Skip to main content

The perilous life of aphids fascinates South Asian crop scientists

The wheat plant protection group attend interactive group meeting at IIWBR, Karnal, India. Photo: CIMMYT
The wheat plant protection group attend interactive group meeting at IIWBR, Karnal, India. Photo: CIMMYT

Among the world’s most destructive and hated crop pests, the sap-sucking insects known as aphids are engaged in dramatic evolutionary battles with predators that include wasps whose larvae hatch and pupate in aphid bodies, devouring them from inside.

Rather than a new science fiction/horror film, this scenario is actually the basis for innovative pest control, as described by topic experts at two presentations of their interactive program “Aphids and their biological control on wheat, barley and maize” for wheat scientists in India and Nepal on 24 and 26 November 2014.

“The 34 participants, including 26 in Nepal and 8 in India, heard short lectures on maize and wheat aphids and other insect pests, followed by videos on aphid biology and their biological control,” said Arun Joshi, CIMMYT wheat breeder based in Nepal who helped organize the programs, in conjunction with the Indian Institute of Wheat and Barely Research (IIWBR) of the Indian Council of Agricultural Research (ICAR) at Karnal and the Nepal Agricultural Research Council (NARC). “They learned about the special traits of the biological control agents that can be used in South Asia, as well as how to rear and spread them in crop fields, with the idea of training farmers in these skills.”

The participants in Nepal. Photo: CIMMY
The participants in Nepal. Photo: CIMMY

The main presenter, Prof. Urs Wyss, Institute of Phytopathology, University of Kiel, Germany, has produced over 70 films on insect pest biology and bio-control. Prof. Chandra Prakash Srivastava, Head, Department of Entomology, Banaras Hindu University, India, spoke to both groups about maize and wheat insect pests and their management.

“This is the first program on wheat insect pest management and biological control at IIWBR (former DWR, Karnal) in two decades,” said Dr. Indu Sharma, IIWBR project director. Joshi said that NARC colleagues made similar comments in praise of the program.

The training program was organized in response to mounting evidence of crop damage from aphids in Peninsular and northwestern India and the Terai and Midhills of Nepal. It was conducted at IIWBR, Karnal, through Dr. Indu Sharma and Dr. M.S. Saharan and in Nepal through Dr. Yagya Prasad Giri, Head, Entomology, NARC.

Other institutions represented in India included:

  • Chandra Shekhar Azad University of Agriculture and
    Technology, Kanpu.
  • Agriculture Research Station, Niphad, Maharashtra.
  • Agriculture Research Station, Durgapura, Rajasthan.
  • Centre of Excellence for Research on Wheat, S.D.
  • Agriculture University, Vijapur, Gujrat.
  • Punjab Agriculture University, Ludhiana.
  • G.B. Pant Univ. of Agriculture and Technology,
    Pantnagar.
  • Assam Agricultural University, Shillongani, Nagoan.
    Uttar Banga Agriculture University, West Bengal.

In Nepal participants came from:

  • The Department of Entomology, National Agriculture
    Research Institute, Khumaltar.
  • National Wheat Research Program (NWRP),
    Bhairahwa.
  • National Maize Research Program (NMRP), Rampur.

‘Gluten-free’ diets put food security, human health at risk – nutritionist

Hans Braun, director of the Global Wheat Program at CIMMYT examines wheat with nutritionist Julie Miller Jones in a greenhouse at CIMMYT headquarters near Mexico City. Jones presented a talk on nutrition and wheat at CIMMYT. Photo: Xochiquetzal Fonseca/CIMMYT
Hans Braun, director of the Global Wheat Program at CIMMYT examines wheat with nutritionist Julie Miller Jones in a greenhouse at CIMMYT headquarters near Mexico City. Jones presented a talk on nutrition and wheat at CIMMYT. Photo: Xochiquetzal Fonseca/CIMMYT

EL BATAN, Mexico (CIMMYT) — Eliminating wheat consumption to avoid ingesting gluten is at best unnecessary for most people and at worst means that diets could lack cereal fiber and other valuable health benefits provided by grains, according to a top nutritionist.

Complete removal of wheat from the human diet would further cripple global efforts to feed the current global population of 7.2 billion, said Julie Miller Jones during a presentation delivered to scientists at CIMMYT on Tuesday.

Despite providing 20 percent of calories consumed globally, wheat and its protein complex, gluten, are often criticized in books and news stories as the cause of many human ailments. However, wheat and grain-based staples provide an array of nutritional and health benefits.

The claim that such non-cereal fibers as those found in fruit, vegetables and legumes can replace cereal fibers has been shown to be untrue, said Miller Jones, who is professor emeritus of nutrition at St. Catherine University in St. Paul, Minnesota.

Eating fibers from a variety of sources plays a role in maintaining healthy cholesterol and blood sugar levels, she said, adding that they also reduce the risk of gut disorders, help maintain healthy gut bacteria and keep unhealthy bacteria at bay.

Abandoning wheat consumption altogether could lead to a reliance on more costly foods, in short supply or impossible to produce on a global scale to meet the dietary needs of a population expected to increase to more than 9 billion by 2050, said Miller Jones.

