanied by hot winds in late March and April. This becomes difficult as most farmers in the region are delayed planting wheat as they wait for their rice harvest to finish and the paddies to dry up.

In addition to genetic resistance, solutions can come in the form of good management. Surface seeding, when seed is broadcast on the mud directly after the rice harvest, allows earlier planting and gives the wheat crop a jump start on the heat. Crop rotation and soil nutrients are important because healthy soils help the crop resist the disease. Also, Duveiller and Sharma have found that wheat is better able to withstand the disease with proper soil moisture.

The CIMMYT-Nepal team expects that these new sources of resistance, coupled with good management practices, will limit the destructiveness of this disease. They know it can be done—foliar blight has already been substantially reduced in areas of South Asia such as Bangladesh through better wheat varieties. The challenge is to sustain progressive control of this threat across the warm wheat growing areas of South Asia.

For further information, contact Etienne Duveiller (e.duveiller@cgiar.org) or Ram Sharma (sharmar@cimmyt.exch.cgiar.org).

Study Promotes Resource-Conserving Technologies for Under-Used Lands

June, 2004

The densely populated Eastern Indo-Gangetic Plains of South Asia is highly dependent on agriculture and extremely poor, but significant tracts of agricultural land is under-used. Can it be made productive?

In the Eastern Indo-Gangetic Plains, more than 300 million people live on less than 35 million hectares. They depend on that land for food, employment, and income. Most farm households produce rice in rotation with wheat, but to reduce the risk of losses in a region where the climate can seesaw from extreme drought to heavy flooding in the same year, they also plant a variety of other crops. A lack of tillage options and appropriate planting techniques has been a major obstacle for these under-used but potentially productive lands.

Farmer management practices and environmental and social conditions all contribute to land under-use and low productivity. Heavy rains, residual moisture from the last crop, poor drainage systems, insufficient irrigation water, alkaline or saline soils, and a lack of alternative cropping practices often make it challenging for farmers to plant winter season crops on time or plant any crops at all.. Some conditions simply exacerbate the problem. For example, in Uttar Pradesh, an estimated 1.2 million hectares are not used because of a high buildup of salts.

In India, the impoverished Ballia District in Uttar Pradesh is representative of conditions throughout the Eastern Indo-Gangetic Plains. Most land is used for the main economic activity: agriculture. The farming community comprises small-scale and marginal agricultural enterprises that support a large number of landless laborers. Ninety percent of the population lives in rural areas. Cropping systems anchored by rice and wheat occupy most arable land.

Mapping and Understanding Land Use Patterns

A recently completed study by Parvesh Chandna and colleagues used remote sensing and GIS methodology to estimate and map the area of under-used land in Ballia District. The study, “Increasing the Productivity of Underutilized Lands by Targeting Resource Conserving Technologies – a GIS / Remote Sensing Approach,” was sponsored by the Asian Development Bank as one component of the project on “Sustaining the Rice Wheat Production Systems of Asia.” It is a collaboration between CIMMYT and the Rice-Wheat Consortium.

Chandra and his colleagues incorporated satellite images from four different dates that showed land-use patterns in farmers’ fields over time. The time-series satellite data helped to identify areas sown to wheat / barley and rice and to distinguish land in different ways, such as land that was planted late, left fallow, was waterlogged, or was saline. Using GIS tools, researchers aligned the images within the same geographic coordinates to accurately overlay spatial layers such as administrative boundaries. They also looked at in situ field observations and soil samples to ensure that satellite-derived information was accurate.

Chandna and his colleagues estimated that the area of under-used land during 2001-02 was about 76,000 hectares, or 27% of the cultivable area. Late planting was a big problem, particularly with wheat. Experiments have shown that timely wheat planting could increase production by up to one ton per hectare on average, with no additional inputs or changes. In Ballia, this practice could potentially increase wheat production by as much as 75,000 tons. Using these methods, researchers accurately and cost-effectively characterized five major land types that are not reaching their full potential.

