Skip to main content

Advocating for women entrepreneurship in Bangladesh

Dipty Roy operating her power take-off machinery in the village of Taltola, Rajbari. Photo: Rowshan Anis/iDE
Dipty Roy operating her power take-off machinery in the village of Taltola, Rajbari. Photo: Rowshan Anis/iDE

In Bangladesh, women disproportionately face social stigmas regarding appropriate behaviors and working roles which often keep women out of entrepreneurship and leadership roles and limit their roles to household chores like child-rearing and cooking. These restrictions have kept many women from reaching their maximum potential and contributing fully to the economy, especially in the agricultural sector, which has long been limited by the restricted participation of women.

However, this is changing. The Cereal Systems Initiative for South Asia – Mechanization & Irrigation project (CSISA-MI) is leading initiatives to drive women towards empowerment and agricultural entrepreneurship. CSISA-MI is creating local service providers (LSP) in southern Bangladesh to scale out agricultural mechanization through efficient service provision. CSISA-MI is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the United States Agency for International Development (USAID).

Before the arrival of appropriate-scale machinery, such as the power tiller operated seeder (PTOS), seeding jute had been a daunting venture in Baliadangi in Rajbari District. The fatiguing task of preparing land for seeding, sowing seeds by digging soil and simultaneously planting posed a nearly insurmountable challenge. Today, Dipty Roy, a female LSP from the small village of Taltola, Baliadangi pushes her PTOS forward and effortlessly seeds her jute.

Roy has become a repository of knowledge concerning seeds because of her role in the operations of the seeder. She, like 74 other female LSPs, upon gaining PTOS training from CIMMYT, plans to not just be a machinery owner, but leap onto business ownership. As a successful PTOS service provider with high hopes and ambitions, Roy aspires to build a business where she employs and trains machinery operators and makes a larger contribution to agriculture.

“There is something magnificent about running one’s own business. The overwhelming feeling of taking charge and making an invaluable contribution would speak volumes for my personal growth and economic standing,” says Roy.

The channeling of resources, endeavors, hopes and optimism towards the development of women entrepreneurs has now become paramount. CIMMYT through CSISA-MI in USAID’s Feed the Future zone in Bangladesh empowers rural women to advocate for and serve the needs of their employees, to provide machinery operation training, to estimate costs and benefits and run a viable machinery driven business. The emergence of women entrepreneurs in agriculture is powerful- it can propel the rural population into self- sustaining individuals who can effectively take charge of a business and catalyze the development of the economy.

As they move closer to shattering the once impenetrable glass ceiling – they are now leading the way for a new generation of women LSPs who aspire to hold entrepreneurship roles in Bangladeshi agriculture.

The Cereal Systems Initiative for South Asia is funded by the United States Agency for International Development (USAID) and the Bill and Melinda Gates Foundation (BMGF) and is led by the International Maize and Wheat Improvement Center (CIMMYT) and implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI).

Selected images from Science Week 2018

Every two years scientists from 15 offices worldwide of the International Maize and Wheat Improvement Center (CIMMYT) gather at the center’s headquarters in Mexico for an event known as “Science Week,” where they share and discuss new developments, science, challenges, and opportunities.

Science Week 2018, which took place from 25 to 28 June, drew more than 270 participants representing 46 countries that grow maize and wheat, crops that provide food and livelihoods for billions worldwide, to consider the theme “Next-generation science and partnerships for impact at CIMMYT.”

Topics addressed included cutting-edge tools and approaches for breeding, such as advanced genotyping, phenotyping, and data management, along with new technologies for the sustainable intensification of maize and wheat cropping systems—all to ensure benefits for farmers and consumers while accelerating genetic gains in maize and wheat, improving nutrition, and mitigating climate change impacts in agriculture.

Click here to see images of CIMMYT staff at work during Science Week 2018.

