Skip to main content

Looking to the future with CAAS and China

the-chinese-academy1Whilst Director General Thomas Lumpkin is in China meeting with the ex- and current Presidents of the Chinese Academy of Agricultural Sciences (CAAS) in Beijing, a delegation of six CAAS representatives took the opportunity to come to El BatĂĄn to discuss collaborations between CIMMYT and China and opportunities for future projects. Li Jinxiang, Vice President, Ye Zhihua, Director General of the Institute of Quality Standard and Testing Technology for Agro-Products, Chen Wanquan, Director Generation of the Institute of Plant Protection, Li Sijing, Vice President of the Graduate School, Niu Liping, Deputy Director General of the Logistic Service Center, and Wang Jing, Project Officer of the Department of International Cooperation of CAAS visited CIMMYT while in Mexico for the G20 meetings.

Director of Research and Partnerships, Marianne BĂ€nziger, presented on behalf of Lumpkin, highlighting that CIMMYT “benefits from a very strong contribution from China, not only in terms of partnerships, but also from Chinese students”. Seven students from China completing their PhD research at CIMMYT were also on hand to welcome the visitors and discuss their work.

In recent years, China’s largest crop has switched from rice to maize. Last year, 192 million tons of maize was harvested, but despite this record yield, China still needed to import 2 million tons of maize from the US alone. This deficit is partially due to increasing levels of meat consumption in China; per capita consumption of pork is expected to reach 38kg this year and a bad harvest could result in food shortages and price hikes worldwide. For this reason maize yields are a high priority for CIMMYT and maize breeder FĂ©lix San Vicente presented CIMMYT’s Global Maize Program to the visitors.

China is also the world’s largest producer of wheat (producing 17% of total yield), though the 2011 harvest was heavily affected by drought. Etienne Duveiller, Associate Director of the Global Wheat Program, presented CIMMYT’s recent developments and discussed a particular area of interest, the Wheat Yield Consortium, with the delegation. Marianne BĂ€nziger reiterated “I think the WYC is one of the most incredible examples of international cooperation with 32 institutions working together to develop a strategy to raise wheat yields and meet the challenges ahead. We want to put wheat yields on track in order to sustain future generations”.

Globally, three countries produced half of the world’s grain last year –China, India, and the US. With 75 percent of the world’s spring wheat varieties and 50 percent of the developing world’s maize varieties coming from CIMMYT, partnerships with these key grain producing countries are a high priority. As stated by Marianne Banziger, “CIMMYT would like to strengthen our partnership with China and be prepared to address the future. No group can do it alone.”

Ganesan Srinivasan continues to harvest success

ganesanWe are delighted to hear that Ganesan Srinivasan has been appointed Dean of Agriculture and Natural Resources at Santa Rosa Junior College, California, USA.

Srinivasan joined CIMMYT in 1990 as a post-doctoral fellow. Over 15 years he headed the International Maize Testing Program, led the Highland Maize Program and later the Subtropical Maize Program, and, in 2000, became associate director of the Maize Program. He made important contributions in breeding improved, stress tolerant, and quality protein maize germplasm, and developed and released several CIMMYT Maize Lines (CMLs). In 2005 he left to become director of the University Agricultural Laboratory at California State University at Fresno, though he remains a member of CIMMYT’s extended family.

He takes up his new post on 31 May 2012. Congratulations Ganesan and we wish you every success!

CIMMYT’s Corporate Annual Report for 2010-11 is now available

Entitled Acute awareness, bold action to energize agriculture, the report provides compelling highlights of the center’s work to sustainably increase the productivity of maize and wheat systems, thereby ensuring global food security and reducing poverty. There is also good mention of expanded support and partnerships through initiatives like BISA, and the CGIAR research programs MAIZE and WHEAT.

Please share the link above with your partners, stakeholders, or anyone else who might be interested. Print copies are being distributed to all CIMMYT offices, and more are available on request or at the publications window in El BatĂĄn, Mexico. Staff are encouraged to continue to send to Corporate Communications reports and presentations in all forms regarding the work you do, the people you work with, and shared accomplishments.

Tsedeke Abate joins CIMMYT as DTMA Project Leader

Dr-Tsedeke-Abates-PhotoA citizen of Ethiopia, Tsedeke Abate joined CIMMYT Global Maize Program on 08 May 2012, and has taken over responsibilities from Wilfred Mwangi as the project leader of the Drought Tolerant Maize for Africa (DTMA) project. Abate will be based in Nairobi, Kenya. He obtained his BS and MS degrees in agriculture from the University of Florida, USA, and his PhD in biological sciences from Simon Fraser University, Vancouver, Canada.

Abate has a wide range of productive and successful experience in leadership and management of agricultural research and development. As project coordinator, during 2008-12 he led the Tropical Legumes II project jointly implemented by ICRISAT, CIAT and IITA in Africa and South Asia. Prior to this Abate was the director general of the Ethiopian Institute of Agricultural Research (EIAR). He is also well known for his passion for putting agricultural knowledge into practical use—scaling-up and scaling-out improved technologies to impact the lives and livelihoods of smallholder farmers.