More Appropriate Practices

More efficient use of land and other resources could turn one of the poorest regions of South Asia into a granary and help meet future requirements for food and income, but only if researchers know which farmers need which kinds of technology. Information from the Ballia study will allow researchers to match land-use characteristics with agricultural technologies and make land more productive.

Traditional tillage practices often delay planting in excessively wet or waterlogged soils, and sub-optimal management practices often fail to capitalize on limited water resources. Resource-conserving technologies such as zero tillage, surface seeding, and bed planting could help increase production and reduce costs on under-used land throughout the Eastern Indo-Gangetic Plains.

Zero or reduced tillage for growing wheat after rice has been catching on fast in the region and is helping farmers increase productivity and reduce fallow land area. This crop planting system causes minimal soil disturbance by eliminating preparatory tillage such as plowing or harrowing. The reduction in land preparation time permits timely sowing of winter season crops, plus it allows optimal use of available soil moisture. There are also significant cost reductions and environmental benefits through reduced diesel consumption.

Furrow-irrigated raised bed planting technology allows farmers to intensify crops and saves costs on irrigation water. Farmers use the raised beds to grow crops and the furrows, where they sometimes plant an intercrop, for irrigation. In addition to being highly water-efficient, research has shown that bed systems offer major advantages for saline or sodic soils.

The simplest zero tillage option is surface seeding. Farmers just spread seed on excessively wet soil, on top of crop residues and without any land preparation. The practice is especially suitable for areas that have fine soils and poor drainage or where land preparation is difficult. An evaluation of soil moisture and seeding at the correct time is critical to its success. Surface seeding allows timely sowing in areas where planting machinery is not available, and it saves costs on labor, fuel, and tillage. Even the poorest farmers can adopt this practice.

These technologies could raise productivity in a sustainable manner and improve livelihoods for resource-poor farmers. However, effective promotion requires a well-organized database with information about the distribution of land types and problematic areas. Thanks to this study, scientists have a clearer picture of the problems, their location, and their relative importance. They have a much better idea of where technologies should be targeted to improve land use in a sustainable way for poor communities in the Eastern Indo Gangetic Plains. There are currently plans to scale-up the methodologies developed in this pilot study to cover an expanded area.

For information: Parvesh Chandna

Reducing damage to grain stores of the poor

December, 2004

Saving grain from hungry pests can significantly improve the food security and livelihoods of farm households in the developing world’s poorest areas.

Even if poor farmers have a good maize harvest, many who live in humid environments and do not have effective storage containers face significant grain losses in the following months. Grain can suffer 80% damage and 20% weight loss within six months after harvest in Mexico’s harsh tropical environments, where grain-damaging insects thrive, according to CIMMYT entomologist David Bergvinson. “Two major pests in Africa—maize weevil and larger grain borer—can consume as much as 15% of a harvest in a few months,” says Bergvinson. Working on reducing storage losses is one way that he and other CIMMYT scientists target impoverished areas, increasing food security and allowing farmers to enter grain markets when prices are favorable.

Participatory Breeding to Foil Weevils

There are several ways to lessen grain damage. Farmers can remove infested grain and thoroughly clean storage facilities to eliminate insects before storing new grain. Improved grain storage technologies, such as silos, also help. Finally, scientists can breed maize to be more insect resistant with tighter husks or harder kernels. “With resistance as an inherent part of seed, farmers can cut back on the use of noxious pesticides,” says Bergvinson.

Working to breed hardier maize, Bergvinson crossed farmers’ varieties in Mexico with insect-resistant and drought-tolerant CIMMYT varieties and returned the seed to farmers for planting in mid-2004. Researchers also planted these crosses on farms near CIMMYT research stations to evaluate their performance, to make controlled pollinations, and to compare farmers’ selections with their own. “Our ultimate goal is to increase the genetic diversity of landraces with resistance to production constraints identified by farmers,” says Bergvinson. Farmers most often asked for drought and weevil resistance to be added to their landraces.

