Skip to main content

Klein Karoo’s business knowledge winning in Mozambique

A glimpse of Klein Karoo’s sprawling 15-hectare maize field in Manica District, Mozambique. Photo: K. Kaimenyi/CIMMYT

MANICA, Mozambique (CIMMYT) – From years of civil war to the devastation of drought, Mozambique has had its fair share of misfortune over the last six years.  Home to an estimated 26 million people, this country holds promise for a mighty economic comeback, with agriculture as a major contributor. Despite struggles to reclaim its former glory, several agricultural multinationals are setting up shop in Mozambique, and reaping great benefits.

One such company is Klein Karoo (K2), a seed producing and marketing giant with presence in Africa and around the world. Founded in Oudtshoorn, South Africa, in 2003, K2 has expanded its reach with seed production and business units in southern Africa (Mozambique, Zambia and Zimbabwe), and distribution partners in Asia and Europe.

Before setting up a seed production unit in Mozambique in 2016, K2 would import seed from South Africa and Zimbabwe, which took up a hefty chunk of total operation costs. Now, these funds can be directed towards production, distribution, and marketing efforts in the country. In 2016 for instance, K2’s sales target for drought tolerant (DT) maize seed was 100 tons. With local production up and running, 40 tons were produced, and 60 tons imported – a significant cost reduction.

The company is currently undertaking multiplication of both hybrid and open pollinated varieties (OPVs) of DT maize, the most popular being Pris 601 and ZM 523 respectively.

Pris 601, a DT hybrid, is particularly favored for its similarities to long loved Matuba, a local variety smallholder farmers have held onto despite its poor yield potential. Much like Matuba, Pris 601 is semi flint, giving it an excellent milling quality preferred by women. On average, farmers planting Matuba can expect a maximum yield of two tons per hectare (t/ha), compared to almost six times more with Pris 601.

Julius Mapanga, operations manager for Klein Karoo in Mozambique, inspects maize at the farm in Manica. Photo: K. Kaimenyi/CIMMYT

“Coupled with good farming practices such as proper spacing, timely weeding, and correct fertilizer application, smallholder farmers in Mozambique could potentially harvest as much as 10 to 12 t/ha by planting drought tolerant maize variety Pris 601,” says Julius Mapanga, operations manager for K2 based in Mozambique, adding, “However, since most farmers are not very consistent with good agronomic practices, actual yield falls to about 5 t/ha, which is still better than Matuba.”

Ensuring uptake and adoption of DT maize varieties among farmers requires innovative strategies, including partnerships with experts in seed promotion. Klein Karoo, in partnership with Farm Input Promotions Africa Ltd. (FIPS-Africa), have rolled out distribution of trial seed packs to farmers, and use of village based advisors (VBAs) to close on sales.

Seed packs, usually weighing between 25 to 75 g, are quickly gaining popularity among seed companies as an alternative to planting demonstration plots. Not only are demonstration plots costly to set up, they are also few and far between, meaning not too many farmers get to see them. Demonstration plots also simulate ideal conditions such as fertilizer application and sometimes irrigation, as opposed to actual farmer habits, which are not always good. Seed packs on the other hand are cost efficient, have a wider reach, and farmers can practice their usual farming methods to see for themselves the product’s performance.

On average, a farmer hosting a demonstration plot will receive a 10 kg bag of maize seed per season, along with fertilizer, and expert advice and follow up on good agronomic practices. Seed packs of 25 g each from a 10 kg bag of maize benefit 400 farmers, and each pack is enough to plant about three rows of maize on a five meter square plot.

Even though Klein Karoo has distributors present in almost all provinces in Mozambique, some gaps in seed distribution still exist. This is where VBAs come in handy, especially in areas with low concentration of agro-dealers, and where farmers live far apart from each other. VBAs are farmers with entrepreneurial skills, and well known in the community, who can purchase seed from K2 and sell within their locality. On average, a VBA can reach between 200-300 farmers per village, to sell improved seed and offer training on good farming practices.

Combining seed packs with promotion by VBAs is possibly the best business strategy K2 could employ. In 2015 alone, over 80,000 seed packs of 30 g each were distributed to farmers across Mozambique, with VBAs making individual sales of between 100-200 kg of improved maize seed.

Through technical and financial support and capacity building initiatives, CIMMYT’s Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project works closely with Klein Karoo and other partners in eastern and southern Africa to bring affordable, improved maize seed to 2.5 million people. DTMASS aims to meet demand and improve access to good-quality maize through production of improved drought tolerant, stress resilient, and high yielding maize varieties for smallholder farmers.

USAID makes special visit to CIMMYT activities in Bangladesh

Timothy Krupnik (right) explains the use and benefits of the Power Tiller Operated Seeder to USAID Deputy Administrator Gary Lindon (far left). Photo: Md. Aktarul Islam/CIMMYT-Bangladesh
Timothy Krupnik (right) explains the use and benefits of the Power Tiller Operated Seeder to USAID Deputy Administrator Gary Lindon (far left). Photo: Md. Aktarul Islam/CIMMYT-Bangladesh

JESSORE, Bangladesh (CIMMYT) — USAID’s Deputy Administrator Gary Lindon visited Bangladesh in November 2016 to learn how the International Maize and Wheat Improvement Center (CIMMYT) engages with partners to help smallholder farmers uptake sustainable agriculture practices, as well as to observe the private sector’s role in producing farm machinery that is faster, more environmentally friendly and affordable for smallholder farmers.

One example of sustainable, smallholder-friendly machinery being promoted by CIMMYT with national partners is the two-wheeled mechanical reaper, a tool that’s proven to save farmers time and money, and helps them cope with increasing labor scarcity in Bangladesh — a trend that has continued to rise as Bangladesh develops economically and more people leave rural areas for off-farm employment, according to Timothy Krupnik, systems agronomist at CIMMYT.

“Mechanical harvesting also allows farmers to more quickly clear the field and sow the next crop, which has yield advantages for planting crops like wheat,” said Krupnik.