CIMMYT participates in EU Day exhibition in Nairobi

EU-exhibitionAs part of European Union Day celebrations in Kenya, an exhibition to showcase research and development activities supported by the EU or its member states took place on 09 May 2012 at the International Centre of Insect Physiology and Ecology (ICIPE) in Nairobi. CIMMYT was among 12 exhibitors participating and featured the projects Drought Tolerant Maize for Africa (DTMA), Insect Resistant Maize for Africa (IRMA), Effective Grain Storage (EGS), Improved Maize for African Soils (IMAS), and Sustainable Intensification of Maize-Legume Cropping System for Food Security in Eastern and Southern Africa (SIMLESA). On display were cobs of CIMMYT and commercial maize hybrids harvested from drought stressed plots alongside cobs of the same hybrids from fully irrigated plots. Several CIMMYT publications were available for visitors.

Maize is a staple food in Kenya, so visitors to the stand were keen to know which varieties would thrive in their locales. Visitors also included people working in other agricultural research and development organizations, and the United States Agency for International Development (USAID) country director Erna Kerst. A component of the DTMA project focusing on heat stress is funded by USAID. CIMMYT was represented by Dan Makumbi, Titus Kosgei, and Florence Sipalla.

DTMA partners in West Africa gather for annual regional planning meeting

DTMA-W.-Africa-meetingThe Regional Planning Meeting for phase III of the Drought Tolerant Maize for Africa (DTMA) project was held in Kumasi, Ghana, during the week of 16-19 April 2012. The objectives of this meeting were to (i) review and document progress on DTMA project activities conducted in West Africa in 2011, (ii) present, critically review, and approve project proposals submitted for funding by partner countries Benin Republic, Ghana, Mali, and Nigeria under phase III, and develop work plans for the 2012 cropping season. The regional meetings have proved instrumental in planning and monitoring of DTMA project activities and building the requisite partnerships for successful implementation of the project.

The meeting was attended by 26 participants, representing research institutions, national agricultural research system (NARS) partners, NGOs, and seed companies. NARS scientists from the partner countries presented 20 progress reports and received feedback. All the presenters highlighted the importance of engaging partners from diverse disciplines in successfully implementing project activities in their respective countries. Discussion sessions were devoted to peer-review of the four partner countries’ 2012 work plans on complementary breeding, seed production, regional trials, national performance, and on-farm trials, demonstrations and promotional activities.

After this, national group meetings were held to revise the work plans taking into consideration the input provided, and these were then presented during plenary sessions. During the meeting, it was reported that a total of 38 new drought tolerant maize varieties have so far been released, including seven hybrids, with a total of 1,057 metric tons of seed produced. The DTMA project, which is jointly led by CIMMYT and the International Institute of Tropical Agriculture (IITA), makes annual awards to the best teams in each region to motivate scientists and foster healthy competition among partner countries. An award committee consisting of a representative from each of the participating countries and two independent members convened during the planning meeting, and assessed achievements and progress made in 2011. Ghana received the award for the best technology promotion team award in West Africa, while Nigeria received the best breeding team award. The runners-up were the Malian team for technology promotion and Benin Republic for breeding. Hans Adu-Dapaah, director of the Ghanaian Council for Scientific and Industrial Research’s Crops Research Institute (CSIR-CRI), presented the awards to the winning teams during the closing ceremony. IITA also presented CIMMYT’s Wilfred Mwangi with a plaque as a token of appreciation for his good leadership of the DTMA project in phases I and II.

Director General visits Nepal

LumpkinNepal-NARI-KHUMALTAR1CIMMYT director general Thomas Lumpkin visited Nepal during 01-03 May 2012. One of the main objectives of his visit was to discuss the Borlaug Institute for South Asia (BISA) launched last year in India, and the potential for Nepal to follow a similar model, with Nepal Agricultural Research Council (NARC) and CIMMYT scientists.

Lumpkin also had fruitful technical and administrative discussions with international and national CIMMYT staff based in Kathmandu. Together with several NARC directors—including Tek Bahadur Gurung (director of administration and interim executive director), B.N. Mahto (director of planning and coordination), and Neeranjan Adhikari (director of crops and horticulture)—he visited three potential sites at NARC’s Khumaltar research station, on the outskirts of Kathmandu, where the main Nepal BISA administrative building and research and training facilities could be located. From CIMMYT, the group also included Guillermo Ortiz Ferrara, country liaison officer (CLO) for Nepal, Nirmal Gadal and Dilli Bahadur K.C. of the Hill Maize Research Project (HMRP), and CIMMYT-Nepal office manager Surath Pradhan.

“CIMMYT is interested in expanding the crop improvement and crop management systems research and development activities being conducted in collaboration with the Ministry of Agriculture and Cooperatives, NARC, and all the other partners who have been associated with CIMMYT in Nepal for more than 40 years,” said Lumpkin. “We look forward to a Nepal BISA that can enable CIMMYT and its partners to deliver greater impact toward the food security in the country.” On behalf of NARC, Tek Bahadur Gurung expressed NARC’s interest and unconditional support to make the Nepal BISA a reality. NARC management, the CIMMYT CLO, and other senior CIMMYT staff based in Nepal will soon meet to develop a strategy and start the process of designing and implementing BISA Nepal.

