Skip to main content

Climate-smart agriculture achievements inspire support for BISA-CIMMYT in Bihar, India

The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT
The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT

The Borlaug Institute for South Asia (BISA), CIMMYT and stakeholders are developing, adapting and spreading climate-smart agriculture technologies throughout Bihar, India. During the 2014-2015 winter season, BISA hosted visits for national and international stakeholders to view the progress of participatory technology adaption modules and climate-smart villages throughout the region.

“It is very encouraging to see the [BISA-CIMMYT’s] trials of new upcoming technology…We will be ready to support this,” wrote Dharmendra Singh, Bihar’s Director of Agriculture, in the visitor book during a state agriculture department visit to one of BISA’s research farms and climate-smart villages in Pusa. BISA, CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), in collaboration with local stakeholders and farmer groups, established 15 Borlaug climate-smart villages in Samastipur district and 20 in Vaishali district, as part of a 2012 research initiative to test various climate-smart tools, approaches and techniques.

Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT
Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT

“I could understand conservation agriculture better than ever after seeing the crop and crop geometry in the field today,” wrote Mangla Rai, former Director General of the Indian Council of Agricultural Research (ICAR) & Agriculture Advisor to the Chief Minister of Bihar. Raj Kumar Jat and M.L. Jat, CIMMYT cropping system agronomist and senior cropping system agronomist, respectively, showcased research trials on zero-tillage potato and maize, early-planted dual-purpose wheat, precision nutrient management in maize-wheat systems under conservation agriculture, genotype -by- environment interaction in wheat and crop intensification in rice-wheat systems through introduction of inter-cropping practices. Raj Kumar Jat also gave a presentation on how to increase cropping intensity in Bihar by 300% through timely planting and direct seeding techniques.

“Technologies like direct-seeded rice and zero-till wheat, which save both time and labor, should be adapted and transferred to Bihar’s farmers,” said Thomas A. Lumpkin, CIMMYT director general, at a meeting of the CIMMYT Board of Trustees with the Chief Minister of Bihar and other government representatives. “BISA is a key partner in building farmer and extension worker capacity, in addition to testing and promoting innovative agriculture technologies.”

The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT
The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT

“State agriculture officials should support BISA to hold trainings on direct-seeded rice for fast dissemination across Bihar,” agreed Vijay Chaudhary, Agriculture Minister of Bihar, at a BISA field day. Chaudhary along with 600 farmers and officials visited a climate-smart village where farmers plant wheat using zero tillage. Zero-till wheat is sown directly into soil and residues from previous crops, allowing farmers to plant seed early and to avoid losing yields due to pre-monsoon heat later in the season. Direct-seeded rice is sown and sprouted directly in the field, eliminating labor- and water-intensive seedling nurseries.

During the Bihar Festival, 22-24 March, BISA-CIMMYT showcased conservation agriculture practices and live demonstrations of quality protein maize-based food products, with over 10,000 famers and visitors participating. Vijoy Prakash, Agriculture Production Commissioner of Bihar, and other Bihar government officials discussed with farmers about new BISA-CIMMYT agriculture practices and emphasized the need to “introduce conservation agriculture in the state government’s agricultural technology dissemination program.” Prakash, along with government representatives, has approved two BISA proposals for a training hostel and research.

Two-wheeled tractors key to smallholder mechanization in Africa

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project held its second review and planning meeting, as well as mid-term review, during a five-day event in Hawassa, Ethiopia. This was followed by country site visits by the review team.

“The goal of FACASI is to improve farm power balance, reduce labor drudgery and minimize biomass trade-offs in eastern and southern Africa through accelerated delivery and adoption by smallholders of two-wheeled tractor (2WT)-based technologies,” said J.C. Achora, Knowledge and Information Manager, African Conservation Tillage Network. The meeting highlighted the importance of 2WT technologies to smallholders through five field visits, consisting of a youth community project, a vocational youth training institution, government research centers and manufacturing plants.

“Opportunities for use of two-wheeled tractors exist,” said Achora. “New projects coming up will ignite the demand for the two-wheeled tractors, and could trigger an increase in imports and manufacturing in Africa. Perhaps not too far in the future two-wheeled tractors could be the stepping stone to smallholder farm mechanization in Africa.”