“Even if we did decide to abandon wheat as a dietary staple, we don’t have the turnaround time, the availability or the quantity of foods that have been recommended as alternatives in anti-gluten fad diets,” she said.

The popularity of gluten-and wheat-free diets has grown largely due to claims published in such books as “Wheat Belly” by William Davis, “Grain Brain” by David Perlmutter and in the news media, asserting that wheat products are the cause of most health problems. Such claims counter current medical and nutritional advice in international dietary guidelines established in conjunction with the Food and Agriculture Organization (FAO) and the World Health Organization (WHO).

Javier Peña, wheat quality specialist CIMMYT examines bread with nutritionist Julie Miller Jones in the wheat quality laboratory at CIMMYT. Jones presented a talk on nutrition and wheat at the Center. Photo: CIMMYT

“Gluten-free” is a burgeoning industry. Sales have risen 63 percent since 2012, with almost 4,600 products introduced last year, according to “Consumer Reports” magazine.

This is an alarming trend for such nutritionists as Miller Jones, who was also at CIMMYT to discuss the outline for a series of research papers on the various aspects of grain carbohydrates, gluten and health.

“‘Gluten-free’ is actually just another low-carb diet with a hook – any diet that suggests abandoning an entire food group is unhealthy,” said Miller Jones who recommends the DASH diet, which is rich in fruits, vegetables, low fat or non-fat dairy products, whole grains, lean meats, fish, poultry, nuts and beans.

Read the full story here.

Further reading
CIMMYT Review Paper:
Anti-Wheat Fad Diets Undermine Global Food Security Efforts

MasAgro offers tortillas made of maize hybrids in highlands workshop

On 11 November 2014, representatives of Mexico’s highland maize value chain attended a workshop at CIMMYT headquarters in El Batán, Mexico. MasAgro-Maize Network partners, a representative from the milling industry and members of the MasAgro-Farmer team tested hybrid grains from the CIMMYT highlands maize genetic improvement program. Participants also analyzed parent lines of hybrids and measured the grain quality of two CIMMYT hybrids for dough and tortillas.

Natalia Palacios (green hat, right), maize nutrition quality specialist, explained the process for defining grain quality and outlined dough and tortilla industry requirements.
Natalia Palacios (green hat, right), maize nutrition quality specialist, explained the process for defining grain quality and outlined dough and tortilla industry requirements.

The workshop was organized by Arturo Silva, leader of the MasAgro-Maize component, and Alberto Chassaigne, responsible for CIMMYT seed systems.

Principal researcher JosĂ© Luis Torres and his colleague Carmen BretĂłn led a tour of trial plots, where workshop participants could see CIMMYT hybri and synthetic varieties for Mexico’s highlands. Breeding experts explained the origins of each material while participants examined the aspect of ears.

Ubaldo Marcos, CIMMYT maize seed production manager, presented seed production technology for six hybrids, as well as the differences between ear size and female parental seed, which are grown at densities of 65,000 and 75,000 plants per hectare.

Afterwards, there was a demonstration of artisanal nixtamalization to obtain dough from two CIMMYT hybrids. Natalia Palacios, maize nutrition quality specialist, explained grain quality and outlined dough and tortilla industry requirements. Tortillas were then made from the nixtamalized dough. A positive opinion from the representative of the dough industry was much appreciated.

The participants also estimated yields of the white and yellow hybrids evaluated as part of the MasAgro Highlands Network under low nitrogen, rain-fed and irrigated systems and the estimates were compared to real yield values. At the end, workshop participants concluded that MasAgro-Maize takes advantage of the crop’s genetic potential to boost maize yields in the highlands.

Dr. Sanjaya Rajaram presented with the Pravasi Bharatiya Samman 2015 Award, the highest honor conferred on overseas Indians

Dr. Sanjaya Rajaram is pictured on the far right, with Prime Minister Mr. Narendra Modi in the center of photo.
Dr. Sanjaya Rajaram is pictured on the far right, with Prime Minister Mr. Narendra Modi in the center of photo.

On 9 January 2015, Dr. Sanjaya Rajaram, the India-born plant scientist who led wheat breeding research at the International Maize and Wheat Improvement Center (CIMMYT) based in Mexico for more than three decades, received the Pravasi Bharatiya Samman award in Gandhinagar, India. The award, presented by Honorable H.E. Hamid Ansari, Vice President of India, is the highest honor conferred on overseas Indians.

India’s Prime Minister, Mr. Narendra Modi, praised the diaspora for putting India on the global map. “The whole world admires the Indian community not due to the money but the values they live with,” he said.

The event marks the 100th anniversary of Mahatma Gandhi’s return to India from South Africa. Only one other Mexican citizen of Indian ancestry received the award in the past decade: Dr. Rasik Vihari Joshi, who received the award for his contributions to literature in 2013.

The Union Home Minister Mr. Rajnath Singh attended the event. He praised the contributions of the Indian diaspora at the award celebration, saying India is proud of them and they are an example of India’s indomitable spirit.