On the second day of his visit, Lumpkin was invited to deliver a lecture at the Nepal Agricultural Research Institute (NARI) on “Food security in South Asia: Opportunities and challenges for agro-eco-scientists”. More than 50 scientists from NARC and NARI attended the lecture, which generated a lot of interest and a lively discussion. Lumpkin was also asked to inaugurate a sports event at Khumaltar organized by NARC, making the first serve in a volleyball tournament. Colleagues observed: “Not a bad serve for a person who travels more than 200 days a year!”

Bangladesh seed summit

IMG_2549Food security is highlighted as one of the main priorities for Bangladesh in the country’s Investment Plan, and a sustainable seed supply constitutes a pivotal component of food security. With this in mind, a maize and wheat “seed summit” was jointly organized by the Ministry of Agriculture (MoA) and CIMMYT at the Hotel Lake Castle in Dhaka on 26 April 2012.

The event was chaired by Anwar Faruque, additional secretary for the MoA, and Shirazul Islam, research director of the Bangladesh Agriculture Research Institute (BARI). There were about 30 participants representing the MoA, the Bangladesh Agricultural Research Council (BARC), the Bangladesh Agricultural Development Corporation (BADC), several seed companies, CIMMYT, the International Rice Research Institute (IRRI), and the United States Agency for International Development (USAID).

Aimed at developing a strategic roadmap for sustainable seed production, the meeting provided an opportunity for specialists from across the region to share their knowledge and experiences. Naseer Uddin Ahmed, chief seed technologist at MoA, and Md Nuruzzaman, director of seed and horticulture at BADC, talked about opportunities and challenges for sustainable seed production and dissemination in Bangladesh. CIMMYT consultant Stephen Waddington shared findings from the Seed Sector Scoping Study for South Asia.

Anwar Faruque stressed the need for the private sector and government to work jointly to ensure the availability of affordable, quality seed for resource-poor and marginal farmers. CIMMYT maize breeder Bindiganavile Vivek described that very approach being pursued under the International Maize Improvement Consortium (IMIC)-Asia, saying it was gaining popularity across Asia.

Participants expressed considerable interest, particularly at the possibility of accessing finished hybrids.

On behalf of the Bangladesh Rehabilitation Assistance Committee (BRAC), Sudhir Chandra Nath spoke alongside M.A. Razzaque, executive director of Lal Teer Seed Company, and B.I Siddidue of Siddiquis Seeds, on private seed production challenges and opportunities in Bangladesh and associated expectations from the public sector.

A “Roundtable Discussion for Roadmap Development” was led by CIMMYT agricultural economist Frederick Rossi, where many issues and follow-ups were identified, including ways to encourage private sector involvement. Much discussion was generated on how to increase the relevance of maize hybrids from BARI and therefore reduce dependency on importing hybrid seeds from elsewhere. Private company representatives expressed their interest in improving the diversity, efficiency, and sustainability of wheat and maize seed systems. The CIMMYT Bangladesh office will help to organize a series of follow-up meetings to reach a consensus on the fundamental features of a sustainable and functional seed system for Bangladesh.

Africa recruits research partners to secure its food

africa-story-pic1ACIAR’s Dr. John Dixon and Dr. Daniel Rodriguez of the Queensland Alliance for Agriculture and Food Innovation, with farmers from Melkassa, Ethiopia africastory-pic2A maize – legume farm in Tanzania africastory-pic3Government extension officer Frank Swai, Tanzania africastory-pic4Farmer and single mother of four Felista Mateo, Tanzania africastory-pic5CIMMYT’s Dr. Fred Kanampiu, Tanzania

By Judie-Lynn Rabar and
Dr. Gio Braidotti

East African farmers are spearheading a research drive to intensify crop production of their most important staple foods. The farmers’ experiments with conservation agriculture and variety selection are part of a broader, 5-country push to stave off a looming food and soil-health crisis.

Kilima Tembo is a secondary school in the Karatu district in Tanzania’s rural highlands. Here, near the Ngorongoro Crater and Tarangira National Park, agriculture is king and food security rests squarely on grains grown in the region’s maize–legume intercropping system.

So important is farming to the community that the school has an agriculture teacher and the school head, Ms Odilia Basso, has allowed the Selian Agricultural Research Institute (SARI) to use school grounds to run field trials as part of a 5-country initiative to overhaul the maize and legumes supply chain—from farm to market.

That means breaking with a long-standing cycle of lifting production simply by bringing more land under the plough. The ecological consequences of that approach are catching up with farmers and their environment, but agricultural science is providing more sustainable alternatives to improve food security.

The research-based strategy is called SIMLESA—sustainable intensification of maize–legume cropping systems for food security in eastern and southern Africa. Launched in March 2010, the project is supported by the Australian Government through ACIAR.

Ambitious aims

A major objective is to introduce conservation agriculture techniques and more resilient varieties to increase the productivity and resilience of this vital cropping system. SIMLESA is aiming not only to increase yields by 30% from the 2009 average but also to reduce, by the same factor, risk from yield variability between seasons.

The Kilima Tembo Secondary School will help achieve these goals. The school is hosting the so-called ‘Mother Trial’—a long-term SARI field trial of conservation agriculture. This farming practice involves conserving ground cover between harvests to preserve soil moisture and, over a number of years, radically improve soil health and fertility.