FACASI participants learned and shared experiences on small-scale agricultural machinery, specifically the two-wheeled tractor, in diverse environments. Participants observed and drew lessons from services that support small-farm mechanization and associated business models.

Other places visited included the Hawassa research station for demonstrations of seeders and multi-use shellers and threshers, the Ato Tibebe Selemon Metal works, and the Selam Hawassa Business and Vocational College, which provides disadvantaged youth with practical training in metal fabrication and assembly and electrical installations. The last visit was to the Metals and Engineering Corporation (METEC), which integrates engineering into machines and installs industrial facilities.

Ethiopian seed companies express interest in QPM, seek CIMMYT support

QPM seed production management training in progress. Photos: S. Mahifere/CIMMYT
QPM seed production management training in progress. Photos: S. Mahifere/CIMMYT

Managers of private and public seed companies in Ethiopia have expressed interest to produce and broadly market quality protein maize (QPM) seed, provided that they get technical and other necessary support from the Nutritious Maize for Ethiopia (NuME) project.

The managers attended a three-day workshop on Seed Business Management organized by NuME from March 23–25 in Addis Ababa, Ethiopia. The training was aimed at improving the capacity of seed companies to produce QPM seed at the required quantity and quality for the sustainable adoption of QPM.

Ms. Elsa Asfaha (right), Manager, Alamata Agroprocessing, receives her certificate from Tafesse Gebru (middle), the Chief Executive Officer of the Ethiopian Seed Enterprise, while Adefris Teklewold (left), NuME project leader, looks on.
Ms. Elsa Asfaha (right), Manager, Alamata Agroprocessing, receives her certificate from Tafesse Gebru (middle), the Chief Executive Officer of the Ethiopian Seed Enterprise, while Adefris Teklewold (left), NuME project leader, looks on.

In his keynote address, Dr. Adugna Wakjira, the Deputy Director General of the Ethiopian Institute of Agricultural Research, noted that “many challenges are involved in seed production and delivery systems and it is thus critical that seed companies, both public and private, enhance their capacities to engage in the QPM value chain.”

Adefris Teklewold, NuME project leader, briefed participants about the project and its many accomplishments so far and pledged that “NuME will do all it can to address challenges faced by seed companies in producing QPM seed.”

“All issues and concerns in the seed value chain need to be considered, including seed quality, branding as well as maize lethal necrosis,” Adefris noted.

 

CIMMYT appoints a new regional representative for Africa

StephenMugo_w.jpg
Stephen Mugo
CIMMYT has appointed Stephen Mugo as the new CIMMYT–Africa Regional Representative (CRR) and the CIMMYT–Kenya Country Representative (CCR). He takes over these two roles from the late Wilfred Mwangi, who served CIMMYT for 27 years, the last of them as Africa Regional Liaison Officer before his demise in December 2014. Mugo brings to the position 32 years of experience in agricultural research, 17 of them in service to CIMMYT under different capacities, including his current role as CIMMYT’s leader in the Water Efficient Maize for Africa (WEMA) Project.

BekeleAbeyo w
Bekele Abeyo
CIMMYT has two other offices in Africa: the Ethiopia country office with Bekele Abeyo as the CIMMYT–Ethiopia Country Representative (CCR), and the Zimbabwe country office with Mulugetta Mekuria as CCR. Mulugeta also doubles as the Southern Africa Sub-Regional Representative.Together, Stephen Mugo, Bekele Abeyo and Mulugetta Mekuria serve as the CIMMYT contact persons in Africa for donors and governments, and they oversee regional and local office operations.

Mulugetta Mekuria
Mulugetta Mekuria
CIMMYT has 200 staff based in Africa, of whom one-third are internationally recruited and two-thirds are locally recruited. CIMMYT executes nearly 40 percent of its regional targeted activities in Africa. These activities are in collaboration with partners in 24 countries, besides other sister CGIAR centers.

BMPrasanna w
B.M. Prasanna
CIMMYT’s overall research oversight is managed globally through five research programs – the Genetic Resources Program (led by Kevin Pixley, based in Mexico), the Global Maize Program (led by B.M. Prasanna, based in Kenya), the Global Wheat Program (led by Hans Braun, based in Mexico), the Conservation Agriculture Program (led by Bruno Gerard, based in Mexico) and the Socioeconomics Program (led by Olaf Erenstein, based in Mexico).