42299484135_22f61a733a_z

How women are unlocking the potential of maize in Mayurbhanj, India

In the tribal belt of Mayurbhanj, Odisha, maize cultivation is becoming increasingly popular. Thousands of acres of fallow upland areas are suitable for maize cultivation during the kharif (monsoon) season due to the availability of rain, a slopy landscape and porous red soil. As maize is considered a ‘women’s crop,’ meaning that it is mainly cultivated by women, the expansion of maize can increase women’s economic opportunities as well. The Cereal Systems Initiative for South Asia (CSISA) has worked in Mayurbhanj since 2013 to increase agricultural productivity and diversify livelihood options for farmers. One way to maximize the productivity of their arable upland areas is to cultivate maize on previously fallowed land during kharif.

In 2017, CSISA held and event in Badbil village at which 130 members of 10 different self-help groups showcased their work on commercial maize cultivation from the previous year. Members of Baitarani Maa Shibani, a women’s self-helf group from Tangabila village with a 12-year history of participating in agricultural programs in the area were impressed with the successes they saw and felt inspired to cultivate maize themselves.

After some discussion within the group, six of the 16 members decided to start cultivating maize as soon as possible. The group allowed these women to take a loan from their joint savings to cover start-up costs. Having also received support from their husbands, despite skepticism in some cases, the six women proceeded to plant maize on fallow land as villagers looked on critically.

Women from the Baitarani Maa Shibani women’s self-help group who decided to take on maize cultivation. Photo: D. Vedachalam/CIMMYT.
Women from the Baitarani Maa Shibani women’s self-help group who decided to take on maize cultivation. Photo: D. Vedachalam/CIMMYT.

The women approached a community resource person from a women’s group in the Sayangsidha Federation to learn how to cultivate maize, as the community resource person had already attended trainings organized by CSISA and the Department of Agriculture. They also sought guidance from other maize farmers, as well as from CSISA. One of the women worked with the state Horticulture Department and was permitted to grow crops during off-season on a 37 acre plot of land. This opportunity gave the women immediate access to land.

CSISA suggested that they only cultivate 10 acres the first year as planting in the last week of July meant they had missed optimal sowing time for maize, which runs from the first week of June until mid-July. CSISA-trained service providers helped the group complete sowing within two days, following best-bet management practices for land preparation and sowing, including integrated weed management using herbicides and power weeders, sensible fertilizer use and post-harvest management to maintain high quality dry grain. The group also visited a large CSISA and Department of Agriculture event in the tribal-dominated village of Kashipal. Interacting with other farmers and seeing their successes boosted the womens’ confidence, especially when they saw what they could achieve the following year if they sowed their crop earlier.

At the end of the season, the women harvested 11 metric tons of good quality dry grain. CSISA, the Department of Agriculture and the district administration facilitated the procurement of this grain by Venkateswara Hatchery, one of the leading poultry production plants in the region, at a price of $223 (INR 14,500) per metric ton. This group of six women farmers had invested $923 (INR 60,000) for maize cultivation and earned $2,453 (INR 159,500). They were able to repay their loan and keep the rest of the profit as savings. The women felt proud and confident knowing they had set an example for other group members and men in the village who did not believe it would work.

Following this success, in the 2018 kharif season, more farmers (both men and women) are planning to utilize fallow land for maize cultivation. This will help farmers increase their income, and improve their collective access to markets, since their total grain production will be larger and better able to meet the needs of local industry.

Unfortunately, Baitarani Maa Shibani has not been given access to the same piece of land this year, so they have planned to cultivate maize on 10 acres of their own land in the plantation area. This change in fortune mirrors the cautionary tale reflected in the experience of maize-cultivating women of Badbil village, who also found it harder to get access to leasable land following their economic success in 2016. However, women in Mayurbhanj are still optimistic. Inspired by the success of Baitarani Maa Shibani, another group, Baitarani Maa Duarsani, is now planning to cultivate maize this season.

A decade earlier in Mayurbhanj, women often did not even step out of their houses. They feared going to the market or to the bank. Now, through opportunities afforded by economic development programs and collaborations such as the one with CSISA, women often hold leadership positions in their groups, go to the bank and are active members of their village. Money earned by self-help groups is frequently used to educate children as members want their daughters to be educated and have better opportunities.