Targeting Peaks of Poverty
Bergvinson and his associates are working with 54 farmer varieties for lowland tropical areas of Mexico and 36 for higher altitudes (1,200-1,800 meters above sea level). It is in many of these hill zones where poverty and maize-bean subsistence farming go hand in hand. The methods applied could have relevance for smallholder maize farmers in other parts of Latin America and in Africa.

In preparation for extending their efforts to reach more of the poor, the researchers have also sampled farmer varieties in eight Mexican locations identified in a recent CIMMYT study (see Maps Unearth New Insights for Research to Help the Poor) as having a high concentration of the poor. “We’re working with farmers in these areas to improve their varieties for traits they identify, such as resistance to storage pests and, in hill zones, stronger roots and stems so that plants don’t fall over in strong winds,” Bergvinson says. The researchers are also taking care to maintain other traits that farmers value. One example in lowland areas is the long husks that farmers remove and sell as wrapping for the popular Mexican dish known as “tamales.” In some communities, husks for this purpose are worth more than the grain (see Rural Mexico and Free Trade: Coping with a Landscape of Change).

Global Science to Protect Grain

Bergvinson belongs to a worldwide community of researchers applying science at all levels to develop pest-resistant maize. “A small but noticeable renaissance in the use of resistant varieties to minimize storage losses is taking place worldwide, especially for ecologies where storage infrastructure doesn’t exist,” says Bergvinson. He says researchers have made significant progress in understanding the biochemical, biophysical, and genetic bases for resistance, among other things to ensure the traits satisfy consumer demands. Such traits are being “mapped” using DNA technology to confirm their role in resistance and to identify the genes involved. “The real potential of this technology will be felt in developing countries,” Bergvinson explains. “The resistance is packaged in the seed and designed to ensure that farmers have the option to recycle seed, a practice common to small-scale farmers.”

For more information: d.bergvinson@cgiar.org

New York Times reports from Ciudad ObregĂłn

crackedsoil-wheatspikesIn a recent New York Times article, journalist Justin Gillis reports on the planet’s looming threat of climate change, agriculture’s monumental challenge, and how CIMMYT is working diligently to mitigate these global hurdles.

The article, which appeared in the 05 June 2011 print edition, reports from CIMMYT’s Ciudad Obregón station where wheat variety testing takes priority. As one of the four staple crops that constitute most human calories, wheat production is crucial to ensuring global food security; a task that is becoming more difficult amid growing populations, a changing climate, and the depletion of natural resources, according to Gillis.

“There is just such a tremendous disconnect, with the people not understanding the highly dangerous situation we are in,” CIMMYT’s deputy chief Marianne Banzinger told Gillis.

Furthermore, food shortages do not just affect the population going to bed hungry. Gillis states that food shortages can and do lead to political unrest, citing past turmoil in Haiti and the recent political destabilization in Arab countries. But not all hope is lost, as many agricultural scientists and experts believe that sustainably increasing global agricultural production is feasible.

“It may be possible to make more productive and resilient in the face of climate change,” Gillis reports. “But how?” you might be wondering – through the introduction of new agronomical techniques and new varieties resistant to climate strains, such as heat and water stress, and new pests.

Read the entire article available on nytimes.com.

Latin American ministers visit CIMMYT and develop food price crisis strategy

CIMMYT E-News, vol 5 no. 5, May 2008

may05Skyrocketing food prices recently brought Latin American agriculture ministers from 14 countries and development experts to CIMMYT to seek a way forward for a region characterized by serious rural poverty.

On 26 May 2008, ministers of agriculture and government officials from Belize, Bolivia, Costa Rica, Cuba, the Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, and Venezuela, as well as representatives of international organizations working in agricultural development and the Mexican media—more than 70 persons in all—visited CIMMYT’s headquarters in Mexico to learn about the center’s work and discuss collaborative strategies for addressing the food price crisis. The visit was part of a two-day summit organized by Mexico’s agriculture (SAGARPA) and foreign relations (SRE) ministries, following up on recommendations from a regional summit on the same topic in Nicaragua earlier this month.