Link: Our work in Africa

Making more from less: matchmaking maize to poor soils

WHEN FERTILIZER IS LIMITED, BREEDING SOLUTIONS FOR THE STAFF OF LIFE IN AFRICA

A farmer applying a solution only very few can afford in adequate amounts: nitrogen fertilisers for poor soils in Africa
A farmer applying a solution only very few can afford in adequate amounts: nitrogen fertilisers for poor soils in Africa

Among the major crops produced and consumed in sub-Saharan Africa (SSA), maize leads, consumed by more than 650 million Africans. Therefore, maize and Africa’s food security and socioeconomic stability are inseparably intertwined. Poor maize productivity has contributed to food shortages, high prices and has pushed more Africans to extreme poverty. Low-fertility soils are part of the problem, and maize varieties specially bred for poor soils offer a partial solution.

Maize and Soil—Chemical Solution, Socioeconomic Problem, Nitrogen in Sips Not Gulps
After water, poor soil nitrogen is the single most critical constraint for Africa’s maize production. Lack of, or inadequate, soil nitrogen leads to low yields and crop failure. Farmers therefore need nitrogen fertilizers to improve yields when soils are depleted or infertile. However, for most smallholder farmers, the harsh reality is that chemical fertilizers—or adequate amounts of them—remain out of their reach, unaffordable owing to the high costs.

To address this, the International Maize and Wheat Improvement Center (CIMMYT) and its partners are working through the Improved Maize for African Soils (IMAS) Project to develop maize varieties that are more efficient at using the small quantities of fertilizer that smallholder farmers can afford, typically less than 30 kilograms per hectare. This means that farmers obtain up to 50 percent more from the limited fertilizer applied.

From problems to solutions: everybody wins!
IMAS focuses on improving the genetics of maize varieties to better match the typical soil profiles of smallholder maize farms in eastern and southern Africa. Different maize varieties respond very differently to soil nitrogen stress. ‘In complement to improved agronomy and soil management, selection of appropriate maize varieties for specific soil conditions can play an enormous role in improving productivity and food security in Africa,’ observes Biswanath Das, a maize breeder at CIMMYT. By packaging nitrogen-use efficiency in the seed, IMAS hopes to improve maize yields efficiently and economically for small holder farmers in Africa.

At this year’s Global Soil Week (GSW) running from April 19–23 in Berlin, Germany, it is important that tangible solutions be formulated for farmers to nurture and sustain healthier soils. Engagement and dialogue forums like GSW and the recent #TalkSoil tweet chat initiated by the International Center for Tropical Agriculture and Shamba Shape Up (a Kenyan television show targeting smallholder farmers) are critical for inclusive discussions to help farmers in Africa.

Such dialogues must continue throughout 2015—the UN International Year of Soils—but also beyond. Why? Because soil is the staff of life, and the Substance of Transformation, as the Global Soil Week theme this year reminds us.

Links

Outcome of first International Biological Nitrification Inhibition Workshop

IMG_4217_c6538f9393010d859f2db21d5e8a8f18 Suppressing soil nitrification and increasing Nitrogen Use Efficiency (NUE) is critical to reversing the N-fertilizer overuse and minimizing its environmental impact.

Global nitrogen (N) fertilizer consumption has increased  10-fold since 1960s, but food grain production has only tripled during this period, resulting in a decrease in NUE.

Of the 150 million tons of N-fertilizer currently applied to agricultural systems globally, up to 70 percent is not recovered by the crop and often results in negative environmental impact through pathways such as nitrate-leaching and nitrous oxide emissions, according to a report by William Schlesinger..

Nitrate is an important groundwater pollutant and nitrous oxide (N2O) is a powerful greenhouse gas. Annual economic losses from lost N-fertilizer is estimated at $90 billion. If this trend continues, annual N-fertilizer application will double by 2050 and global N2O emissions from agriculture will reach 19 million tons of N y-1 by then, according to Schlesinger.

Biological nitrification inhibition (BNI) is the ability of certain plants to suppress nitrifying activity by releasing nitrification inhibitors from root systems. This phenomenon has been observed in tropical grasses (Brachiaria spp.), food crops (sorghum) and wheat-wild relatives (Leymus spp.).