Lindon also met with service providers — entrepreneurial farmers turned businessmen — who have purchased the two-wheeled mechanical reapers and are now offering their harvesting services to smallholder farmers at an affordable fee.

“The local service provision business model is key to unlocking agricultural and entrepreneurial capacity in rural Bangladesh,” said Kevin Robbins, director of programs at International Development Enterprises, one of CIMMYT’s partners in Bangladesh. “We’ve seen just over 1,000 local service providers provide agricultural machinery services to over 40,000 farmers — catalyzing a level of impact that would not have been possible if we had promoted a traditional model where every farmer buys his or her own machine.”

The deputy administrator of USAID and his attaché observe a rice and wheat crop harvester piloted by an entrepreneurial farmer turned businessman. Photo: Md. Aktarul Islam/CIMMYT-Bangladesh
The deputy administrator of USAID and his attaché observe a rice and wheat crop harvester piloted by an entrepreneurial farmer turned businessman. Photo: Md. Aktarul Islam/CIMMYT-Bangladesh

Shafiqul Islam, CIMMYT’s Jessore hub coordinator, also explained that through mechanical harvesting, farmers save $48 per hectare, while service providers earn approximately $31 per hectare.

“In Bangladesh, private sector companies are working hard to promote agricultural machinery that develops the sector,” said Mohammad Jamil, managing director at Metal Pvt. Ltd., a leading private company in Bangladesh that sells reapers. “We want to do more business — the kind of business that changes the lives of farmers through increasing the sales of appropriate agricultural machinery. There’s a strong incentive for us to endorse the adoption of new technologies, which in turn increases food production, boosts farmer income and supports our economy. It’s a win-win business model and a sustainable way to develop our country.”

The team later visited lentil and maize fields that had been seeded directly with seeders, affordable machines that can attach directly to two-wheeled tractors, which are increasingly being used by farmers in Bangladesh. Farmers attending the USAID field visit commented that through the use of two-wheel tractor attachable seeders they can save $60 per hectare by avoiding recurring tillage and manual seeding costs.

“This machine also helps farmers to sow seeds on time, as recommended by agronomists, because direct sowing saves farmers’ 7-10 days compared to full tillage and manual sowing systems,” explained Islam.

CIMMYT launched the Cereal Systems Initiative for South Asia (CSISA) program in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems. Through this program, CIMMYT is operating rural “innovation hubs” in Bangladesh, India and Nepal to increase the adoption of various resource-conserving and climate-resilient technologies, and to improve farmer access to market information and enterprise development. Learn more about CSISA’s impact here.

Entrenched gender roles threaten women’s longevity in research careers

EL BATAN, Mexico (CIMMYT) — Despite over a decade of implementing policies and programs to promote gender equity in research, some countries have seen careers for women in science, technology, engineering and math (STEM) stagnate and even decrease in some fields.

Research indicates that women start out in equal numbers to their male colleagues – even outnumbering in some cases – while pursuing undergraduate and graduate degrees in STEM fields, but drop off at the doctoral level and even more at the research level, with men now representing 72 percent of the global research pool.

“The age at which many pursue or complete a doctoral degree often coincides with the time people start thinking about having children,” said Denisse McLean, an agrobiodiversity doctoral student at the Scuola Superiore Sant’Anna in Pisa, Italy, who is conducting research at the International Maize and Wheat Improvement Center (CIMMYT) headquartered near Mexico City. “I knew after my master’s I wanted to do my doctorate right away because I know once I have kids, I won’t have as much flexibility.”

“A number of my male classmates study abroad while their spouses are at home with their kids,” McLean said. “In contrast, none of my female classmates have children. I would not be able to travel and work long hours like I do now if I had children of my own.”

Denisse McLean is an agrobiodiversity doctoral student at the Scuola Superiore Sant’Anna who is conducting research at CIMMYT. Photo courtesy of Denisse McLean.

McLean refers to a “maternal wall” which results from expectations that a woman’s job performance will be affected by her taking a leave of absence to have children, or by absences from work to take care of family.

The work environment of a lab or lecture hall frequently does not allow flexibility for child leave or care. Since most women still assume the primary caregiver role regardless of where they live in the world, in heterosexual couples this often results in the woman’s career lagging, not her male partner’s.

“I never had maternity leave,” said Denise Costich, senior scientist and head of CIMMYT’s maize germplasm bank, now over three decades into her career. “There were no provisions in my contracts, either as a graduate student or a postdoctoral researcher, to cover this. I took vacation time to give birth. When my first child was born I took her to the greenhouse with me to check on my experiments, when she was under a week old.”

Costich, who lovingly refers to her three children as her “grad school baby, thesis baby and post-doc baby,” pursued a career in ecological research while raising three kids, at times requiring the deployment of innovative problem-solving skills, including strapping baby seats to lab carts or her baby to her own body in the field. It was at times a challenge to meet the competitive requirements of a career in science, particularly on one occasion when she had to rush to a job interview, just two weeks after giving birth.

According to Costich, tenure positions at any institution can require 80 to 90 hours of dedicated attention a week. Young researchers are also expected to spend 80 to 120 hours a week in the laboratory, putting women with children at an immediate disadvantage.

“I’ve always worked and I’ve never stopped because I know when you ‘take some time off,’ you fall behind, especially in science where the technology changes so quickly,” Costich said. “You get out of the loop and are at an extreme disadvantage trying to play catch up with your career.”

Denise Costich, senior scientist and head of CIMMYT’s maize germplasm bank, conducting field work in Spain with daughter Mara in 1986 (left). On the right, Costich holds maize cobs grown by a farmer on the Nevado de Toluca volcano in Mexico. Photos courtesy of Denise Costich and Jennifer Johnson/CIMMYT.

Both Costich and McLean credit strong support networks for their success, but acknowledge structural changes are needed throughout the research system. Such countries as the United States, that don’t guarantee paid maternity leave or sufficient support for child care must also re-orient their national policies to support working women, Costich said, making reference to her country of origin.