Unlike 11 other farmer-led field sites established by SARI (the so-called ‘Baby Trials’), the Mother Trial is managed directly by the institute’s scientists, landing the school’s students with front-row seats on research and development activities designed to sustain a farming revolution.

Mr. Bashir Makoko, an agronomist working on the SIMLESA project, says students have the opportunity to learn about the project and its significance to the community at an open day with scientists and extension workers from SARI.

The socioeconomist running the trial, Mr. Frank Mbando, is encouraging student participation. He has arranged for data to be collected in ways that allow students to interact with technical staff. “Direct involvement in the project will equip the students with the information they need as potential farmers,” he says.

Household and regional impacts

Supporting these activities are partnerships that link farmers with a suite of national resources—extension officers, research centres and agricultural ministries—and international research centres.

Coordinating these linkages is Dr. Mulugetta Mekuria, from the South African regional office of the International Maize and Wheat Improvement Center (CIMMYT). Also involved is the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

Dr. Mekuria says SIMLESA was designed to have impacts at both the household and regional level.

“The aim is to ensure food security through agricultural research, stronger economic institutions, partnerships, and capacity building,” he says. “We want to increase food security and incomes while driving economic development through improved productivity from more resilient and sustainable maize-based farming systems.”

To implement the program, Dr. Mekuria is using the ‘3-I Approach’, a research for development (R4D) strategy designed to enhance smallholder prosperity based on the principles of integration, innovation, and impact. “SIMLESA activities will focus on integrated cropping systems, the use of innovation platforms to test and promote promising practices, and ensuring positive and measurable impacts on food security, sustainability and farm household incomes.”

ACIAR is funding SIMLESA with $20 million in financial support. The centre has enlisted Australian expertise through Dr. Daniel Rodriguez, of the Queensland Alliance for Agriculture and Food Innovation, and Professor John Howieson from the Institute for Crop and Plant Sciences at Murdoch University in Perth.

Positive experience

Ms. Felista Mateo, a 37-year-old farmer from Kilima Tembo village is already benefitting from participating in SIMLESA.

A single mother of four, Ms. Mateo supports her family with produce from her land, mainly maize and pigeon pea. Any surpluses, though small, are stored in granaries and either used domestically or sold to middlemen.

Following advice from government extension officer Mr. Frank Swai, she achieved yield gains that her neighbours are now attempting to duplicate. As her harvest increases, she plans to build a larger granary to store her surplus and sell more grain as a cash crop.

Traditionally, farmers have had no way of tracking the market and the middlemen who buy their produce have exercised control over prices. However, Ms. Mateo owns a mobile phone and since the inception of SIMLESA and its support network, she can now call an extension officer and check market prices. The result is greater bargaining power for the villagers when the middlemen come calling.

Averting food insecurity

More than 200 million people living in extreme poverty in the partner countries stand to benefit from SIMLESA.

Currently, the region is barely self-sufficient in grain, importing 10% of its needs—one quarter in the form of emergency food aid.
Maize is the main staple and legumes —primarily groundnut, pigeon pea and chickpea— are an important source of protein. Instead of a more prosperous future, however, the region is facing growth in demand for maize and legumes in the next 10 years. It is that trend towards food insecurity that SIMLESA is attempting to avert.

But it is not just on-farm practices that are targeted for innovation. Urban grain prices have remained stubbornly high following the global food crisis of 2007–08. But higher prices for consumers have not translated into higher prices for farmers. This has weakened incentives for farmers to increase food crop production, a state of affairs that SIMLESA is attempting to change.

CIMMYT’s Dr. Fred Kanampiu says that the SIMLESA project is aiming to achieve a ‘whole-chain’ impact. “Despite the multiple efforts underway with the researchers, the final focus should not be lost,” he says. “It is the farmer who is to be the end beneficiary of the research. The farmers’ lives should be improved, their pockets well-lined and their families well catered for.”

Of all the crops produced by farmers such as Ms. Mateo, it is pigeon pea that has an important role to play as a cash crop. Farmers are fond of this legume because it yields two harvests a year and there is a good export market to India. Pigeon pea retails up to TZS150,000 (about US$100) per 100 kilogram bag. On average, one acre (0.405 hectares) of land yields 300–400 kg of pigeon pea. Typically, 95% of the crop is sold.

In Karatu district some 15% of farmers live on less than a dollar a day. Mr. Makoko says the major obstacles to lifting their profitability are high inputs costs, low produce prices, lack of markets, and prolonged drought. By introducing pigeon pea or similar crops, and integrating the ‘whole-chain’ approach, these obstacles can be reduced or overcome.

socioeconomist frank mbando tanzania
Socioeconomist Frank Mbando, Tanzania.
tuaeli mmbaga tanzania
Senior agronomist Tuaeli Mmbaga, Tanzania.

The way forward will include training farmers to provide them with further education on how to manage their land.”

–Tuaeli Mmbaga

Better varieties

While the main research thrust is on conservation agriculture, CIMMY T and ICRISAT are participating in accelerated breeding and performance trials that aim to introduce farmers to maize and legume varieties that yield well in good years and are resilient enough in the bad seasons to help reduce farmers’ risks.