Last year, Dr. Rajaram received the World Food Prize for his contribution in increasing global wheat production by more than 200 million tons in the years following the Green Revolution. His improved varieties increased the yield potential of wheat by 20 to 25 percent. Today, Rajaram’s wheats are grown on some 58 million hectares worldwide.

Dr. Rajaram is renowned for his generosity in sharing his expertise to support research and the development of technologies that have improved food security in India and globally. His accomplishments include training or mentoring more than 700 scientists from dozens of developing countries. This enabled Indian farmers to grow improved wheat varieties on some 8 million hectares, including India’s most popular wheat variety, PBW 343. He also led CIMMYT efforts to apply the concept of durable resistance to rust–the most damaging wheat disease worldwide

Pakistan marks Borlaug’s 100th birthday with commemorative stamp

Pakistan’s National Philatelic Bureau issued a commemorative postage stamp to honor the 100th birthday, last 25 March, of late wheat scientist and Nobel Peace Laureate, Dr. Norman E. Borlaug.

Pakistani researchers and policymakers were instrumental to the work of Borlaug and the Green Revolution in South Asia, said Imtiaz Muhammad, CIMMYT wheat scientist and country representative in Pakistan, speaking at a 22 December unveiling ceremony.

 Mr. Sikhandar Hayat Khan Bossan, Federal Minister for Food Security and Research, Pakistan, unveils a new stamp to commemorate the 100th birthday in 2014 of late wheat scientist and Nobel Peace Prize Laureate, Dr. Norman E. Borlaug. Photo: Amina Khan/CIMMYT
Mr. Sikhandar Hayat Khan Bossan, Federal Minister for Food Security and Research, Pakistan, unveils a new stamp to commemorate the 100th birthday in 2014 of late wheat scientist and Nobel Peace Prize Laureate, Dr. Norman E. Borlaug. Photo: Amina Khan/CIMMYT

Pakistan breeders have sown and returned data on CIMMYT international maize and wheat trials for more than four decades, and over 150 Pakistani wheat specialists have participated in training courses at CIMMYT.

Held at the National Agricultural Research Center (NARC), Islamabad, the unveiling was organized by CIMMYT, the Pakistan Agriculture Research Council (PARC) and the United States Department of Agriculture (USDA) and drew more than 50 participants, including agricultural scientists, media representatives and staff of Pakistan’s Ministry of National Food Security and Research (MNFSR).

The Federal Minister for Food Security and Research, Mr. Sikhandar Hayat Khan Bossan, formally unveiled the stamp. Speakers included Dr. Iftikhar Ahmed, Chairman of PARC, Dr. Shahid Masood, PARC plant scientist,and Mr. Seerat Asghar, Federal Secretary for National Food Security and Research. Thomas A. Lumpkin, CIMMYT director general, and Ronnie Coffman, vice-chair of the Borlaug Global Rust Initiative (BGRI), addressed the audience through video messages.

Through a personal message read during the ceremony, Jeanie Borlaug Laube, daughter of Norman Borlaug and BGRI chair, thanked the Pakistan government. “I know my father would be very proud to be on a stamp in Pakistan,” she said.

Safeguarding seeds against agricultural risks

Jill Cairns Photo credit: FarmD
Jill Cairns
Photo credit: FarmD

A webinar on Strengthening and Enhancing Seed Systems to Better Manage Agricultural Risk, was presented by Dr Jill Cairns (pictured), Crop Physiologist at the International Maize and Wheat Improvement Center (CIMMYT) based in Harare, Zimbabwe.

We caught up with Jill today, a day before her webinar.

Whom would you really like to see at this seminar?
Mainly people working – or interested – in agriculture, climate change and risk management in sub-Saharan Africa.

What would you like the take-home message to be?
That inadequate rainfall depresses and destabilises yields in sub-Saharan Africa. One could say that is a truism. However, beyond this doom and gloom there is good news. CIMMYT in collaboration with IITA and partners in participating countries has developed drought-tolerant seed which is already having impact in farmers’ fields.

[widgetkit id=31]

What inspired the idea for this webinar?
A global connection actually. The World Bank has a forum called FARMD – Forum for Agriculture and Risk Management in Development. They approached Marianne BĂ€nziger, CIMMYT’s Deputy Director General for Research and Partnerships, to present at a November 2014 FARMD conference on Managing Agricultural Risks in a Changing Climate in sub-Saharan Africa. The idea was to understand climate change and its implications for agricultural risk management. CIMMYT was approached because of its considerable experience in seed systems and conservation agriculture to reduce production vulnerability for maize in Africa.

And how and when did you – Jill – come into the picture then?
I represented Marianne at that World Bank conference. The presentation led to a lively discussion on the potential of drought-tolerant seed to reduce maize yield variability in Africa. There is a misconception that drought-tolerant maize yield lower in non-drought years and thus has negative production and economic consequences for farmers. However this is not true. The fact is that drought-tolerant maize yields as much as commercial varieties in farmers’ fields. And in many cases, it in fact yields more than current commercial varieties. FARMD approached me after the conference to present again to a wider audience, so here I am!