“I was able to make tweaks to the system and keep going, but I know a lot of people who had to give up,” Costich said. “We need to get more women who have gone through these experiences in higher level positions so that we can make effective policy changes.”

Child rearing isn’t the only time women leave their careers to serve as caregivers. Research shows that women also tend to be more likely to take family leave to care for parents, grandchildren and other relatives and were significantly less likely to be employed than their peers, whereas men who take on care giving roles experience no change in employment status.

Reformation of the institutionalized culture and processes that “penalize” a woman for having a family life is vital to ensure more women can have meaningful STEM research careers. Changing generally accepted hiring criteria and accepting flexible work arrangements, publication and research schedules are some of the methods that can help ensure women and men who interrupt their career for family leave will not jeopardize their future careers.

All institutes that are serious about increasing the number of women in their ranks should take these and other steps to remove barriers to women in science, such as bias in the hiring process and peer review, if they want to conduct more effective research.

A ton of seed shipped to the doomsday vault at Svalbard

CIMMYT gene bank specialists — shown here with the shipment destined for Svalbard — conserve, study and share a remarkable living catalog of genetic diversity comprising over 28,000 unique seed collections of maize and over 140,000 of wheat (Photo: Alfonso CortĂ©s/CIMMYT).

MEXICO CITY, Mexico (CIMMYT) — Staff of the gene bank of the International Maize and Wheat Improvement Center (CIMMYT) have sent 56 boxes of nearly 28,000 samples of maize and wheat seed from the center’s collections, to be stored in the Svalbard Global Seed Vault.

Located on Spitsbergen Island in Norway’s remote Arctic Svalbard Archipelago, 1,300 kilometers south of the North Pole, the vault provides free, “safe deposit” cold storage for back-up samples of seed of humanity’s crucial food crops.

“CIMMYT has already sent  130,291 duplicate samples of our maize and wheat seed collections to Svalbard,” said Bibiana Espinosa, research associate in wheat genetic resources. “This brings the total to nearly  158,218 seed samples, which we store at Svalbard to guard against the catastrophic loss of maize and wheat seed and diversity, in case of disasters and conflicts.”

Thursday’s shipment contained 1,964 samples of maize seed and 25,963 samples of wheat and weighed nearly a ton, according to Espinosa.

The wheat seed came from 62 countries and nearly half the samples comprised “landraces” — locally-adapted varieties created through thousands of years of selection by farmers.

“Of the maize samples, 133 contained seed of improved varieties, 51 were of teosinte — maize’s direct ancestor — and 1,780 were of landraces,” said Marcial Rivas, research assistant for maize genetic resources. “Many landraces are in danger of permanent loss, as farmers who grew them have left the countryside to seek work and changing climates have altered the landraces’ native habitats.”

The government of Norway and the Crop Trust cover the cost of storage and upkeep of the Svalbard Global Seed Vault, coordinating shipments in conjunction with the Nordic Genetic Resource Center.  Established in 2006, the Crop Trust supports the conservation and availability of crop diversity for food security worldwide and helps to fund CIMMYT’s work to collect and conserve maize and wheat genetic resources.  CIMMYT’s maize and wheat germplasm bank is supported by the CGIAR Research Program on Genebanks.

CIMMYT scientist cautions against new threats from wheat rust diseases

David Hodson, senior scientist with CIMMYT, trains South Asian wheat scientists on the use of handheld surveillance and monitoring devices. Hodson directs the rusttracker.org global wheat rust monitoring system for the Delivering Genetic Gain in Wheat (DGGW) project. Credit: CORNELL/Linda McCandless

EL BATAN, Mexico (CIMMYT) – Scientists are concerned over the proliferation of highly virulent fungal wheat diseases, including two new races of yellow rust – one in Europe and North Africa, the other taking hold in East Africa and Central Asia – and a new race of stem rust emerging in Europe.

The collaborative Global Rust Reference Center (GRRC) hosted by Aarhus University in Denmark and including the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), was instrumental in identifying the new races of yellow and stem rust.

A strategic tool developed by David Hodson, a senior scientist with CIMMYT plays a key role in monitoring the movement of wheat-rust pathogens, helping farmers combat the disease in time to save crops and prevent food insecurity.

“We see an alarming increase in severe disease, more disease diversity and rapid spread,” said Hodson, who invented the Rust Tracker field surveillance tool.

Last year, the Italian island of Sicily was badly hit by a strain of wheat stem rust – an event not seen in Europe since the 1950s, following concerted efforts by wheat breeders to eliminate it.

Stem rust appears as a reddish-brown fungal build-up on wheat stems or leaves, stunting and weakening plants, preventing kernels from forming, leading to shriveled grain and potential crop losses of 50 to 100 percent.

Dispersal modeling, undertaken by the University of Cambridge and the UK Met Office, which forecasts weather and climate change, indicates that spores from the Sicilian outbreak could potentially have spread within the Mediterranean wheat growing region, but scientists are unsure whether they will successfully over-winter, surviving and proliferating, according to a recent story in the journal Nature.

EARLY WARNING

“Several factors may be influencing the changes and rapid spread: increased travel and trade; increasing pathogen populations; more uniform cropping systems and also climate change, but the rapid changes we are observing highlight the need for an enhanced early-warning system,” said Hodson, a member of an international team of scientists collaborating under the Delivering Genetic Gain in Wheat (DGGW) project administered by Cornell University through the Borlaug Global Rust Initiative (BGRI).

Scientists engaged with the major four-year international project – which has a budget of $34.5 million due to grants equalling $24 million from the Bill & Melinda Gates Foundation and a recent $10.5 million grant from UK Aid (Britain’s Department for International Development, or DFID) – use comparative genomics and big data to develop new wheat varieties. The aim is to help governments provide smallholder farmers in the developing world with seeds incorporating resilience to environmental stresses and diseases through local entrepreneurial distributors.