Speaking on behalf of the Alliance of Centers of the Consultative Group on International Agricultural Research (CGIAR) in his welcoming talk, CIMMYT Director General Tom Lumpkin emphasized the need to move from the present emergency to a permanent vision for addressing the crisis. “It appears that two decades of complacency about basic food production has finally given way to a sense of urgency,” Lumpkin said. “We must now transform that urgency into a long-term vision, making sensible investments in agricultural research and extension to provide food for our children and our grandchildren.”

Have policy makers forgotten small-scale farmers?

The rising cost of food is being felt around the world, especially by poor people in rural zones. Though often not on the radar screens of policymakers, the rural poor are numerous. A recent paper from the International Food Policy Research Institute (IFPRI) says there are more than 400 million small farms in developing countries, and that these are home to most of the world’s hungry and disadvantaged. In Latin America and the Caribbean, nearly 64% of the rural population lives below the poverty line, according to a report by the International Fund for Agricultural Development (IFAD). Over the last two decades, the number of poor people in rural areas in the region has increased in both absolute and relative terms, the report says.

SAGARPA and CIMMYT undertake new, joint projects

As the meetings closed, Lumpkin urged “
the governments of Mexico and other countries in the region to re-examine their relationship with CIMMYT and bring new backing for research to increase food production and farm productivity.” In the week following the visit and at the invitation of Mexico’s Secretary of Agriculture, Alberto CĂĄrdenas JimĂ©nez, the center has submitted proposals for joint SAGARPA-CIMMYT work to develop, test, and disseminate drought tolerant maize varieties, as well as management practices that reduce small-scale farmers’ losses of stored maize grain to insect pests.

For more information: Rodomiro Ortiz, Director, Resource Mobilization (r.ortiz@cgiar.org)

may06

Truman State University Students See Science in Action at CIMMYT

September, 2004

truman_studentsFive undergraduate biology students from Truman State University in Kirksville, Missouri, visited CIMMYT headquarters for four days in August to learn about CIMMYT’s research and observe scientists working in an international environment.

“What they are doing at CIMMYT is on the cutting edge in the molecular aspects, as well as in the traditional breeding programs,” says student Benjamin Schmidt. “Everyone we met was friendly and helpful in explaining the centers’ goals and how they hope to accomplish them.”

Scientists in the Applied Biotechnology Center gave presentations to the students about their research and also provided constructive criticism and new perspectives on the research presentations given by the students. “The best part was the scientists’ willingness to hear about our research and share their research with us,” says student Christopher Spencer.

Their research project, entitled “High-Density Genetic Map of Maize Transcripts,” focuses on comparing the genetic map of thousands of sequenced maize genes to the completely sequenced rice genome. The National Science Foundation grant that funds the project is aimed partly at exposing students to the international scientific community and the challenges faced by scientists who genetically improve plants for the developing world.

Dr. Brent Buckner, the students’ biology professor, thinks the trip’s highlight was a visit to CIMMYT’s subtropical field station in TlaltizapĂĄn. “It was at this point that the students truly came to understand the marriage between laboratory science, plant breeding, and developing maize and wheat to combat world hunger,” says Buckner, who directs their research project.

“It was exciting to see firsthand the field projects that supported and complemented the laboratory projects that had been described to us on the first day, and to which the students had contributed during their shadowing experience,” says Buckner. “CIMMYT was an outstanding place to expose students to how classical breeding methods and molecular genetic techniques are being used together to improve agriculturally important crops.”

After visiting the experiment station, the students met with a local farmer who shared his methods for growing hybrid maize for his family’s consumption. “Seeing a Mexican farmer utilizing the science in the field drove home what the research is all about,” says student Ryan Douglas.