Mr. Mbando is tracking impacts associated with the new varieties and says the farmers’ response to the studies has been positive.

“They suggested that breeders take into account farmers’ criteria when making selections, so a participatory approach will be used to evaluate varieties,” he says. “So far, farmers have indicated early maturity, pest and disease tolerance, high yields and marketability as the preferred traits. Variety registration and production will then also be stepped up to make the seed available in sufficient quantities.”

Partnership approach

Mbulu district, located about 50 kilometres from Karatu, is the next community targeted for SIMLESA activities in Tanzania, to start after the current crop has been harvested. At the SIMLESA inception meeting, farmers agreed to leave post-harvest residue on the ground in preparation for the trials. Field activities in the Eastern Zone districts of Gairo and Mvomero are expected to begin in the next growing season.

Ms. Tuaeli Mmbaga, the senior agronomist on this project, says that with support from extension officers, farmers will assess the technology both pre-harvest and post-harvest.

“The way forward will include training farmers to provide them with further education on how to manage their land,” she says. “This will include an Innovation Learning Platform in partnership with farm produce stockists, community leaders, and other stakeholders to ensure that more people become involved with the project.”

Crop modeling scientist Dr. Daniel Rodriguez, who leads the Queensland component of ACIAR’s SIMLESA program, is convinced that research to reduce food shortages in eastern and southern Africa could have many benefits for farmers, including in his native Queensland.

“Our scientists will be working to improve the resilience and profitability of African farms, providing access to better seeds and fertilisers to raise the productivity of local maize–legume farming systems,” Dr. Rodriguez says. “Together we may be able to help solve one of the greatest challenges for the developed world—eliminating hunger and poverty in Africa—while at the same time boosting legume production here in Australia.”

Building agricultural research capacity

ACIAR’s Dr. John Dixon says the emphasis of Australia’s direct involvement is on building capacity within the African agricultural research system.

“Conservation agriculture amounts to a substantial shift in farming practices for the region,” Dr. Dixon says. “But it stands to provide so many advantages—not just greater water-use efficiency and soil health but also opportunities to break disease cycles and improve livestock nutrition.”

These are long-term efforts that need to be adapted to many agro-climatically diverse locations, Dr. Dixon says. “So it is vital that the African agricultural research system is built up so that it can take lead responsibility for implementing innovation into the future.”


 

Maize farmers and seed businesses changing with the times in Malawi

In Malawi, farmers who have in the past few years witnessed crop failure due to poor rains are switching to two new drought tolerant maize varieties, and seed companies are changing their business models to keep up.

jun01“The climate is changing, rainfall is decreasing and the weather is now dictating which varieties farmers grow and in turn which varieties seed companies produce,” says Dellings Phiri, general manager of Seed Co. Malawi, a leading southern African seed company.

He refers to two new drought tolerant maize varieties–ZM 309 and ZM 523–developed specifically for Malawi’s drought-prone areas with infertile soils by CIMMYT, Malawi’s Ministry of Agriculture and Food Security, and the Chitedze Research Station, through the Drought Tolerant maize for Africa (DTMA) project. The research was supported by the Bill & Melinda Gates Foundation, and the Howard G. Buffett Foundation. The varieties were officially launched in March 2009.

“In Malawi, each adult eats 300 kilos of maize annually, and ZM 309 and ZM 523 will give farmers a boost in safeguarding their maize harvests from the increasing threat of drought,” says Wilfred Mwangi, associate director of CIMMYT’s Global Maize Program and leader of the DTMA project.

First introduced by local extension agents to farmers in the drought-prone Balaka area through farmer-managed demonstration plots, these varieties have rapidly become popular among farmers, who have been impressed by their superior performance and accepted them. Compared to other popular commercially marketed varieties, farmers have found ZM 309 and ZM 523 to have higher yields, mature earlier, offer better resistance to common maize leafy diseases, and be better for pounding into flour. Locally, ZM 309 is known as Msunga banja, Chichewa for “that which takes care of or feeds the family,” while ZM 523 is Mwayi, which means “fortunate.”

Malawi supports for food security
In March 2009, farmers recommended ZM 309 for inclusion in Malawi’s Agricultural Input Subsidy Program, introduced in 2004 and credited with improving the country’s agricultural productivity and food security. Targeting smallholder farmers with access to land and other production resources, the program involves distribution of coupons for subsidized improved maize seed and fertilizer–one for a 100-kilogram bag of fertilizer and another for either 3 kilograms of standard seed or 2 kilograms of hybrid seed. In September 2009, Malawi’s President Dr. Bingu wa Mutharika endorsed ZM 309 saying, “ZM 309 will give Malawi farmers an advantage because it is high-yielding and drought tolerant. We welcome this research because it will help Malawi cope with climate change and improve food security.” The inclusion of ZM 309 in the subsidy program has seen the variety grown in six of the most drought-prone districts in Malawi, contributing to improved food security of thousands of farm families.

No more hungry months
One such family is that of Bamusi Stambuli, 63. Together with his wife Sagulani, they have they have 7 children and 5 grandchildren. In April 2010, Stambuli harvested nearly 1.8 tons of ZM 309 from his 0.6-hectare plot. “I will now be able to feed my family for a whole year,” says Stambuli proudly.