“The sooner farmers are notified of a potential rust outbreak, the better chance they have to save their crops through fungicides or by planting resilient wheat varieties,” Hodson said.

“It’s a constant challenge. We’re always on the lookout for new diseases and variants on old diseases to put the wheels in motion to aid governments who can distribute seeds bred specifically to outsmart rusts.”

However, the long-term sustainability of these vital disease-monitoring systems is uncertain. Despite the significant investments, challenges remain, Hodson said.

“It’s worrying that just as stem rust is re-appearing in Europe we’re at risk of losing the only stem rust pathotyping capacity in Europe at GRRC, due to a funding shortfall. Given the threats and changes we are observing, there really is a critical need for a long-term strategy to address major crop diseases.”

TRACKER ORIGINS

The online Rust Tracker was originally conceived as a tool to battle stem rust, including the lethal Ug99 race, which since its discovery in 1998 has spread from Uganda into the Middle East and is now found in 13 countries. If Ug99 takes hold in a field it can completely wipe out a farmer’s crop. In developing countries, farmers have more difficulty accessing and affording fungicides, which can potentially save a crop.

Under the Durable Rust Resistance in Wheat project, the predecessor to the DGGW project, BGRI-affiliated scientists aimed to prevent the spread of Ug99 into the major global breadbaskets of China and India. So far, they have succeeded in keeping it in check and raising awareness among governments and farmers of its potentially devastating impact.

“Researchers and farmers are connected in the global village,” Hodson said. “Plant pathogens know no borders. We must leave no stone unturned in our efforts to understand the dynamics of wheat rusts, how they’re changing, where they’re spreading and why. If wheat scientists can help prevent a food crisis, we’re doing our job to help maintain political and economic stability in the world.”

Breaking Ground: Caixia Lan on identifying building blocks for rust resistant wheat

CIMMYT scientist Caixia Lan. Photo: Courtesy of Caixia Lan

Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Support for research into breeding crops resistant to wheat rust is essential to manage the spread of the deadly disease, which has caused billions of dollars of yield losses globally in recent years, said Caixia Lan, a wheat rust expert at the International Maize and Wheat Improvement Center (CIMMYT).

Rust disease has historically been a menace to wheat production worldwide. Although agricultural scientists manage the disease by breeding wheat varieties with rust resistant traits, the emergence of new races hinders progress and demands continued research, said the scientist.

With outbreaks of new strands reported in Europe, Africa and Central Asia, wheat rust presents an intensifying threat to the over 1 billion people in the developing world who rely on the crop as a source of food and for their livelihoods.

One of the most recent rust races, Ug99, was detected in 1998 and has since spread across 13 countries, alone causing crop losses of $3 billion in Africa, the Middle East and South Asia, said Lan.

Working with CIMMYT’s Global Wheat Program Lan is identifying and mapping adult-plant resistance genes to different races of rust (leaf, stripe, and stem) in bread and durum wheat and transferring them into new varieties that help secure farmer’s production.

Growing up in an area dependent on agriculture in rural China, Lan knows all too well the impact crop disease and natural disaster has on family food security and livelihoods. The struggles of smallholder farmers to feed and support their families motivated her to pursue a career in agriculture for development, but it was not until university that she became inspired by the improvements made to crop yield through genetic manipulation and breeding, she said.

After completing her doctoral degree at the Chinese Academy of Agricultural Sciences, and working as a wheat molecular breeding lecturer at Huazhong Agricultural University, Lan was named the Borlaug Global Rust Initiative Women in Technology Early Career Winner in 2011. Lan joined CIMMYT in a post-doctoral position and currently works as a scientist to improve wheat’s resistance to rust.

Rust is a fungal disease that uses wheat plants as a host, sucking vital nutrients and sugars from the plant leaving it to wither and die. Without intervention, wheat rust spreads due to the release of billions of spores, which travel by wind to other plants, crops, regions or countries. Spores have the potential to start new infection, ravage crops and threaten global food security.

The science behind building genetic resistance takes two forms known as major (or race-specific) genes and adult-plant resistance based on minor genes. Major resistance genes protect the wheat plants from infection by specific strains of rust. While adult plant resistance, Lan’s area of specialization, stunts the pathogen by reducing the infection frequency and limiting its nutrient intake from the host wheat plant. Some of the longer-lasting adult-plant resistance genes have been shown to provide protection against multiple diseases for decades and have not succumbed to a mutated strain of rust so far.

Replacing wheat crops for varieties bred with several rust-resistant genes acts as a safeguard for occasions when the pathogen mutates to overcome one resistant gene as the others continue the defense, Lan said.

Lan has identified a number of rust resistant genes in CIMMYT germplasm and developed molecular markers, which are fragments of DNA associated with a specific location in the genome. However, as new races of the disease emerge and old ones continue to spread, research identifying durable and multiple rust resistant genes and breeding them into crops is of high importance, she said.

Study reveals diversity “blueprint” to help maize crops adapt to changing climates

EL BATAN, Mexico (CIMMYT) – Scientists have unlocked evolutionary secrets of landraces through an unprecedented study of allelic diversity, revealing more about the genetic basis of flowering time and how maize adapts to variable environments, according to new research published in Nature Genetics journal. The discovery opens up opportunities to explore and use landrace diversity in new ways to help breeders adapt crops to climate change and other emerging challenges to crop production.

Farmers worldwide have been ingeniously adapting landrace maize varieties to their local environments for thousands of years. In this landmark study, over 4,000 landraces from across the Americas were analyzed and their DNA characterized using recent advances in genomics.

A unique experimental strategy was developed to study and learn more about the genes underlying maize adaptation by researchers with the MasAgro Biodiversidad program and the Seeds of Discovery (SeeD) initiative.

Significantly, the study identified 100 genes, among the 40,000 that make up the maize genome, influencing adaptation to latitude, altitude, growing season and the point at which maize plants flower in the field.