Japan International Research Center for Agricultural Sciences (JIRCAS) has been working together with three CGIAR Centers (International Center for Tropical Agriculture [CIAT], CIMMYT and International Crops Research Institute for the Semi-Arid Tropics [ICRISAT]) to advance this research and to develop technological components for BNI, including genetic and agronomic aspects.

The International BNI Workshop held at JIRCAS on March 2 and 3, 2015 was attended by 40 researchers representing four CGIAR Centers (CIAT, CIMMYT, ICRISAT and the International Livestock Research Institute [ILRI]) leading four CGIAR Research Programs (CRPs), including the Research Program on Climate Change, Agriculture and Food Security (CCAFS), Wheat (WHEAT), the Research Program on Dryland-Cereals, the Research Program on Livestock and Fish Livestock and Fish) and several Japanese organizations (national agricultural institutes, and universities).

The major conclusions from the workshop are:

  • Reduced nitrification is essential to reduce N2O emissions and to improve NUE in agricultural systems. As part of a comprehensive approach incorporating genetic and agronomic management solutions, BNI-technology will reduce nitrogen losses, facilitate nitrogen retention and improve soil-health in next-generation climate-smart production systems.
  • Developing and deploying BNI-technology requires collaboration among Japanese institutions, CGIAR centers and institutions from developing countries.
  • The four CRPs will include BNI research in their program plans (2017-2026) and seek donor support as part of developing and deploying climate-smart agricultural practices.
  • JIRCAS, together with CGIAR partners, formed a consortium on BNI Research for Sustainable Development, with JIRCAS in a convening and coordinating role.

Links to JIRCAS, participating CGIAR Centers and CRPs in BNI Research Consortium
http://www.jircas.affrc.go.jp/index.html
http://livestockfish.cgiar.org/
http://drylandcereals.cgiar.org/
http://wheat.org/
http://maize.org/
http://ccafs.cgiar.org/
http://ciat.cgiar.org/
http://staging.cimmyt.org/en/
http://www.icrisat.org/

References:

Schlesinger W. 2009. On the fate of anthropogenic nitrogen. PNAS (USA) 106:203-208.

Poor soils a huge limitation for Africa’s food security

TEXCOCO, MEXICO, April 19, 2015 – Sustainable Development Goals being addressed at the Global Soil Week cannot ignore dependence on maize as a staple food for millions in Africa, and the need to help smallholder farmers maximize yields in African soils.

Today, Berlin, Germany, hosts soil scientists from across the world who have converged for the Global Soil Week (GSW) to find solutions for sustainable land governance and soil management. Farmers and other stakeholders in agriculture are keen to see outcomes that will translate into healthier soils for sustainable development in Africa and elsewhere.

For Africa’s smallholder farmers, low-fertility soils with poor nitrogen-supplying capacity are only second to drought as a limiting factor. Consequently, farmers suffer low yields and crop failure, a situation that has crippled food security for more than half (60 percent) of the population in this region who depend on smallscale farm produce.

To improve productivity, farmers apply nitrogen fertilizers, which provide necessary nutrients the soil needs to feed plants. However, most farmers cannot afford to apply the required amount of fertilizers because the costs are too high for them. It is estimated that nitrogen fertilizer costs as much as six times more in Africa that in any other part of the world.  “For my one-acre farm, I use a 50-kilogram bag that costs KES 4,000 [USD 42]. This is a lot of money, so I have to use very little to save for the next planting season,” says Ms. Lucy Wawera, a farmer in Embu County, Kenya.

Maize is the most important cereal crop in sub-Saharan Africa consumed by more than 650 million people. This dependence therefore dictates that solutions to Africa’s fragile food security also focus on improving maize production. The International Maize and Wheat Improvement Center (CIMMYT) and its partners are working through the Improved Maize for African Soils (IMAS) Project to address -nitrogen depleted soils. They are exploiting naturally occurring genetic variation in maize to develop new varieties that are nitrogen-use-efficient or better at utilizing the limited amounts of fertilizer that smallholders can afford in sub-Saharan Africa—typically less than 30 kilograms. These new varieties yield up to 50 percent more than current commercial varieties in nitrogen-poor soils. IMAS draws on strong collaboration between the public and private sectors involving the Kenya Agricultural and Livestock Research Organization, South Africa’s Agricultural Research Council and DuPont Pioneer.