Related links:

Central American Agriculture and Livestock Council signs agreement with CIMMYT

Julio Calderón and Tom Lumpkin stop for a photo as they tour the CIMMYT campus. Photos: Xochiquetzal Fonseca
The CIMMYT delegation provides a presentation for Calderón. From left to right: Felix San Vicente, Víctor López, Lumpkin, Calderón, Arturo Hinojosa and Isabel Peña.

In Texcoco, Mexico, on 03 December, Thomas A. Lumpkin, CIMMYT director general, signed a memorandum of understanding with Julio Calderón, Executive Secretary of the Central American Agriculture and Livestock Council (CAC), for shared work to strengthen the seed sector and to promote seed of improved crop varieties and relevant mechanization for small- and intermediate-scale farmers in the region.

Created in 1991, CAC is part of the Central American Integration System (SICA) established by Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama and helps to link agricultural with other key sectors and agencies, in benefit of farmers and rural inhabitants.

From left to right: Bram Govaerts, Calderón, Lumpkin and San Vicente pause for a photo.
Calderón and Lumpkin sign the memorandum of understanding.

Tottori University students visit CIMMYT

Masahiro Kishii of CIMMYT’s Global Wheat Program gives students a tour of the Wellhousen-Anderson Genetic Resources Center. Photos: Xochiquetzal Fonseca
Masahiro Kishii of CIMMYT’s Global Wheat Program gives students a tour of the Wellhousen-Anderson Genetic Resources Center. Photos: Xochiquetzal Fonseca

A group of 16 undergraduate students and three professors from the University of Tottori, Japan, visited CIMMYT on 26 November. The visit was the last stop of a three-month study visit to Mexico, which also included visits to the Universidad Autonoma de Baja California Sur (UABCS) and the Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR).

Jelle Van Loon, leader of smart mechanization for CIMMYT’s conservation agriculture program in Mexico, teaches students about machinery development.

The students began their visit with an overview of CIMMYT from Isabel Peña, Head of Institutional Relations-Latin America, followed by a meeting with Dr. Masahiro Kishii, a Japanese scientist formerly of Tottori University who now works in wheat cytogenetics in CIMMYT’s Global Wheat Program. The group was then given a tour of the Wellhousen-Anderson Genetic Resources Center and the labs of the Biosciences Complex.

The day concluded with a visit to the Global Conservation Agriculture Program’s D5 demonstration plot, where the students learned about developments in machinery and post-harvest technology.

Isabel Peña, Head of Institutional Relations-Latin America, welcomes students to CIMMYT.

Securing our daily bread: boosting Africa’s wheat production

Edward Mabaya is a Research Associate in the Department of Applied Economics and Management at Cornell University and a development practicioner. All views expressed are his own.

Se necesita maĂ­z de grano blanco en las zonas marginadas de PaquistĂĄn
Se necesita maĂ­z de grano blanco en las zonas marginadas de PaquistĂĄn

There are many crops that conjure up an image of the African continent – maize, sorghum, millet, turf, matoke and cassava. These staples form the basis of African’s daily diet and have been established over many years through close interaction between culture and agro-ecological conditions.

Yet there is one less talked about food that you will find in every African urban area. Bread.

In 2013, African countries spent about $12 billion dollars to import 40 million metric tons of wheat, equating to about a third of the continent’s food imports. This arises as a result of the fact that only 44% of Africa’s wheat demand is met by local production. The only country on the continent with a significant production base is South Africa with over 2 million metric tons per year.

As if the current deficit was not bad enough, the demand for wheat in Africa is growing at a faster rate than for any other crop. By 2050, wheat imports are anticipated to increase by a further 23.1 million metric tons. In the last 20 years wheat imports have increased fourfold from about $3 billion in 1989 and doubled from a rate of $5 billion in 2005 (see table below). This demand is being driven by population growth, urbanization, as well as from a growing female work force who prefer wheat products, like bread or pasta, because they are faster and easier to prepare than traditional foods.

What can African countries do to reduce their wheat imports?

A short-term measure is to mandate or promote the use of composite flours that mix wheat with locally abundant starches such as cassava and starchy bananas (matoke). This practice is already in place in some countries. Nigeria, for example, mandates flour millers to include five percent cassava flour in wheat flour. Tooke flour, developed by Uganda’s Presidential initiative on Banana Industrial Development (PIBID) shows some promise. However, composite flours are only a Band-Aid solution to the growing demand for wheat based products especially given the fact that you can only substitute up to 5% before quality diminishes significantly. The only viable long-term solution is for African countries to meet a large portion of domestic demand through local production.

Like most of my African colleagues, I have always unquestioningly assumed an agronomic basis for Africa’s wheat import, that wheat is a northern hemisphere crop that does not grow well in Africa. A 2012 joint study by CIMMYT and IFPRI exploring “The Potential for Wheat Production in Africa” was an eye opener for me. Based on an integrated biological and economic simulation-based model for 12 countries, the study concluded that Africa has great potential to produce wheat in an economically viable way. The limiting factors, it turns out, are more to do with policy, institutional and social-cultural environments than agro-ecological ones. One example of which is that the heavy subsidies on wheat imports by most African governments have crowded out potential investment in domestic wheat production.