Flowering time helps plants adapt to different environments. It is measured as the period between planting and the emergence of flowers, and is a basic mechanism through which plants integrate environmental information to balance when to make seeds instead of more leaves. The seeds form the next generation making flowering time a critically important feature in a plant’s life cycle.

Over the next century, increasingly erratic weather patterns and environmental changes projected to result from climate change mean that such crops as maize will need to adapt at an unprecedented rate to maintain stable production globally.

“This research offers a blueprint of how we can rapidly assess genetic resources for a highly variable crop species like maize, and identify, in landraces, those elements of the maize genome which may benefit breeders and farmers,” said molecular geneticist Sarah Hearne, who leads maize research within MAB/SeeD, a collaboration led by the International Maize and Wheat Improvement Center (CIMMYT) with strong scientific partnerships with Mexico’s research institute for agriculture, livestock and forests (INIFAP), the Antonio Narro Autonomous Agrarian University (UAAAN) in Mexico and Cornell University in the United States.

“This is the most extensive study, in terms of diversity, that has been conducted on maize flowering,” said Martha Willcox, maize landrace improvement coordinator at CIMMYT . “This was achieved using landraces, the evaluation of which is an extremely difficult and complex task.”

The groundbreaking study was supported by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the Sustainable Modernization of Traditional Agriculture (MasAgro) initiative. Additional support from the U.S. Department of Agriculture – Agricultural Research Service, Cornell University and the National Science Foundation facilitated the completion of vast quantities of data analysis.

“The knowledge we have gained from this work gives us something similar to a manual of ‘how to go on a successful treasure hunt;’ within the extensive genetic diversity that exists for maize. This knowledge can accelerate and broaden our work on developing resilient varieties, building upon millennia of natural and farmer selection in landraces,” Hearne said.

CORRECT CITATION:

Romero-Navarro, J. A., Willcox, M., Burgueño, J. Romay M. Swarts, K., Trachsel, S., Preciado, E., Terron, A., Vallejo Delgado, H., Vidal, V., Ortega, A., Espinoza Banda, A., Gómez Montiel, N.O., Ortiz-Monasterio, I., San Vicente, F., Guadarrama Espinoza, A., Atlin, G., Wenzl, P., Hearne, S.*, Buckler, E*. A study of allelic diversity underlying flowering time adaptation in maize landraces. Nature Genetics. http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3784.html
*Corresponding authors

Breaking Ground: Bhoja Basnet sets sights on increasing wheat yield potential through hybrid seeds

bhoja_in-wheat
Bhoja Raj Basnet joined CIMMYT as a postdoctoral fellow working in the bread wheat improvement program in 2012. Photo: A. Cortes/CIMMYT

Breaking Ground is a regular series featuring staff at CIMMYT

MEXICO CITY (CIMMYT) – Scientist Bhoja Raj Basnet knows first hand what it is like to be a smallholder farmer.

Basnet’s earliest memories were formed on a one-acre subsistence farm in Jhapa, in southeastern Nepal, a fertile area in a country where the livelihoods of nearly 65 percent of people depend on agriculture.

The tiny farm provided the foundation for a journey that led ultimately to a doctoral degree in the United States and a career as a wheat breeder in Mexico at the International Maize and Wheat Improvement Center (CIMMYT).

Wheat plays a major role in Nepal’s agricultural landscape. It is the country’s third largest crop, cultivated on about 750,000 hectares of arable land each year with an average yield of 2.5 tons per hectare.  Above wheat, farmers favor only rice and maize.

“I grew up playing with the plants and soil on my family’s farm and before I entered high school I knew I wanted to pursue a career in agricultural science.” Basnet explained. “As I got older I started to realize the importance of agriculture and how agriculture can really shape a child’s health and future. This is what really pushed me to pursue my career.”

Basnet went on to earn his master and doctoral degrees in plant breeding. After graduation in 2012 from Texas A&M University, Basnet joined CIMMYT as a postdoctoral fellow working in the bread wheat improvement program.

In 2014, Basnet began leading a project conducting research into hybrid wheat in collaboration with Syngenta, which involves researching and developing tools and technology for developing commercially viable hybrid CIMMYT wheat varieties.

Hybrid wheat is created when a breeder intentionally crosses two genetically distinct and stable wheat lines to produce an offspring that combines the best traits of the parents. The process of developing a hybrid can take years, as traits are carefully chosen to achieve desired characteristics, such as increased grain yield or stress tolerance.

The principle behind hybrid varieties is exploitation of heterosis, the superiority of the hybrid offspring over its parent varieties. This is a biological phenomenon observed in almost all living organisms. However, the magnitude of “heterosis” varies significantly based on several biological and environmental factors.

“Hybrid wheat has always fascinated me,” Basnet said, adding, “I really want to see the end results and to see this work succeed.”

Hybrid wheat varieties have proven to be tricky. In fact, CIMMYT’s first attempt to develop hybrid wheat occurred in the 1960s and despite stops and starts over the years, has been ongoing since 2010.

Increasing investment and long-term funding commitments are a key prerequisite to achieving success in crop improvement, especially in breeding, Basnet said. Unlike traditional wheat variety development, successful research into hybrid wheat varieties depends largely on the willingness and active engagement of private sectors into research and seed businesses.

Basnet is working to develop a hybrid wheat foundation at CIMMYT by using new technology and existing research on hybrids. This hybrid wheat foundation will create genetic diversity within wheat to increase genetic gains and develop tools that can produce large amounts of hybrid seed.

“Currently less than one percent of wheat crops globally are hybrid wheat,” Basnet explained. “We need to continue with this research, as hybrid crops could lead to 15 to 20 percent greater yield potential and in particular higher stability, a very important trait with climate change.”

New study reveals how controlling wheat hormones can cool hot crops

MEXICO CITY, Mexico (CIMMYT) — Reductions of spike-ethylene, a plant-aging hormone, could increase wheat yields by 10 to 15 percent in warm locations, according to a recent study published in New Phytologist journal.

ravivalluru
Ravi Valluru observes wheat trials in the field at CIMMYT El BatĂĄn.