This year Stambuli will save at least USD 330 that he would have spent to purchase maize for his family. Farmers who grew ZM 309 obtained yields of 3.0 to 3.5 tons per hectare–twice those for the popular local varieties, Kanjelenjele and Kagolo.

In an area where locals rely on farming, fishing, basket-making, sale of firewood, and general trading, Stambuli’s success with ZM 309 is drawing many peers to his farm to buy ZM 309 seed.

Business as (un)usual
ZM 309 and ZM 523 are open pollinated varieties (OPVs), meaning farmers can save seed from one season and plant it for up to three subsequent seasons without punitive losses in yields or other desirable traits. Ordinarily, OPVs are not as attractive to commercial seed companies as hybrids, because with hybrids farmers have to buy and sow fresh seed every season or risk decreased performance of their crops. With ZM 309 and ZM 523 this is not the case. Seed Co. is changing its business model and investing in producing adequate amounts of both varieties to meet increased demand from farmers.

“We hope that from seeing the performance of ZM 309, farmers will be encouraged to start buying certified maize seed to boost production,” says Phiri.

Maize in Kenya: The search for a successful subsidy

CIMMYT E-News, vol 6 no. 3, April 2009

It is a common dilemma for non-profits and assistance programs: how to deliver benefits to the needy without creating dependency or disrupting markets. Addressing this problem, Maize Seed for the Poor (MSP), a pilot project in Kenya, is exploring ways to offer farmers subsidized agricultural inputs to boost farm productivity, while also energizing local seed markets.

Continue reading

Zero-tillage a winner for winter wheat in Turkey

CIMMYT E-News, vol 4 no. 8, August 2007

aug06Zero-tillage trials in rainfed, winter wheat-fallow systems show smallholder farmers on the Anatolian Plains a way to double their harvests.

Muzzafer Avci is an agronomist with the Central Field Crops Research Institute of the Turkish Ministry of Agriculture. In recent years he has been working with CIMMYT wheat agronomist, Ken Sayre, and over time has become an advocate of zero-tillage—the direct seeding of a crop into the residues of a previous crop, without plowing—for rainfed winter wheat, a key crop for small-scale farmers on the Anatolian Plateau. On this day, he completes a drought impact forecast for the Ministry and drives the three hours east of Ankarato to the Ilci Cicekdagi farm, where the Royal Netherlands Embassy in Turkey has funded zero-tillage trials.

On the Anatolian Plateau, farms are typically less than 10 hectares in size. Wheat farmers obtain just a single harvest every second season from each field. Sowing takes place in autumn before the onset of winter. The wheat germinates quickly, lies dormant over the winter, and matures the following summer. After harvest the field is left fallow for a year before being sown to wheat again. During the fallow, farmers plow the weeds under two or three times. Even with the long fallow, which one would suppose helps conserve or improve soil fertility, typical wheat harvests on these farms reach only 2 tons per hectare, far below the crop’s genetic potential. Once highly productive, the winter wheat farming system has become more and more dependent on fertilizer as soils degrade, making it unsustainable.

Model farm showcases zero-tillage

aug04
A former state farm that was recently privatized, the Ilci Cicekdagi farm is not typical. It comprises 1,700 hectares and supports modern, diversified farming involving dairy and beef cattle, sheep, and many crops, among them wheat. The farm owner and managers believe they have a responsibility to assist less well-endowed, smallholder farmers in the area. So they hold demonstrations and field days for the local community. Farm manager Nedim Tabak says he hopes the farm will be a model for local farmers. He is proud of his zero-tillage trials and shows them off to Avci and to Carla Konsten, Agricultural Counselor from the Royal Netherlands Embassy in Ankara. The Netherlands, Canada, and Australia have funded pilot zero-tillage work in Turkey for the past two years and representatives of those countries’ funding agencies are pleased with the result. “This technology will clearly benefit farmers on the Anatolian Plateau,” says Avci, who learned about zero-tillage first-hand at a CIMMYT course on the topic.

aug05Retired agronomist Mufit Kalayci, recently brought back to the Anatolian Agricultural Research Center in Eskisiher, Turkey, to mentor a new team, sees the value of zero-tillage in intensive, irrigated systems with more than a single crop per year, but is skeptical about using it with traditional rainfed wheat farms. “I don’t think you can retain enough moisture over the fallow period.” he says. For that reason, one of the goals of the zero-tillage experiment was to see if a second crop other than weeds could be grown during the fallow season. This question will be answered in coming years.

Zero-tillage: A lot to like

Of course, use of zero-tillage and retaining crop residues on the soil do more than simply capture and hold soil moisture. The practices reduce production costs and diesel fuel burning, and help prevent topsoil erosion from the strong winds that often sweep the Plateau during fallow. The elimination of repeated tillage to bury weeds also helps retain soil structure, aiding aeration and water filtration. The zero-tillage trials have obtained demonstration yields of more than 4 tons per hectare—double what farmers currently get.

Farm manager Tabak says his trials were sown late for lack of timely access to a zero-tillage seeder. He is planning to modify one of the seeders on the farm for next season. Already some local farmers have looked at his test plots and said they will try zero-tillage too next season.