The students toured the Plant Genetic Resources Center, CIMMYT’s germplasm bank, learned about the domestication of wheat and genetic diversity of maize, and shadowed technicians in biotechnology laboratories. They saw the importance of maize in Mexico’s history and culture when they visited the Pyramids of Teotihuacan and the National Museum of Anthropology in Mexico City. The trips emphasized the link between maize cultivation and human development in Mexico, and the role grains have played in civilization.

“This is exactly what I was hoping for from this trip—the chance to interact with the people who make everything happen,” says student Kristen Haley. “I think the experience overall gave us a better understanding of the processes and a broader view of the project’s impact.”

Information for this article was provided by Kendra Knoll, a senior in communications science at Truman State University.

Doubled haploids speed development of drought tolerant maize for Africa

CIMMYT E-News, vol 5 no. 5, May 2008

may01CIMMYT is adapting an advanced technology—the doubled haploid approach—to develop inbred lines of tropical maize for sub-Saharan Africa. It promises to reduce costs and speed the arrival of better-adapted maize for resource-poor farmers in the world’s toughest environments.

CIMMYT scientists have begun developing drought tolerant varieties of tropical maize for places like sub-Saharan Africa using a high-tech approach—known as doubled haploids—previously applied principally by commercial seed companies working mostly on temperate maize.

“Haploid” refers to the number of chromosomes in a reproductive cell, like sperm or ovum. In grasses like maize, the reproductive cells—pollen and ovules—contain half the chromosomes of a full-grown individual. Fertilization joins the genetic information from the two parents, and offspring carry paired sets of chromosomes, reflecting the diversity of each parent.

“Maize breeders working on hybrids—the most productive type of maize variety and the one marketed by most seed companies—must at some point create genetically-stable and pure lines of desirable, individual plants, for use as parents of hybrids,” says CIMMYT maize physiologist Jose Luis Araus. Conventionally, breeders get the lines by repeatedly fertilizing selected, individual maize plants with the plant’s own pollen. The process requires expensive field space, labor, and time—normally, seven or more generations, which represents at least three years, even in settings where it’s possible to grow two crops per season.

Purer, faster, cheaper

In the latter part of the 20th century, crop scientists developed a quicker, cheaper path to genetically-uniform parent lines—though a technically intricate method. The first step involves crossing normal maize with special maize types called “inducers,” whose pollen causes the normal maize to produce seed containing haploid embryos. The haploid embryo carries a single set of its own chromosomes, rather than the normal paired sets. The embryos are planted, and subsequent treatment of the seedlings with a particular chemical causes them to make “photocopies” of their haploid chromosomes, resulting in a fertile plant endowed with a doubled set of identical chromosomes and able to produce seed of 100% genetic purity. “The actual treatment, as well as getting from the embryo to a reasonable amount of seed of the pure line, is very complicated,” says Ciro Sánchez Rodríguez, CIMMYT technician in charge of doubled haploid field trials, “but when the process is perfected, it only takes two generations—about one year—and the logistical advantages are tremendous.”

may04

First extensive use in the tropics

CIMMYT is implementing the doubled haploid technology on a research station in Mexico, using drought tolerant plants adapted to sub-Saharan Africa. “CIMMYT’s use of the practice is another example of how we put advanced technologies at the service of disadvantaged, small-scale farmers,” says Araus. “Among other things, this represents a significant opportunity to increase the availability of improved, drought tolerant maize varieties for sub-Saharan Africa,” he says.

Commercial seed companies in Europe and North America have been the main users of the doubled haploid technology, and the inducer genotypes available are of temperate adaptation. “The inducers perform very poorly in the tropical conditions of our Mexico stations,” says Vanessa Prigge, a PhD student from the University of Hohenheim working at CIMMYT to perfect the technique. To generate inducers that work better in tropical settings, Prigge and colleagues are crossing temperate inducers from Hohenheim with CIMMYT maize from Mexico, Kenya, and Zimbabwe. “We expect to have tropical versions of the inducers in a couple years,” she says.