The good news is that enabling policy and institutional environments are cheaper to fix and more environmentally sustainable than making agro-ecological adaptations. The not so good news is that decades of history will be difficult to change – importing wheat is a lucrative business with strong political ties. Boosting Africa’s wheat production will require a coordinated approach with a range of partners to build the requisite enabling environment. This will need more investment in research and development, improved research infrastructure, better agricultural extensions, effective farmer associations and farmer training, better storage and improved access to affordable high quality agro-inputs (seed, fertilizers, chemicals, and machinery).

This enabling environment for wheat production in Africa will not be achieved overnight. It will take years of coordinated strategic investments and policy transformation. Key policy makers on the continent are making the first steps. In 2012, the Joint African Ministers of Agriculture and Trade “endorsed wheat as one of Africa’s strategic commodities for achieving food and nutrition security” at a meeting held in Addis Ababa. A high level Forum for Agricultural Research in Africa (FARA) meeting held in Accra in July 2013 developed a strategy for promoting African wheat production. It is especially encouraging that African governments have chosen a regional approach and multi-stakeholder approach to lower the continent’s wheat imports.

As the old African saying goes: “If you want to go fast, go alone. If you want to go far, go together.”

Anti-wheat fad diets undermine global food security efforts

Anti-Wheat-Fad-Brochure-coverA recent review paper released by Britain’s University of Warwick (Lillywhite and Sarrouy 2014) addresses two fundamental questions regarding wheat: “Are whole grain products good for health?”; and “What is behind the rise in popularity of gluten and wheat-free diets?”

The paper was commissioned by cereal-maker Weetabix to address reports in the news media that wheat products are the cause of health problems, resulting in an increasing number of consumers switching to low-carbohydrate grain- and wheat- free diets. For many health professionals this is a worrying trend because wheat not only supplies 20 percent of the world’s food calories and protein, but has important benefits beyond nutrition, the authors state.

The Warwick paper provides a scientific assessment of the benefits of whole grain consumption, information that the authors note seems to have been lost in media headlines and the reporting of “pseudo-science.”

The paper concludes that whole grain products are good for human health, apart from the 1 percent of the population who suffer from celiac disease and another 1 percent who suffer from sensitivity to wheat (Lillywhite and Sarrouy 2014). Eating wholegrain wheat products is positive, improves health and can help maintain a healthy body weight, the authors report.

Scientific evidence regarding wheat- and carbohydrate-free diets is thin and selectively used, they state, and a low cereal and carbohydrate diet “may cost more but deliver less.”

Additionally, an economically viable industry has developed around so-called “free-from” diets and may be persuading consumers to switch from staple foods to specialist foods created especially for those who need to avoid gluten, a protein found in wheat and other grains, they add.

This Wheat Discussion Paper serves as a foundation upon which the authors hope further discussion will develop. It aims to highlight unsubstantiated nutritional claims about wheat and shine a spotlight on the important role of wheat and fiber in human diets. It also seeks to encourage conversation about how non-scientific claims about wheat could affect poor consumers and global food security.

Read Wheat Discussion Paper (463KB)

Pakistan: maize needed for marginal areas

Farmers in the farthest reaches of Pakistan need access to white- grained maize, according to Dr. Iftikhar Ahmad, chairman of the Pakistan Agricultural Research Council (PARC). “There is a good progress in the productivity of yellow maize varieties in the areas of Punjab and KPK provinces,” Ahmad said, “but we need white maize varieties to reach farmers in the marginal areas of KPK, Sindh, Balochistan and Gilgit Baltistan provinces.”

From left to right: Shahid Masood, Md. Imtiaz, Iftikhar Ahmad and AbduRahman Beshir.

Speaking at the first National Maize Workshop-Annual Progress Review of Pakistan, held in Islamabad during 19-20 November, Ahmad also mentioned the importance of public-private partnerships to reduce the cost to farmers of hybrid seed, which is more expensive in Pakistan than elsewhere in South Asia.

There is good progress in the productivity of yellow maize varieties in the areas of Punjab and KPK provinces, but we need white maize varieties to reach farmers in the marginal areas of KPK, Sindh, Balochistan and Gilgit Baltistan provinces.” –Dr. Iftikhar Ahmad Chairman of the Pakistan Agricultural Research Council (PARC).

Dr. Beshir explains the traits of yellow maize at NARC, Islamabad.

Jointly organized by PARC and CIMMYT, the workshop was an activity of the Agricultural Innovation Program (AIP) for Pakistan and its 50 participants represented public and private maize research and development institutions, local and multinational seed companies, higher learning institutions, and departments of extension and food processors from all provinces of Pakistan.

Dr. Md. Imtiaz, project leader of AIP, highlighted the role of CIMMYT in enhancing local capacity and requested the full collaboration of national institutions.

During the concluding session, Dr. Shahid Masood, Member of Plant Science and AIP focal person at PARC, mentioned the importance of deploying biofortified and specialty maize, providing farmers with agronomy training, diversifying maize uses and developing and deploying dual purpose maize for food and feed.