The enthusiastic women who stepped forward to cultivate maize in the face of so much uncertainty are an example of what women can achieve through collective effort, dedication, hard work and determination, as well as by tapping into the potential productivity of the fallow land around them. CSISA will continue to facilitate partnerships, technical trainings and market linkages in Mayurbhanj to support income generation amongst women’s groups and tribal communities through the cultivation of maize and companion crops.

The Cereal Systems Initiative for South Asia (CSISA) was established in 2009 with a goal of benefiting more than 8 million farmers by the end of 2020. The project is funded by the United States Agency for International Development (USAID) and the Bill and Melinda Gates Foundation (BMGF) and is led by the International Maize and Wheat Improvement Center (CIMMYT) and implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). Operating in rural innovation hubs in Bangladesh, India and Nepal, CSISA works to increase the adoption of various resource-conserving and climate-resilient technologies, and improve farmers access to market information and enterprise development. CSISA supports women farmers by improving their access and exposure to modern and improved technological innovations, knowledge and entrepreneurial skills. CSISA works in synergy with regional and national efforts, collaborating with myriad public, civil society and private-sector partners.

About the authors: Sujata Ganguly is Research Consultant for CIMMYT and Wasim Iftikar is a Research Associate.

CIMMYTNEWSlayer1

Designing and promoting institutional change: Geoff Graham of Corteva talks about CIMMYT

When trying to drive change in a global research organization, the science is the easy part, according to Geoff Graham, Vice President for Plant Breeding at Corteva Agriscience, a new company that brings together DuPont Crop Protection, DuPont Pioneer, and Dow AgroSciences.

“The hard thing is to change organizational culture—getting people to stop remembering how they’ve always done things and to think instead about what needs to be done,” said Graham, speaking on the topic to more than 600 international scientists and support staff at the Mexico headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on 25 June 2018.

“Innovation is a process that can be managed, but it takes time and must be prioritized,” he explained, in his keynote talk during the opening session of CIMMYT’s biennial Science Week, which brings together the center’s researchers from 15 offices in Africa, Asia, and Latin America and this year focused on next-generation science and partnerships for impact.

“Innovation may require creativity, but innovation and creativity are different things,” added Graham, whose family lived in Cali, Colombia, until he was 14 and then moved to Minnesota in the U.S.

Responsible for global breeding activities at Corteva, a name derived from a combination of words meaning “heart” and “nature,” Geoff previously worked at DuPont Pioneer. He has Bachelor of Science and Master of Science degrees from the University of Minnesota, and earned a Ph.D. in genetics and plant breeding from North Carolina State University.

Below, watch an interview with Graham regarding the role of research institutions in society, how change can occur in CIMMYT, and how Corteva will support the CIMMYT-led CGIAR Excellence in Breeding Platform.

New Publications: Increasing food and nutrition security in Sub-Saharan African maize-based food systems, a technological perspective

Two experimental lines of provitamin A-enriched orange maize, Zambia. Photo: CIMMYT.
Two experimental lines of provitamin A-enriched orange maize, Zambia. Photo: CIMMYT.

A new study from the International Maize and Wheat Improvement Center (CIMMYT) and Wageningen University examines the preferences and needs of maize processors and consumers in Sub-Saharan Africa (SSA). According to the authors, the demand for maize, a staple crop in SSA, will triple by 2050 due to rapid population growth. At the same time, the effects of climate change, such as erratic rainfall and drought, threaten agricultural productivity and the ability to meet this growing demand, while persistently high malnutrition pose additional challenges to the region. The authors suggest six objectives to enhance maize breeding programs for better food security and nutrition in SSA.

First, they recommend breeding programs enhance the nutrient density of maize through biofortification to help reduce deficiencies in vitamin A, zinc and protein. Since wheat is difficult to grow in most of SSA and expensive to import, they also suggest that programs breed to enhance the suitability of maize for making bread and snacks. The authors recommend breeding to improve maize for use as ‘green maize’ – the first crop to reach the marketplace after the dry season. If suitable green maize varieties are available, the hunger gap between seasons could be significantly reduced.