Reaching farmers’ fields

Maize lines from this work will be used initially in the Drought Tolerant Maize for Africa (DTMA) and the Water Efficient Maize for Africa (WEMA) projects.

“This is a very exciting technology,” says Aida Kebede, an Ethiopian PhD student from Hohenheim helping to establish the doubled haploid technology at CIMMYT. “It holds the key to addressing more quickly the persistent problems of African maize growers: drought, disease pressure, and low productivity. I’m happy to contribute!”

Smallholder maize farmers in Zimbabwe lack knowledge of open-pollinated varieties

CIMMYT E-News, vol 4 no. 5, May 2007

OPVs perform as well as hybrids or better under the low-input conditions of many smallholder farmers in Zimbabwe, but farmers need information and training about how properly to use them.

A new study to assess the effectiveness of a large-scale maize seed relief effort in Zimbabwe during 2003-07 shows that, even among vulnerable, small-scale farmers living on the edge of survival under the most difficult conditions, a livelihood-saving technology like quality seed of open-pollinated maize varieties (OPVs) is not enough, without knowledge about how best to use it.

Farmers can save grain of OPVs from their harvest and sow it the following year without the yield or other qualities of the variety diminishing substantially. Hybrids normally yield more than OPVs under favorable conditions, but “recycling” the seed in subsequent seasons will result in a significant loss of that yield and of other advantages; farmers must purchase fresh seed each season to retain them. “Zimbabwe farmers have historically favored hybrids, and they have limited knowledge about OPVs,” says Augustine Langyintuo, CIMMYT socioeconomist and lead author of the study. “Changing economic circumstances in the country have meant that many farmers can no longer purchase fertilizer to take best advantage of hybrid yield potential. We interviewed 597 households in 6 districts of Zimbabwe where a major seed-relief effort had, among other aims, promoted the broader diffusion of OPVs over hybrids, thereby giving smallholder farmers the possibility to save and re-use their own seed without sacrificing their meager yields.”

The seed aid effort, which was funded by British Department for International Development (DfID) and coordinated by the Food and Agricultural Organization (FAO) regional office in Harare, enlisted the assistance of 16 non-government organizations (NGOs) to distribute improved maize seed to more than 25,000 needy farmers. “The average household size in our survey group was 6.5 members, supported by a cultivated farm size of just 1.7 hectares, over 60% of which is planted to maize,” says Langyintuo. “Nearly a third of the households were headed by widowed females, a factor highly correlated with poverty.”

Under the relief program, the NGOs were expected to inform farmers of the types of seed being distributed and the need to select, store, and re-use the seed properly in subsequent seasons. Less than half the beneficiaries in the first year of the program were informed of the type of seeds to be provided, although the proportion increased to more than 60% over time. Information on OPVs was limited to the fact that they can be recycled. Less than half were ever taught how to select or store their seed.

According to Langyintuo, many farmers continue to recycle hybrids, or improperly select OPV grain for future use as seed, or—in the worst cases—eat all their grain and hope for another aid shipment to sow next year. “The relatively well-endowed farmers were more willing to recycle OPV seed. In future efforts, NGOs should perhaps target them to ensure larger-scale spillovers,” he says. “In general, whoever distributes seed of improved OPVs should provide information on proper seed selection and follow up with field-level training. Farmers should also be involved in the choice of the varieties.”

Another key issue to grapple with is the unavailability of OPV seed on the market. This stems from the unwillingness of seed companies to develop and promote OPVs, given the perception that farmers will simply recycle them and never buy fresh seed. “Zimbabwe farmers recycle both OPVs and hybrids, but if given a choice, they will purchase fresh seed whenever they can,” says Langyintuo. “OPVs perform as well as hybrids or better under the low-input conditions of many smallholder farmers in Zimbabwe, so they constitute a good option for such farmers.”