Dr. Iftikhar Ahmad, PARC Chairman, addresses participants.

The workshop was followed by a field visit to the National Agricultural Research Center (NARC), where participants saw the performance of AIP-maize varieties and lines from CIMMYT breeding programs in Colombia, Mexico and Zimbabwe.

AbduRahman Beshir, CIMMYT maize improvement and seed systems specialists, said the event helped to define shared objectives for AIP-maize partners and a common goal to work towards and helped CIMMYT to reactivate maize research and development activities in Pakistan. Finally, partners discussed “seed road maps” that describe and illustrate varietal release pathways and seed production targets.

Training to fill gaps in Ethiopia’s maize seed system

The Nutritious Maize for Ethiopia (NuME) project recently organized a three-day training workshop on quality protein maize (QPM) seed production and quality control, as part of the project’s activities to enhance QPM seed production. There were 26 participants, including 2 women, from seed companies, farmer cooperative unions, the Ministry of Agriculture, seed laboratories, research institutes and universities. The workshop was facilitated by CIMMYT experts working in eastern Africa.

Opening the event, Dr. Dagnachew Beyene, advisor to the State Minister of Agriculture, said the workshop was very timely. “The expansion of the Ethiopian seed system is constrained by a shortage of skilled professionals,” he said.

Heat-tolerant Maize for Asia Showcased at India-US Technology Summit

Developed over two decades of meticulous breeding from the late 1970s to the early 1990s, QPM contains enhanced levels of amino acids used for protein synthesis in humans and farm animals such as pigs and poultry. Nutritional studies have shown that it can improve the nutrition of people whose diets are highly- dependent on maize, especially young children. Major topics covered included maize variety development, maize seed research and field management for QPM seed production, maintenance of QPM inbred parent lines and open-pollinated varieties, as well post-harvest handling techniques for QPM.

The training also dealt at length with creating communication links between seed companies, customers and farmers and planning and developing seed production, marketing and financial strategies to promote of QPM seeds.

Addressing the participants at the conclusion of the training, the Crops Research Director of the Ethiopian Institute of Agricultural Research (EIAR), Dr. Asnake Fikre, stated that efforts need to be made to sustain QPM production in Ethiopia, because maize is the most produced cereal and a critical crop for food security in the country.

Asnake also noted that “in the transition to food security in the country, nutritional security is a critical concern and the crop sector in Ethiopia should work hard to sustain the QPM value chain by advocating its nutritional and agronomic benefits and creating demand for the production and use of QPM.” The added that NuME’s important work on QPM needs to be effectively backed up by multi-sectorial engagement and cooperation.

In their feedback, participants said the workshop had been timely, well-organized and valuable. They suggested that future such events include practical sessions and interaction with farmers. Typical remarks included statements that “strengthening of QPM and advocacy issues need to be consistent in promoting QPM until it reaches cutting-edge stage.”

NuME is implemented by CIMMYT in Ethiopia and funded by the Department of Foreign Affairs, Trade and Development of Canada (DFATD). It is designed to help improve the food and nutritional security of Ethiopia’s rural population, especially women and children, through the adoption of QPM varieties and crop management practices that increase farm productivity.

Reaching out to smallholder farmers in Pakistan

CIMMYT entered an important new partnership with Pakistan’s National Rural Support Program (NRSP) on 7 November 2014 for wheat varietal evaluation, promotion and deployment, as well as on-farm agronomic interventions and community-based seed production enterprises.

A not-for-profit development organization established in 1991 that fosters a countrywide network of more than 200,000 grassroots organizations across 56 districts, NRSP enables rural communities to plan, implement and manage development programs for employment, poverty alleviation and improved quality of life. Through direct linkages with some 400,000 smallholder farming families, the organization will help extend the reach of the CIMMYT- led Agricultural Innovation Program for Pakistan (AIP),  according to Dr. Rashid Bajwa, chief executive officer of NRSP. “We can now jointly scale out to a vast number of smallholders with average daily earnings of less than  two dollars a day,” Bajwa said, mentioning the organization’s activities like microfinance enterprise development.

The work of Pakistan’s National Rural Support Program benefits millions of small-scale farmers and landless families. Photo: Mike Listman/CIMMYT.

Aiming to benefit the disadvantaged

The partnership paves the way for a new and different kind of innovation platform focusing on smallholders, tenants and the landless, female-headed households and vulnerable groups such as flood victims, said Muhammad Imtiaz, CIMMYT liaison officer for Pakistan and AIP Chief of Party: “This will contribute directly to the Center’s mission of improving the food security and resilience of those most at risk, not to mention opening avenues for other AIP partners to join hands in testing and promoting appropriate agricultural innovations.”

Taking advantage of NRSP’s gender-responsive approach, the partnership will work directly with and seek to empower women farmers, identifying wheat varieties and technologies that help increase their food security and incomes. Work will identify, test and deploy high-yielding and rust resistant wheat varieties across 23 districts and include improved farming practices for diverse settings from rain-fed to fully-irrigated.