“Matching appropriate crop varieties to specific soil systems and ecologies can play a major role in improving productivity of fragile smallholder farming systems in Africa,” says Dr. Biswanath Das, a maize breeder at CIMMYT. “Increasing productivity on existing farmland will prevent encroachment into marginal or virgin lands which leads to further soil degradation.” Helping farmers deal with the challenge of low-fertility soils will remain a key focus for international and national actors in Africa throughout 2015, the UN International Year of Soils. Open discussion platforms should therefore be encouraged to facilitate comprehensive and inclusive dialogue on soil matters. A recent tweet-chat forum titled ‘#TalkSoil’ initiated by the International Center for Tropical Agriculture and Shamba Shape Up (a Kenyan television program on smallholder agriculture) brought together scientists, farmers, regulators and other actors to discuss  a single topic – soil.

It is therefore important that GSW deliberations formulate sustainable solutions for farmers to build healthier soils, and to nurture and maintain them. This will not only arrest soil deterioration but also protect a critical livelihood for billions, and a source and ‘sustainer’ of life for us all – agriculture, deeply rooted and inseparable from soil.

Links for more information

·         IMAS Project: Overview |Update | Videos—Maize for hungry soils | Maize that thrives in poor soils
·         Follow the IMAS conversation on Twitter during #GlobalSoilWeek via #IMASPro
·         Global Soil Week 2015
·         International Year of Soils 2015
·         CIMMYT’s research on maize

For information on the IMAS project, please contact: Biswanath Das: IMAS Project Leader| Brenda Wawa: media contact

 

The journey of a seed

Photo credit: CIMMYT
Photo credit: CIMMYT

CIMMYT Day activities included a session on seed preparation and distribution, including standard procedures of CIMMYT’s Seed Inspection and Distribution Unit (SIDU), which shipped over 45 tons of seed in the last year.

Preparing seed for distribution is a multi-step process. First, the seed must undergo rigorous testing in CIMMYT’s Seed Health Laboratory (SHL). This testing ensures that seed distributed by CIMMYT is disease free, and of exceptional quality. Once the seed is approved, it is then prepared for distribution.

Photo credit: CIMMYT
Photo credit: CIMMYT

Before packing, the seed is washed in a sterilizing solution in preparation for its treatment. For maize, the treatment consists of both a fungicide and an insecticide, which prepare the seeds to thrive under diverse environmental conditions. For wheat, the treatment is just a fungicide. Once the seeds have been treated and dried, they are ready to be packaged for shipment.

The next step in the seed preparation process consists of labeling and packaging. Machines automatically print the packet labels and measure the seed required for each package. Maize seeds are counted individually with a counting machine (pictured), wheat seeds are measured by weight.

Photo credit: CIMMYT
Photo credit: CIMMYT

Next, boxes containing the seed packets, legal paperwork and field books are prepared. According to Efren Rodriguez, Head of Data Processing and Seed Distribution, field books are the “gold” that CIMMYT reaps through its efforts. CIMMYT requests that seed recipients utilize the field books to record data, which helps CIMMYT to continuously better the quality of its seeds.

Inspired and inspiring lady, Lindiwe Majele Sibanda, leaving CIMMYT Board

Photo credit: CIMMYT
Photo credit: CIMMYT

Dr. Lindiwe Majele Sibanda is one of Africa’s leading advocates for food and nutrition security. As chief executive officer and head of mission of the Africa-wide Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN), aimed at making Africa a food-secure region, she coordinates policy research and advocacy programs. She joined the CIMMYT Board in 2009 and will finish her appointment this month.

Upon awarding her a plaque in appreciation of her many contributions on 14 April, during the recent Board meetings in El Batán, Mexico, Board Chair Prof. John Snape called Sibanda, who grew up on a farm in Zimbabwe, an important voice on the Board. “She brought her views on African smallholder farmers and is well respected throughout the development world,” Snape said. “Her critical insights for CIMMYT governance, based on balanced and positive perspectives regarding the Center’s research-for-development agenda and the CGIAR, were always highly appreciated.”