Ethylene is usually produced by plants at different developmental stages and can cause a wide range of negative effects on plant growth and development.

When hot weather hits a wheat field an increase in ethylene levels can lessen the amount of grains produced on ears or spikes by limiting the export of carbohydrates to pollen development.

“It was important to understand how different wheat varieties show yield responses to both ethylene gradients and ethylene inhibitors,” explained Ravi Valluru, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT), adding that the research was primarily done in northwestern Mexico using both landraces and modern lines under heat-stressed field conditions.

Valluru is part of a collaborative team of scientists from CIMMYT and Britain’s Lancaster University investigating ways to reduce ethylene production in wheat plants as a means to improve yields in hot weather conditions.

The team treated a diverse set of wheat varieties with silver nitrate, an inorganic compound traditionally used for medicinal and other purposes and that has been shown to control ethylene levels in plants.

“We have known for a long time that ethylene has negative effects on crop yields, but efforts have been meager so far to bring this knowledge into breeding programs,” Valluru said. “It’s very exciting that CIMMYT has initiated the important steps toward bringing the ethylene story to wheat breeding through this project.”

The study has revealed that different wheat varieties responded differently to ethylene and ethylene inhibitors. That’s good news, because breeders can then select the appropriate lines for growing in warmer climates to incorporate into breeding programs.

According to Valluru, breeders have selected for high yield over many years that has inadvertently lowered ethylene expression in modern, improved varieties.

“Being a gas, ethylene is a kind of ‘ethereal’ plant growth regulator, but when produced at higher levels, has a major impact on grain setting and root growth,” said Matthew Reynolds, head of the wheat physiology team at CIMMYT and co-author of the study. “Understanding it and determining its genetic bases are significant steps forward, and we can expect that this knowledge will be applied in breeding.”

Crop sensors sharpen nitrogen management for wheat in Pakistan

Wheat researcher with Green Seeker at Wheat Research Institute Sakrand, Sind Province, Pakistan. Photo: Sarfraz Ahmed
Wheat researcher with Green Seeker at Wheat Research Institute Sakrand, Sind Province, Pakistan. Photo: Sarfraz Ahmed

ISLAMABAD (CIMMYT) – Pakistani and the International Maize and Wheat Improvement Center (CIMMYT) scientists are working with wheat farmers to test and promote precision agriculture technology that allows the farmers to save money, maintain high yields and reduce the environmentally harmful overuse of nitrogen fertilizer.

Wheat is planted on more than 9 million hectares in Pakistan each year. Of this, 85 percent is grown under irrigation in farming systems that include several crops.

Farmers may apply nearly 190 kilograms of nitrogen fertilizer per hectare of wheat, placing a third of this when they sow and the remainder in one-to-several partial applications during the crop cycle. Often, the plants fail to take up and use all of the fertilizer applied. More precise management of crop nutrients could increase farmers’ profits by saving fertilizer with no loss of yield, as well as reducing the presence of excess nitrogen that turns into greenhouse gases.

Precision nutrient management means applying the right source of plant nutrients at the right rate, at the right time and in the right place. CIMMYT is working across the globe to create new technologies that are locally adapted to help farmers apply the most precise dosage of fertilizer possible at the right time, so it is taken up and used most effectively by the crop.

CIMMYT and the Borlaug Institute for South Asia (BISA) have developed the application “urea calculator” for cell phones. In this process, a Green Seeker handheld crop sensor quickly assesses crop vigor and provides readings that are used by the urea calculator to furnish an optimal recommendation on the amount of nitrogen fertilizer the wheat crop needs.

National partners observe the Green Seeker at work at Rice Research Institute, Kala Shah Kaku, and Punjab, Pakistan. Photo: Abdul Khalique
National partners observe the Green Seeker at work at Rice Research Institute, Kala Shah Kaku, and Punjab, Pakistan. Photo: Abdul Khalique

Tests with the crop sensor/calculator combination on more than 35 farmer fields during 2016 in Pakistan results showed that 35 kilograms of nitrogen per hectare could be saved without any loss in grain yield. This technology is being evaluated and demonstrated in Pakistan as part of the CIMMYT-led Agricultural Innovation Program (AIP), supported by the United States Agency for International Development in collaboration with Pakistan partners.

CIMMYT recently began work in four provinces of Pakistan, providing Green Seekers and training to AIP research, extension and private partners. Fifty-five specialists in all took part in training events held at the Wheat Research Institute Sakrand, Sind Province; the Rice Research Institute KSK, Punjab Province; and the Model Farm Service Center, Nowshera, Khyber Pakhtunkhwa Province.

Training and new partnerships will help national partners to demonstrate and disseminate sustainable farming practices to wheat farmers throughout Pakistan.

New Publications: How to maintain food security under climate change

Farmer Bida Sen prepares rice seedlings for transplanting in Pipari, Dang. Photo: P. Lowe/CIMMYT
Farmer Bida Sen prepares rice seedlings for transplanting in Pipari, Dang. Photo: P. Lowe/CIMMYT

El BATAN, Mexico (CIMMYT) — Wheat, rice, maize, pearl millet, and sorghum provide over half of the world’s food calories. To maintain global food security under climate change, there is an increasing need to exploit existing genetic variability and develop crops with superior genetic yield potential and stress adaptation.

Climate change impacts food production by increasing heat and water stress among other environmental challenges, including the spread of pests, according to a recent study published by researchers at the International Maize and Wheat Improvement Center (CIMMYT). If nothing is done to currently improve the crops we grow, wheat, maize and rice are predicted to decrease in both tropical and temperate regions. Wheat yields are already slowing in most areas, with models predicting a six percent decline in yield for every 1 degree Celsius increase in global temperature.

While breeding efforts in the past have traditionally focused on increasing yield rather than survival under stresses, researchers are now working to use existing genetic diversity to create varieties that can withstand extreme weather events with yield stability in both “good” and “bad” years to better prepare our global food system for future climate variability.