A major focus will be to develop community-based seed enterprises linked with NRSP, small seed companies, farmer associations and seed regulatory bodies, serving remote villages that have heretofore lacked access to improved varieties.

“This will contribute directly to the Center’s mission of improving the food security and resilience of those most at risk” –Muhammad Imtiaz CIMMYT liaison officer for Pakistan and AIP Chief of Party

A group photo was taken at the NRSP inception meeting and staff training. Photo: Raja Zulfiqar Ali.

Getting Off on the Right Foot

A partnership inception meeting and staff training for NRSP were organized on 10 November in Islamabad, with 32 participants from NRSP and 11 from CIMMYT, including senior management from both the organizations, and with Malik Fateh Khan, NRSP Regional Manager, providing a welcome address.

Imtiaz Hussain, CIMMYT cropping systems agronomist, highlighted conservation agriculture technologies and their relevance for the partnership. Krishna Dev Joshi, CIMMYT wheat improvement specialist, discussed various types of varietal testing, including participatory varietal selection, mother-baby trials and on-farm demonstrations, to creating awareness and demand for improved seed among farmers. Three CIMMYT colleagues who also spoke at the event were: Shamim Akhter, AIP project manager; Amina Nasim Khan, communications specialist; and Ghazi Kamal, monitoring and evaluation specialist.

Honoring the life and legacy of Wilfred Mwangi, CIMMYT Agricultural Economist

WilfredMwangiThe CIMMYT community celebrates the illustrious life and mourns the passing on 11 December of Wilfred M. Mwangi, distinguished Kenyan scholar, statesman and researcher who dedicated his career to improving the food security and livelihoods of farmers in sub-Saharan Africa. In 27 years at CIMMYT, Mwangi made significant contributions both as a principal scientist and distinguished economist with authorship on nearly 200 publications, as well as country and regional liaison officer, associate director of the global maize program, leader of the Drought Tolerant Maize for Africa (DTMA) project and CIMMYT regional representative for Africa.

“He served CIMMYT with distinction for decades and was enormously important in promoting smallholder maize research in Africa,” said Derek Byerlee, retired World Bank policy researcher who led CIMMYT’s socioeconomics team in the late 1980s-early 90s and recruited Mwangi. “Even more, he was a great human being who was highly-respected throughout the region. Africa and the world are poorer for his loss.”

“My Mother Still Tells Me How to Farm”

Born in 1947, Mwangi grew up in Nakuru County, Kenya. He completed a B.A. in Economics and Rural Economy at Makerere University, Uganda, in 1972 and M.A. and Ph.D. studies in Agricultural and Development Economics at Michigan State University (MSU) in 1975 and 1978. Returning to Kenya, Mwangi eventually became a Professor and Chair of the Department of Agricultural Economics at the University of Nairobi. He joined CIMMYT in 1987.

His career included stints as Deputy Permanent Secretary and Director of Agriculture and Livestock Production in Kenya’s Ministry of Agriculture, Livestock and Fisheries, and as a World Bank economist. As Deputy Permanent Secretary, he served as part of a “dream team” of eminent figures convened in 1999 by Richard Leakey, then head of the Kenya Wildlife Service, at the behest of President Daniel arap Moi, to help reform government administration and procedures.

Mwangi’s research at CIMMYT analyzed Africa’s seed sector and farm input markets and measured and explained the adoption of improved crop varieties and practices, particularly characterizing the concerns and decisions of rural households. He contributed on several occasions to CIMMYT’s popular “Facts and Trends” series on wheat and maize research and global markets. In 2006 he was named Honorary Life Member by the International Association of Agricultural Economists (IAAE).

With typical modesty and humor, Mwangi once observed that: “Despite all my academic expertise and impressive career, my mother still tells me how to farm.”

Messages Praise a Legacy of Leadership, Mentoring and Passion

Knowledgeable in politics and with prominent policy contacts, Mwangi provided untiring and invaluable support for CIMMYT’s Africa-based partnerships and work to develop and promote better maize and wheat crop varieties and farming systems, particularly to benefit of the region’s hundreds of millions of smallholder farmers. “We have such a noble mission,” he once said, describing his love for his work at CIMMYT. “This is a calling; you’re working for the poorest of the poor.”

Mwangi mentored hundreds of young, national program scientists from Africa and elsewhere. He was particularly effective arguing in policy circles for a focus on small-scale farmers and improved agriculture to foster development, according to Thomas A. Lumpkin, CIMMYT director general: “Wilf put on a formal air when engaging his numerous high-level contacts throughout Africa, but it was easy to see through to his practicality and passion for serving resource-poor farmers. He touched the hearts of many, and many share the grief that he is no longer among us.”

Messages praising Mwangi’s life work have poured in from Africa and around the globe. “Wilfred was a straight, no-nonsense person whose door was always open to share ideas and provide advice,” said Richard B. Jones, Chief of Party for the “Scaling Seeds and Technologies Partnership” of the Alliance for a Green Revolution in Africa (AGRA). “He was passionate about his work and was always generous in praise of others who supported his mission.”