Sibanda has long followed and supported CIMMYT’s work. We hope she will continue to do so through FANRPAN and her other numerous endeavors, and thank her and wish her well!

CIMMYT welcomes new board members

CIMMYT Board of Trustees April 2015
Photo credit: CIMMYT

How are New Board Members Appointed?

CIMMYT’s Board of Trustees is composed of 13 experts appointed in their individual capacity and not as a representative of any outside entity.

The process to appoint new members to the Board is conducted by the Nominations Committee, whose sole duty is to ensure a mix of skills on the Board at any one time, based on a skills matrix of CIMMYT’s required expertise. As a result, the Board will represent expertise in science (CIMMYT’s key areas of research), finance, audit, risk management, governance, international partnerships and gender and diversity. Board members are also appointed with consideration of their geographical origins. Each member is appointed for a three-year term, with a maximum limit of two terms.

The chair of the Nominations Committee leads the search for new Board members. This is done through a referencing system, rather than a formal and advertised search. Prospective candidates are approached formally and then interviewed by the Board. Newly-appointed Board members undergo an induction program conducted by CIMMYT and the CGIAR and attend their first meeting as an observer.

Dr. Feng Feng

Dr. Feng Feng
Photo credit: CIMMYT

Dr. Feng is currently the director of the Chinese Bureau of International Cooperation, NSFC. He is responsible for developing international cooperation channels with foreign partners, making policy for international research cooperation in NSFC, and setting the budget for the different research areas for international cooperation. He received his B.Sc. in plant genetics and breeding, and M.Sc. and Ph.D. in plant pathology from the Agricultural University of China.

Dr. Luis Fernando Flores Lui

Flores Lui
Photo credit: INIFAP

Dr. Flores Lui is General Director of the Mexican Institute of Forestry, Agriculture, and Livestock (INIFAP). Over the last 25 years he has held numerous positions within the organization. At an international level he has coordinated the biotechnology group at the Asia-Pacific Council (APEC); worked with the Japan International Cooperation Agency (JICA); and has taught undergraduate and graduate courses in different universities. He received his B.Sc. in Agricultural Engineering from the Antonio Narro Agrarian Autonomous University, his M.Sc. from Irrigation Water Use and Management in 1974 from the Monterrey Institute of Technology and Higher Education and his Ph.D in Soil Sciences from the University of California, Davis.

Dr. Raul Obando Rodriguez
Photo credit: INIFAP

Dr. Raúl Gerardo Obando Rodríguez
Dr. Rodriguez is the Coordinator for Research and Innovation at the National Institute of Forestry, Agriculture and Livestock (INIFAP). He is an Agricultural Engineer by trade with a PhD in Plant Nutrition at the University of California, Davis. He has held various positions in in INIA, INIFAP, the National Coordinator of the Produce Foundation (COFUPRO), the National System for Research and Technology Transfer (SNITT) and the Graduate College (COLPOS), to name a few.

Bongiwe Nomandi Njobe

Bongiwe Nomandi
Photo credit: CIMMYT

Bongiwe Njobe is Executive Director (founder and sole proprietor) of ZA NAC Consulting and Investments. Over the past 20 years she has held numerous positions in the Fast Moving Consumer Goods Sector (FMCG) sector and the Agricultural Public Sector including Group Executive: Corporate Sustainability at Tiger Brands Limited, Corporate Affairs Director at South African Breweries Limited and Director General at the South African National Department of Agriculture. She currently serves as a Director on the Vumelana Advisory Fund, Independent Board Member on the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) and as a Trustee at the Kagiso Trust. She is also a member of the High Level Advocacy Panel for the Forum for Agricultural Research in Africa (FARA) and a member of the Institute of Directors (Southern Africa) Sustainability Development Forum.