The study “An integrated approach to maintaining cereal productivity under climate change” concludes the opportunity to share knowledge between crops and identify priority traits for future research can be exploited to increase breeding impacts and assist in identifying the genetic loci that control adaptation. The researchers also emphasize a more internationally coordinated approach to crop phenotyping and modeling, combined with effective sharing of knowledge, facilities, and data, will boost the cost effectiveness and facilitate genetic gains of all staple crops.

Learn more about this study and other recent publications from CIMMYT scientists, below.

  1. Africa’s changing farm size distribution patterns: the rise of medium-scale farms. Jayne, T.S.; Chamberlin, J.; Traub, L.; Sitko, N.J.; Muyanga, M.; Yeboah, K.; Anseeuw, W.; Chapoto, A.; Ayala Wineman; Nkonde, C.; Kachule, R. Agricultural Economics 47 (Supple.): 197-214.
  2. An integrated approach to maintaining cereal productivity under climate change. Reynolds, M.P.; Quilligan, E.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S.; Jagadish, K.S.V.; Joshi, A.K.; Koehler, A.K.; Kosina, P.; Krishnan, S.; Lafitte, R.; Mahala, R.S.; Muthurajan, R.; Paterson, A.H.; Prasanna, B.M.; Rakshit, S.; Rosegrant, M.W.; Sharma, I.; Singh, R.P.; Sivasankar, S.; Vadez, V.; Valluru, R.; Prasad, V.P.V.; Yadav, O.P.; Aggarwal, P.K. Global Food Security 9 : 9-18.
  3. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Haghighattalab, A.; Gonzalez-Perez, L. Mondal, S.; Singh, D.; Schinstock, D.; Rutkoski, J.; Ortiz-Monasterio, I.; Singh, R.P.; Goodin, D.; Poland, J. Plant Methods 12: 35.
  4. Effect of traditional and extrusion nixtamalization on carotenoid retention in tortillas made from provitamin A biofortified maize (Zea mays L.). 2016. Rosales-Nolasco, A.; Agama-Acevedo, E.; Bello-Pérez, L.A.; Gutiérrez-Dorado, R.; Palacios-Rojas, N. Journal of Agricultural and Food Chemistry 64 (44): 8229-8295.
  5. Grain yield, adaptation and progress in breeding for early-maturingand heat-tolerant wheat lines in South Asia. Mondal, S.; Singh, R.P. Mason, E.R.; Huerta-Espino, J.; Autrique, E.; Joshi, A.K. Field Crops Research 192: 78-85.
  6. The marketing of specialty corns in Mexico: current conditions and prospects. LĂłpez-Torres, J.; Rendon-Medel, R.; Camacho Villa, T.C. Revista Mexicana de Ciencias Agricolas 15: 3075-3088.
  7. Mining centuries old In situ conserved turkish wheat landraces for grain yield and stripe rust resistance genes. Sehgal, D.; Dreisigacker, S.; Belen, S.; Kucukozdemir, U.; Mert, Z.; Ozer, E.; Morgounov, A.I. Frontiers in Geenetics 7 : 201.
  8. Molecular characterisation of novel LMW-m and LMW-s genes from four Aegilops species (Sitopsis section) and comparison with those from the Glu-B3 locus of common wheat. Cuesta, S.; Guzman, C.; Alvarez, J.B. Crop and Pasture Science 67: 938-947.
  9. Relay intercropping and mineral fertilizer effects on biomass production, maize productivity and weed dynamics in contrasting soils under conservation agriculture. Mhlanga, B.; Cheesman, S.; Maasdorp, B.; Mupangwa, W.; Thierfelder, C. Journal of Agricultural Science. Online First.
  10. The evolution of the MasAgro hubs: responsiveness and serendipity as drivers of agricultural innovation in a dynamic and heterogeneous context. Camacho Villa, T.C.; Almekinders, C.; Hellin, J.; Martinez-Cruz, T.E.; Rendon-Medel, R.; Guevara-HernĂĄndez, F.; Beuchelt, T.D.; Govaerts, B. The Journal of Agricultural Education and Extension 22 (5) : 455-470.

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

rothamsted
Photo: A. Cortes/CIMMYT

EL BATAN, Mexico (CIMMYT)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

“There is no doubt that our partnership can help make agriculture in the UK greener and more competitive, while improving food security and reducing import dependency for basic grains in emerging and developing nations,” said Achim Dobermann, director of Rothamsted Research, which was founded in 1843 and is the world’s longest running agricultural research station.

Individual Rothamsted and CIMMYT scientists have often worked together over the years, but are now forging a stronger, broader collaboration, according to Martin Kropff, CIMMYT director general. “We’ll combine the expertise of Rothamsted in such areas as advanced genetics and complex cropping systems with the applied reach of CIMMYT and its partners in developing countries,” said Kropff.

Nearly half of the world’s wheat lands are sown to varieties that carry contributions from CIMMYT’s breeding research and yearly economic benefits from the additional grain produced are as high as $3.1 billion.

Experts predict that by 2050 staple grain farmers will need to grow at least 60 percent more than they do now, to feed a world population exceeding 9 billion while addressing environmental degradation and climate shocks.

Rothamsted and CIMMYT will now develop focused proposals for work that can be funded by the UK and other donors, according to Hans Braun, director of CIMMYT’s global wheat program. “We’ll seek large initiatives that bring significant impact,” said Braun.

Partners invited to apply for allocation of second set of new CIMMYT pre-commercial hybrids

30287088794_3b3b2c1e5c_zThe International Maize and Wheat Improvement Center (CIMMYT) is offering a second set of  new improved maize hybrids to partners in eastern Africa and similar agroecological zones, to scale up production for farmers in these areas.

National agricultural research systems and seed companies are invited to apply for the allocation of these pre-commercial hybrids, after which they will be able to register, produce and offer the improved seed to farming communities.