Mwangi would often express his dedication and wisdom in pointed insights to kindle change and ambitious action, according to Lumpkin. “Someone once said that leaders should be able to motivate and mentor and above all, leave a legacy,” Lumpkin observed. “Wilfred fit that description, and it falls to us to honor and carry forward his legacy.”

The CIMMYT community sends its heartfelt sympathy and prayers to Mwangi’s spouse, Mary, and children Mwangi, Wainaina, Kibiru and Wangui.

Mwangi will be buried in Nairobi on Tuesday, 23 December 2014. Family and friends will meet daily at the PCEA St. Andrews Church, junction of Nyerere and State House Roads, Nairobi, Kenya, during 16-19 December.

Improved maize to boost yields in nitrogen-starved African soils

Sub-Saharan African farmers typically apply less than 20 kilograms of fertilizer per hectare of cropland — far less than their peers in any other region of the world. In 2014, partners in the Improved Maize for African Soils (IMAS) project developed 41 Africa-adapted maize varieties that respond better to low amounts of nitrogen fertilizer and are up for release in nine African countries through 24 seed companies.

A farmer applies nitrogen fertilizer to her hybrid maize. Photo: CIMMYT/IMAS

After water, nitrogen is the single most important input for maize production; lack of it is the main constraint to cereal yields in Africa, in areas with enough rain to raise a crop. Year after year, infertile soils and high fertilizer prices (in rural areas as much as six times the global average) combine to reduce harvests of maize, sub-Saharan Africa’s number-one cereal crop and chief source of calories and protein for the poor. With funding from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT), an initiative launched in 2010 has made dramatic progress to address this by exploiting natural genetic variation for nutrient-use efficiency in tropical maize. “Partners have been breeding maize varieties that respond better to the small amounts of nitrogen fertilizer African farmers can afford to apply,” said Biswanath Das, CIMMYT maize breeder and coordinator of the Improved Maize for African Soils (IMAS) project. “We’re aiming to raise maize yields by 50 percent and benefit up to 60 million maize farmers in eastern and southern Africa.”

Smallholder Farmer Conditions: A Maize “Reality Check”

A public-private partnership that, along with CIMMYT, involves national research organizations such as the Kenya Agricultural & Livestock Research Organization (KALRO) and South Africa’s Agricultural Research Council (ARC), African seed companies and DuPont Pioneer, IMAS has advanced quickly in part because participants share breeding lines and technical knowhow, according to Das.

“But a real key to success – and a significant legacy of the project – is that IMAS has established in eastern and southern Africa the world’s largest low-nitrogen screening network for maize,” Das explained. “There are 25 sites in 10 countries and a total of over 120,000 experimental plots. Partners can test breeding lines and quickly and reliably spot the ones with superior nitrogen-use efficiency under smallholder farmers’ conditions.” According to Das, nearly a quarter of the plots are managed by seed companies, which recognize the value of nitrogen-use efficiency as a key trait for their farmer clients.

In an exciting 2014 development, regulatory agencies in eastern Africa began evaluating maize national performance trials — which varieties must pass as a prerequisite for release — under nitrogen stress in the IMAS network. “This is a clear recognition by policymakers of poor soil fertility as a critical constraint for African maize farmers,” said Das. “To meet farmers’ needs, IMAS varieties are also bred for drought tolerance and resistance to the region’s major maize diseases.”

Also Yielding Under Well Fertilized Conditions

Partners are augmenting conventional breeding with DNA-marker-assisted selection and use of “doubled haploids,” a high-tech shortcut to genetically-uniform maize inbred lines. Experimental breeding stocks thus developed are field tested under low-nitrogen stress through “high-precision phenotyping,” involving careful measurement of key traits in live plants.

Low nitrogen trials in Kiboko, Kenya, where new maize varieties are tested. Photo: CIMMYT/IMAS.

“In this way, we’ve quickly developed maize varieties that yield up to 50 percent more than existing varieties under low-fertility stress, characteristic of smallholder farming systems,” Das explained. “Crucially for farmers, these varieties also perform well under well- fertilized conditions, whilst several carry resistance to maize lethal necrosis, a devastating viral disease spreading through eastern Africa.” In 2014, 41 such varieties were nominated for release in nine countries in Africa, in partnership with 24 seed companies.

This year IMAS also worked with seed companies to support the production and dissemination of 3,000 tons of seed of nitrogen-use efficient maize hybrids in Kenya, Mozambique, Tanzania and Zimbabwe, potentially benefitting more than 120,000 smallholder maize farmers and helping to enhance food security for over half a million household members, according to Das. “Close collaboration with the private seed sector has been instrumental to IMAS since its inception,” Das said. “These partners host over a quarter of the regional nitrogen stress screening network and have helped with the quick increase of seed of nitrogen-use efficient varieties and with managing farmer demonstrations and field days to support the fast release of new varieties.”

A December 2014 report by the Montpellier Panel – comprising agricultural, trade and ecology experts from Europe and Africa – details the economic and ecological threats of degrading soils in Africa, and is highlighted in an 04 December BBC feature.