For more information: Julie Nicol, Wheat Nematologist (j.nicol@cgiar.org)

Small seed with a big footprint: Western Kenya, Zimbabwe, and Nepal

CIMMYT E-News, vol 4 no. 1, January 2007

jan01Farmers and community leaders in Kenya’s most densely-populated region have organized to produce and sell seed of a maize variety so well-suited for smallholders that distant peers in highland Nepal have also selected it.

According to Paul Okong’o, retired school teacher and leader of Technology Adoption through Research Organizations (TATRO), Ochur Village, Western Kenya, farmers first disliked the maize whose seed he and group members are producing. “It has small grains, and they thought this would reduce its market value,” he explains. “But when you sowed the seed, which looked small, what came out of it was not small!”

Small-scale maize farmers of the Regional Agricultural Association Group (RAAG), another community-based organization in Western Kenya, have quintupled their yields in only one year—now obtaining more than 2 tons of maize grain per hectare—using seed, fertilizer, and training from TATRO, according to RAAG coordinator, David Mukungu. “This has meant that, besides having enough to eat, farmers were able to sell something to cover children’s school fees or other expenses,” says Mukungu. “We started with six farmers the first year, but after other farmers saw the harvest, the number using the improved seed and practices increased to thirty, and we expect it will continue increasing.”

The variety whose seed TATRO grows is called Kakamega Synthetic-I. It is an open-pollinated variety—a type often preferred over hybrids by cash-strapped smallholders, because they can save grain from the harvest and sow it as seed the following year, without losing its high yield or other desirable traits. The variety is also drought tolerant, matures earlier than other local varieties, and is better for making Kenyan’s favorite starchy staple, ugali. “Women say it ‘pulls’ the water, which means you don’t need much maize flour to make a good, heavy ugali,” Okong’o explains. “These things seem small, but when taken together they weigh a lot for farmers who eat ugali as a daily staple.”

A maize that crosses many borders

Kakamega Synthetic-I was released by the KARI research station in Kakamega, Kenya. Its pedigree traces back to the work of CIMMYT and many partners in southern and eastern Africa—national maize research programs, private companies, and non-government organizations—to develop stress tolerant maize for the region’s smallholders. “Kakamega Synthetic I was selected from ZM621, a long-season, drought tolerant, open-pollinated variety now released in several African countries,” says Marianne BĂ€nziger, CIMMYT maize physiologist who took part in the creation of ZM621 and now serves as director of the center’s Global Maize Program. “The variety has also been released in Nepal, after small-scale farmers from the mid-hills chose it as one of their favorites in participatory varietal trials.” BĂ€nziger says. This highlights the role of a global organization like CIMMYT, which can draw upon and distribute public goods and expertise transcending national borders: “The center was predicated upon and has practiced collaborative science ‘globalization’ for agricultural development since its inception four decades ago—long before that term became fashionable in policy circles.”

Finding and filling entrepreneurial niches

By reducing risk for small-scale farmers, varieties like Kakamega Synthetic-I encourage investment in other amendments, like fertilizer, that can start smallholders on an upward spiral out of low-input, subsistence agriculture. Good varieties also entice enterprising farmers and community-based organizations like TATRO into potentially profitable businesses like seed production, for niches inadequately served by existing companies. “We observe the seed production regulations of the KEPHIS, the Kenyan plant health inspectorate, and would like to work toward certification of our organization, to be able to sell certified seed in labeled packages and fetch better prices,” says Okong’o. TATRO is currently producing and marketing just under 2 tons of Kakamega Synthetic-I—enough to sow more than 70 hectares—each year. The lack of effective informal seed production and distribution systems limits the spread of improved open pollinated maize varieties and farming practices in eastern Africa, according to Stephen Mugo. CIMMYT maize breeder in the region, Mugo also coordinated the former, Rockefeller Foundation-funded project “Strengthening maize seed supply systems for small-scale farmers in Western Kenya and Uganda” that involved TATRO and similar farmer organizations. “Improved varieties raised yields in the past and could do so again,” he says, “but only about one-fifth of the region’s farmers grow improved varieties.”

For more information, Stephen Mugo, maize breeder (s.mugo@cgiar.org)

It’s out with the old for Ethiopia’s highland maize farmers

CIMMYT E-News, vol 3 no. 11, November 2006

nov02Ethiopia’s highland maize farmers now have a reason to smile—two reasons, as a matter of fact. Argene and Hora, recently released highland maize varieties, are spurring renewed hope for the country’s agricultural productivity.

Speaking at a farmer field day held in Bu’i, Oromiya, to showcase the new varieties’ performance, Economic Advisor to the Prime Minister, Neway Gebre-Ab, termed the new varieties “a great breakthrough in research,” and said the future for highland farmers looked bright. “There is great enthusiasm; the farmers told us they were expecting a bumper harvest of 7 to 8 tons per hectare this season,” said CIMMYT maize breeder and coordinator of the Highland Maize Project, Twumasi Afriyie.

For several decades now smallholders cropping the highlands of Ethiopia have wanted new, higher-yielding maize varieties. The cool, wet climate is ideal for the crop, yet varieties released in the 1970s and 80s did not fully exploit the benign climate. Indeed, the older varieties have been giving lower and lower yields in successive seasons. The old varieties also take a long time to mature. Today, many farmers here consume their entire crop green, leaving nothing to mature in the field, and thus risking their long-term food security. This long maturity period also means that farmers can grow only one crop each year.