You can view or download the study “Assessment of the effectiveness of maize seed assistance to vulnerable farm households in Zimbabwe.”

For more information: Augustine Langyintuo, socioeconomist (a.langyintuo@cgiar.org)

Borlaug Gets the United States’ Highest

CIMMYT E-News, vol 3 no. 2, February 2006

feb_nebAwardNorman E. Borlaug, former CIMMYT wheat breeder, 1970 Nobel Peace Laureate, and scientist whose work helped spark the Green Revolution, was awarded the National Medal of Science by US President George W. Bush at a ceremony in the White House on 13 February 2006. The award was established in 1959 to recognize special achievements and outstanding contributions in the sciences.

Borlaug has dedicated more than five decades to ending world hunger and to boosting agricultural productivity in the developing world. He has been awarded more than 50 honorary doctorates from institutions in 18 countries, and has talked to more peasant farmers and visited more wheat fields than any living person. At 91 he continues to travel worldwide to promote improved farming. He also supports CIMMYT as a senior consultant and serves as Distinguished Professor of International Agriculture at Texas A&M University.

Borlaug grew up on a small farm in Iowa, and attended a one-room schoolhouse for his first eight grades. He studied plant pathology at the University of Minnesota and was awarded his doctorate in 1941. Between 1944 and 1960, Borlaug served as the Rockefeller Foundation scientist in charge of wheat improvement under the Cooperative Mexican Agricultural Program. He later acted as a consultant to Mexico’s Ministry of Agriculture, and was assigned to the Inter-American Food Crop Program as an associate director of the Rockefeller Foundation.

With the establishment of CIMMYT in Mexico in 1963, Borlaug assumed leadership of the Wheat Program, a position he held until his official retirement in 1979. By the mid-1960s, he and partners took technical components of Mexican wheat technology to Asia, launching the so-called “Green Revolution.” Between 1964 and 1990, wheat production in India rose from 12 to 54 million tons, while wheat production in Pakistan increased from 4.5 to 14.5 million tons.

In 1988, Borlaug became President of the Sasakawa Africa Association and a Senior Consultant to Global 2000. During 1990-92, he was a member of the US President’s Council of Advisors for Science and Technology. He also serves on many advisory boards, including the international juries of the annual World Food Prize, sponsored by the John T. Ruan Foundation, and the annual Africa Prize for Leadership for the Sustainable End of Hunger, sponsored by the Hunger Project.

Other recent honors conferred to Borlaug include the Danforth Award for Plant Science and the Padma Vibhushan, India’s second highest national award.

New Publication Presents Outcomes of Eighth Asian Regional Maize Workshop

January, 2005

New Publication Presents Outcomes of Eighth Asian Regional Maize Workshop

A copy of the Proceedings of the Eighth Asian Maize Workshop is now available in PDF form. The workshop, which took place during 5 – 8 August 2002 in Bangkok, Thailand, was titled “New Technologies and Technology Delivery Systems for the New Millennium.” Jointly organized by CIMMYT, Kasetsart University, and Thailand’s Department of Agriculture, the event drew more than 150 participants from Asia and invited speakers from Latin America and Africa. The 61 papers included in the proceedings cover molecular tools for maize improvement, genetics and breeding, crop management, biotic and abiotic stresses affecting maize, technology adoption and dissemination, and country reports. Published by CIMMYT, it was edited by G. Grinivasan, P.H. Zaidi, B.M. Prasanna, F. Gonzalez, and K. Lesnick. In addition to the PDF, seven hundred paper copies are available.

Slated for September 2005, the Ninth Asian Regional Maize Workshop will convene in Beijing, China. For further information, please contact Dr. Zhang Shihuang, CAAS, Beijing, China. Executive Secretary, Organizing Committee, 9th ARMW. Email: cshzhang@public.bta.net.cn

The PDF can be found here: http://staging.cimmyt.org/english/docs/proceedings/armw/contents.htm