Mapping agricultural opportunity: how GIS contributes to food security

Head of GIS Unit Kai Sonder demonstrating GPS
Photo credit: CIMMYT

Geography matters – 80% of all data has a spatial component, which is “why geographic information systems (GIS) are growing exponentially,” said Kai Sonder, head of CIMMYT’s GIS unit, during a presentation to CIMMYT Day attendees, explaining that GIS involves the mapping and analyzing of spatial and geographic data. “By 2050, 70% of all farmers living in maize and wheat growing areas in Latin America, Asia and Africa will experience yield losses of 15% and more,” said Sonder. The GIS unit is able to make this prediction by analyzing, mapping and modelling climate change implications, crop suitability, socioeconomic and other data sets affecting agricultural production across the globe. The GIS unit also uses spatial analysis for targeting or defining the potential for spreading technologies such as new maize or wheat varieties or conservation agriculture practices, or gauging the market potential for the small- and medium-scale seed companies working with CIMMYT. The unit curates and continuously updates a comprehensive collection of geospatial datasets and geographic databases for all maize- and wheat-producing countries in the developing world.

Developing hybrids across the board at CIMMYT

Photo credit: CIMMYT
Photo credit: CIMMYT

When a CIMMYT scientist discusses developing hybrids, the first thought that comes to mind is probably new variety of drought tolerant maize.

However, CIMMYT engineers in the global conservation agriculture program are producing a whole different set of hybrids in the fields of El Batán, Mexico. At CIMMYT Day, Jelle Van Loon, Leader of Smart Mechanization and Machinery Innovation, explained the importance of creating “hybrids” of already existing machinery to meet the demands of farmers regionally.

Taking into consideration a varying range of crops, soils and climates, farmers not only need the correct seed, but also the proper technologies to work in their prospective environments. Looking at existing and functional machinery from different parts of the world, like China, Brazil, USA and India, Van Loon and his team are able to convert the machines to make them suitable for use in Mexico, for Mexican farmers.

“It is all a learning experience,” explained Van Loon to his CIMMYT colleagues. “We have to go into the fields and see what is working for these farmers. We have to meet their needs.” This is the very basis for the CIMMYT’s Take it to the Farmer initiative, which is designed to offer advice on a personal level and make innovations readily available to Mexican farmers.

CIMMYT Day gives staff opportunity to explore colleagues’ work

Photo credit: CIMMYT
Photo credit: CIMMYT

Comprising interactive presentations in English and Spanish on diverse aspects of the Center’s work, CIMMYT Day at El Batán on 10 April allowed more than 250 staff members to learn more about the science and get a first-hand understanding of CIMMYT activities and impact.

Thomas Lumpkin, CIMMYT director general, and John Snape, Chair of the Board of Trustees, welcomed participants. Snape presented Lumpkin, who will leave CIMMYT in June, with a miniature statue of Dr. Norman Borlaug, in honor of his humanitarian spirit and commitment to developing world farmers.

Photo credit: CIMMYT
Photo credit: CIMMYT

The tours began with wheat physiologist Matthew Reynolds explaining how this specialty contributes to improve wheat, elucidating wheat production environments and how they affect wheat, sources of useful new traits and the challenges of measuring and working with these traits. At the conservation agriculture experiment, Nele Verhulst, strategic research coordinator for this discipline in Latin America, astounded visitors by describing the yield increases possible through proper application of conservation agriculture’s three principles: reduced tillage, keeping crop residues on the soil, and careful use of crop rotations. In particular, the removal vs the retention of residues under zero tillage provided dramatic differences of 5.7 vs 7.9 tons per hectare (t/ha), respectively, with good rainfall, and of 3.6 vs 7.4 t/ha in drought years, due to the superior capture and retention of moisture on untilled soils with residues.

Photo credit: CIMMYT
Photo credit: CIMMYT

Jelle Van Loon, leader of machinery innovation and smart mechanization, demonstrated implements specially adapted for conservation agriculture, explaining that all are multi-use and multi-crop, to be most useful to farmers. Biosciences Greenhouse Laboratory Manager Ulises Gaona Ramírez demonstrated how to “separate the wheat from the chaff” using various methods, and gave everyone the opportunity to plant their very own wheat plant, which they were allowed to take home as a living souvenir. From there, participants visited the wheat and maize quality laboratories. Carlos Guzmán, head of the wheat quality laboratory, and Hector González, principal research assistant, explained the characteristics of different types of wheat used to create different food products, while Natalia Palacios, maize nutrition quality specialist, discussed the use of different maize varieties to make tortillas, the staple food of Mexico.