Since 1998 CIMMYT and partners have been working to develop new, high-yielding maize varieties for the highlands. Thousands of parent lines have been tested and bred in a systematic collaboration with researchers in eastern and central Africa, with the work in Ethiopia being achieved in partnership with scientists at the Ambo National Plant Protection Research Center of the Ethiopian Institute of Agricultural Research (EIAR).

Argene and Hora have also been bred to withstand the important pests and diseases in the highlands. The new varieties mature in fewer days, and are stockier than traditional ones, which easily fall over (lodge) during storms or in strong winds.

nov03
Afriyie says Oromiya was a logical first home for the improved highland maize. The expansive state spans parts of western, central and southern Ethiopia, and is home to 26 million people. Nearly 90% are rural folk who depend on agriculture.

Higher maize production can make a real difference to the farmers in the region: The versatile crop can be eaten fresh off the cob or dried and pounded into flour to make different dishes. Poorer households are increasingly adding some maize meal to their injera batter (Ethiopia’s best-loved staple, injera is a spongy, fermented flatbread made from teff flour). This is due to teff’s high price. Surplus maize can be dried and stored for later, or sold for cash.

The farmers who are growing the new varieties plan to capitalize fully on the early maturity. “We can practice relay cropping and get two harvests in a season,” said one woman farmer—another double benefit from the new highland maize.

For more information, Twumasi Afriyie (t.afriyie@cgiar.org)

Wheat and Water Win

May, 2005

obregon01CIMMYT shows technology to enhance farmer income and reduce ocean pollution

Wheat farmers in the Yaqui Valley of Mexico’s Sonora State will be the first to gain from a new technology developed by CIMMYT researchers with partners from Oklahoma State and Stanford Universities. And while the farmers in Mexico will benefit, CIMMYT believes that farmers and the environment in many developing countries will reap rewards as well.

“I wish I had known about it this season,” said Ruben Luders when he saw the results. He farms 400 hectares of wheat in the Yaqui valley. “It will save me money.”

What Luders and more than twenty-five other farmers saw in a demonstration was an effective and accurate way to determine both the right time and correct amount of nitrogen fertilizer to apply to a growing wheat crop. Wheat needs nitrogen to grow properly, but until now there has been no easy way to know how to apply it in an optimum way. Traditionally farmers in the region fertilize before they plant their seed and then again at the first post-planting irrigation. The new approach, developed in conjunction with Oklahoma State University in the United States, uses an infrared sensor to measure the yield potential of wheat plants as they grow.

“I had been looking for something to determine nitrogen requirements for a long time,” says CIMMYT wheat agronomist, Dr. Ivan Ortiz-Monasterio. “This technology was already being used by CIMMYT scientists for other things, such as estimating the yield of different genotypes. It has taken time to calibrate it, but now we have a useful tool to determine the nitrogen a wheat plant needs.”

obregon02

The sensor is held above the young, growing wheat plants and measures how much light is reflected in two different colors—red and invisible infrared. In technical terms this is called measuring the Normalized Differential Vegetative Index (NVDI). After much testing, Ortiz-Monasterio and his colleagues from Oklahoma State found they could get a handheld computer to calculate the nitrogen requirement of the plants from the two readings.

The demonstration, conducted in the fields of four different farmer-volunteers, showed they could maintain their yields using far less fertilizer. That is because fertilizer residue from over-applications in past seasons can still be utilized by the new crop.

“We used to feed the soil first, before growing the wheat,” says Luders. “Now we know we should feed the wheat.” He and his friends calculated that with just 80 hectares of wheat the nitrogen sensor, which costs about US $400, could pay for itself in a single season.

The demonstration was made possible because farmers in the Yaqui Valley have consistently supported the research work of CIMMYT and of Mexico’s national agricultural research institute, INIFAP, in the area.

There is much more to this technology than a tool to maximize farm income. A recent Stanford University study published by the prestigious science journal Nature showed that each time farmers irrigate their fields, some of the excess nitrogen fertilizer washes into the nearby Sea of Cortez. The heavy load of nitrogen in the water results in blooms of algae which deplete the oxygen in the water. In other parts of the world such algae blooms can do serious damage to local fisheries. If widely adopted in the Yaqui Valley, the nitrogen-optimizing technology should result in less fertilizer washing into the sea.

Runoff of excess nitrogen fertilizer is a problem that will threaten many more sensitive bodies of water around the world, according to Ortiz-Monasterio. “As farming systems intensify to feed more people, we need to increase production but minimize impact on the environment,” he says. So while farmers in the State of Sonora may be the first to benefit, they certainly will not be the last. Just five days before the demonstration in Ciudad Obregon, the first infrared sensor, a result of a USAID linkage grant with CIMMYT and Oklahoma State, arrived in Pakistan. This way, a technology proven in the field in Mexico will go on to assist farmers in poorer parts of the world and help maintain the health of coastal waters at the same time.

For further information, contact Ivan Ortiz-Monasterio (i.ortiz-monasterio@cgiar.org).