The deadline for applications is 07 February 2017.

The application form can be downloaded here.

The full announcement, with information about regional trials, can be found here.

Breaking Ground: Carolina Sansaloni explores and unlocks genetic potential from wheat genebanks

twitterbg3

Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Carolina Sansaloni’s passion for genetics began when she was at Universidad de Misiones in Posadas, Misiones, Argentina, an interest that grew as she moved on to receive her master’s and doctoral degrees in molecular biology at Universidad de Brasilia in Brazil.

While completing her doctorate degree, Sansaloni travelled to Canberra, Australia to research the genomic structure of the eucalyptus tree at Diversity Arrays Technology (DArT), learning the ins and outs of sequencing technology.

In 2012, the International Maize and Wheat Improvement Center (CIMMYT) wanted to introduce the DArT genotyping technologies to Mexico to serve the needs of the Mexican maize and wheat research communities, and once Sansaloni finished her doctoral degree, she was an obvious choice to lead this initiative.

Working under the MasAgro Biodiversidad project in partnership with DArT, INIFAP and CIMMYT, Sansaloni helped to build the Genetic Analysis Service for Agriculture (SAGA in Spanish) from the ground up.

The service, managed by the CIMMYT-based Seeds of Discovery (SeeD) initiative, brings cutting edge genotyping capacity and genetic analysis capability to Mexico. The facility provides unique insights into the genetic variation of wheat and maize at a “sequence level.” Use of the vast quantities of data generated help understand genetic control of characteristics evaluated at a plant or crop level for example, height variations among wheat varieties.

SAGA’s services are available for all CIMMYT scientists, universities, national agriculture research programs and private companies. Worldwide, few other platforms produce this kind of data and most are inaccessible to scientists working at publicly funded institutions because their economic or logistics difficulties.

“When it comes to genotyping technology, it doesn’t matter what type of organism you are working with. It could be wheat, eucalyptus or chicken –  the machine will work the same way,” explained Sansaloni.

Sansaloni has also been focusing her time on the wheat Global Diversity Analysis, which characterizes and analyzes seeds in genebanks at both CIMMYT and the International Center for Agricultural Research in Dry Areas (ICARDA). Her team has characterized approximately 100,000 wheat accessions including 40 percent of the CIMMYT genebank and almost 100 percent of the ICARDA genebank wheat collection. This is an incredible and unique resource for wheat scientists providing a genetic framework to facilitate selection of the most relevant accessions for breeding.

“Currently only five to eight percent of materials in the genebank are being used in the breeding programs,” Sansaloni said. “The Global Diversity Analysis could have huge impacts on the future of wheat yields. It is like discovering the pieces of a puzzle, and then beginning to understand how these pieces can fit together to build excellent varieties of wheat.”

Sansaloni’s goal is to combine information from CIMMYT and ICARDA, making the information accessible to the entire wheat community and eventually enhancing breeding programs across the globe.

“Working at CIMMYT has been an invaluable experience,” Sansaloni said. “I’ve had the opportunity to work and collaborate with so many different people, and it’s brought me from the laboratory into the wheat fields, which really brings me closer to my work.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Water-saving maize holds potential to boost farmer resilience to climate change in Pakistan

Evaluating CIMMYT's white maize germplasm at CCRI. Photo: CIMMYT
Evaluating CIMMYT’s white maize germplasm at CCRI. Photo: CIMMYT

ISLAMABAD (CIMMYT) – New varieties of white maize in Pakistan have the potential to both quadruple savings of irrigation water and nearly double crop yields for farmers, thereby building food security and conserving badly needed water resources for the country.

Maize is the third most important cereal crop in Pakistan, which at a production rate of four tons per hectare, has one of the highest national yields in South Asia. Maize productivity in Pakistan has increased almost 75 percent from levels in the early 1990s due to the adoption and expansion of hybrid maize varieties. The crop is cultivated both in spring and autumn seasons and grows in all provinces throughout the country.

However, Pakistan is expected to be severely affected by climate change through increased flooding and drought, and is already one of the most water stressed countries in the world. If the country is to be able to meet future food demand, new maize varieties that can grow with less water under harsher conditions must be developed and adopted by farmers.

The Cereal Crops Research Institute (CCRI) in Pakistan’s Khyber Pakhtunkhwa province – an area particularly reliant on white maize for food, unlike other parts of the country where yellow maize is predominantly used for animal feed – recently tested nine white maize varieties (hybrids and open-pollinated varieties) provided by the International Maize and Wheat Improvement Center (CIMMYT) that demonstrated tolerance to water stress conditions.

Two of the early-maturing, open-pollinated varieties gave above average seed yields even though farmers irrigated the fields just twice, compared to the usual eight to ten times necessary with currently grown varieties. These varieties can also be harvested in less than 100 days and yield seven to 10 tons per hectare (ha) under good management practices – over twice the national average of four tons per ha – giving farmers time to grow another crop within the same season and produce nearly double the current national average yield.

Team of researchers evaluating CIMMYT's white maize germplasm at CCRI. Photo: CIMMYT
Team of researchers evaluating CIMMYT’s white maize germplasm at CCRI. Photo: CIMMYT

CCRI will distribute about 1000 kilograms of these seeds to about 100 farmers across the province in the coming autumn season, which farmers will be allowed to keep for subsequent seasons. These varieties will not only contribute to climate mitigation strategies but also help farmers adopt new, sustainable cropping systems. In addition to meeting food demand, these new varieties also can alleviate the scarcity of livestock feed in Pakistan, contributing to the country’s food and nutritional security.

The CIMMYT-led Agricultural Innovation Program (AIP), which receives support from the United States Agency for International Development, is helping to bring affordable, climate resilient and water efficient maize options to market. Since the launch of the program in 2013, Pakistani researchers have identified more than 80 CIMMYT hybrids and open-pollinated varieties that are well adapted to the country’s diverse environments.

Learn more about how AIP is sustainably increasing agricultural productivity across Pakistan here.