Photo credit: CIMMYT
Photo credit: CIMMYT

The day finished with a visit to the CIMMYT Germplasm Bank, during with Denise Costich, head of the maize germplasm bank, and Thomas Payne, head of the wheat germplasm bank, talked about their respective areas and led tours of the actual seed collections inside the Bank chamber, with support for Spanish-speaking visitors from Bibiana Espinosa, Paulina González and Martín Rodríguez.

Celebrating CIMMYT: what will the next 50 years hold?

CIMMYT_Ceremony_1
Photo credit: CIMMYT

A year of celebrations in honor of Dr. Norman Borlaug’s birth centennial was officially closed last Thursday 9 April in a ceremony at CIMMYT headquarters in Mexico.

“If he (my father) were here,” said Jeanie Borlaug Laube, who chairs the Borlaug Global Rust Initiative, “he would remind you that it is your moral imperative to speak up and protest for the world’s right to science-based innovation.” She was addressing an audience of government representatives, private sector partners, researchers, CIMMYT trustees, and diplomats including the Australian and Belgian ambassadors to Mexico.

The occasion also marked the celebration of a double achievement for CIMMYT: the 2014 World Food Prize being awarded to Dr. Sanjaya Rajaram, former global wheat program director, and the 2014 Borlaug Field Award to Dr. Bram Govaerts, leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) project.

During his distinguished career, Rajaram led work that resulted in the release of more than “480 varieties of bread wheat in 51 countries, occupying more than 58 million hectares,” said Prof. John Snape, Chair of CIMMYT’s Board of Trustees. “A feat unlikely to ever be surpassed by another wheat breeder.”

Rajaram’s merits were also recognized by Mexican government representatives at the World Food Prize ceremony in Des Moines, Iowa, USA, on 16 October 2014. Enrique Martínez y Martínez, head of Mexico’s Agriculture Secretariat (SAGARPA), congratulated him for developing varieties and technologies that have helped boost wheat productivity in Mexico and the rest of the world.

Photo credit: CIMMYT
Photo credit: CIMMYT

During the ceremony, Martínez y Martínez signed and renewed SAGARPA’s technical collaboration agreement with CIMMYT for the implementation of MasAgro, CIMMYT’s major project in Mexico. “MasAgro boosts a new model of agricultural extension based on sustainable technologies and capacity building activities that match Mexico’s Farmer’s Confederation’s development vision,” said Mexican Senator Manuel Cota, who is also President of the Farmer’s Confederation and of the Senate Agriculture Committee.

By the end of 2014, there were over 200,000 farmers linked to MasAgro on more than 440,000 hectares across Mexico. “To address farmer’s needs we must pursue scientific excellence as Norman Borlaug did,” stressed Dr. Bram Govaerts, MasAgro leader. “We must go out to the field and get our hands dirty; take risks and be bold in our research; let innovation flow and get rid of false illusions of control,” Govaerts added.

After the ceremony, Dr. Borlaug’s family, government officials and CIMMYT laureate scientists unveiled a statue of Dr. Borlaug at the Center facilities.

“Next year CIMMYT will celebrate its 50th anniversary,” said Thomas Lumpkin, CIMMYT director general. “For 50 years Mexico has been the cradle of CIMMYT’s global agricultural innovation. Our challenge now is to ask what the next 50 years will hold.”

Global Soil Week

For the much-needed focus they bring on a burning issue, CIMMYT’s Improved Maize for African Soils (IMAS) Project celebrates the Global Soil Week and the International Year of Soils.
[widgetkit id=41]

Africa’s maize farmers must deal with drought, weeds and pests, but their problems start with degraded, nutrient-starved soils and the farmers’ inability to purchase enough nitrogen fertilizer.
[widgetkit id=42]

Smallholder maize yields in sub-Saharan Africa are a fraction of those in the developed world, due mainly to the region’s poor soils and farmers’ limited access to fertilizer or improved maize seed. On average, such farmers apply only 9 kilograms of fertilizer per hectare of cropland.

[widgetkit id=45]

Of that small amount, often less than half is captured by the crop; the rest is leached deep into the soil where plants cannot recover it or otherwise lost. But all is not bleak, and here are some of the solutions from the Improved Maize for African Soils Project.

 

[widgetkit id=44]

Videos

Links

       IMAS Project      |     International Year of Soils    |     Global Soil Week 2015  – Press release • Short feature | Our work on maize