The authors’ fourth suggestion is breeding to improve characteristics that enhance the efficiency of local processing. For example, soft maize is preferred for traditional dry and wet milling, but hard maize is usually preferred for pounding or refining processes in the home. Lastly, the authors suggest breeding to reduce waste by maximizing useful product yield and minimizing nutrient losses, and breeding to reduce anti-nutrient concentrations in grains. For example, phytate or phytic acid is a naturally occurring compound found in cereals that binds with minerals and prevents their absorption. Transgenic and gene editing approaches may offer viable options for reducing phytate production.

The authors emphasize that none of these opportunities to enhance breeding strategies are “magic bullet” solutions. Sustainable, diversified crop production and post-harvest management strategies will play an important role in improving nutrition, food security and livelihoods.

Check out the full article: “Sub-Saharan African maize-based foods: Technological perspectives to increase the Food and nutrition Security impacts of maize Breeding programmes” 2018. Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V., Linnemann, A. (2018). In: Global Food Security, v. 17, pp. 48-56 and check out other recent publication by CIMMYT staff below:

  1. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 46.
  2. Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion. Celesti, M., van der‏ Tol, C., Cogliati, S., Panigada, C., Peiqi Yang, Pinto Espinosa, F., Rascher | Miglietta, F., Colombo, R., Rossini, M. In: Remote Sensing of Environment v. 215, p. 97-108.
  3. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Juliana, P., Singh, R.P., Singh, P.K., Poland, J.A., Bergstrom, G.C., Huerta-Espino, J., Bhavani, S., Crossa, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 131, no. 7, p. 1405-1422.
  4. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J.,  Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant Methods v. 14, art. 49.
  5. IPM to control soil-borne pests on wheat and sustainable food production. Dababat, A.A., Erginbas-Orakci, G., Toumi, F., Braun, H.J., Morgounov, A.I., Sikora, R.A. In: Arab Journal of Plant Protection v. 36, no. 1, p. 37-44.
  6. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Parihar, C.M., Parihar M.D., Sapkota, T.B., Nanwal, R.K., Singh, A.K., Jat, S.L., Nayak, H.S., Mahala, D.M., Singh, L.K., Kakraliya, S.K., Stirling, C., Jat, M.L. In: Science of the Total Environment v. 640-641, p. 1382-1392.
  7. Major biotic maize production stresses in Ethiopia and their management through host resistance. Keno, T., Azmach, G., Dagne Wegary Gissa, Regasa, M.W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., Mahabaleswara, S. In: African Journal of Agricultural Research v. 13, no. 21, p. 1042-1052.
  8. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). Sharma, S., Ranabir Sahu,  Sudhir Navathe, Vinod Kumar Mishra, Chand, R., Singh, P.K., Joshi, A.K., Pandey, S.P. In: Frontiers in Plant Science v. 9, art. 636.
  9. Population structure of leaf pathogens of common spring wheat in the West Asian regions of Russia and North Kazakhstan in 2017. Gultyaeva, E.I., Kovalenko, N.M., Shamanin, V.P., Tyunin, V.A., Shreyder, E.R., Shaydayuk, E.L., Morgunov, A.I. In: Vavilovskii Zhurnal Genetiki i Selektsii v. 22, no. 3, p. 363-369.
  10. The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case–control study from Mexico City. Totomoch-Serra, A., Muñoz, M. de L., Burgueño, J., Revilla-Monsalve, M.C., Perez-Muñoz, A., Diaz-Badillo, A. In: Gene v. 669, p. 28-34.

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.
Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.
Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell University, the Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Scaling Scan: A simple tool for big impact

Eleven years ago this week, Apple Inc. released the iPhone. While it was not the first smartphone on the market, industry experts often credit the iPhone’s groundbreaking design with the launch of the mobile revolution. The device, its competitors and the apps that emerged with them have changed how over two billion people interact with the world on a daily basis.

The success of this revolution, however, goes far beyond the actual technology. At the International Maize and Wheat Improvement Center (CIMMYT) outside Mexico City, scaling expert Lennart Woltering points to a smartphone lying on his desk.

“We have to remember that this phone is just hardware. It is useless if you don’t have a network connection or an outlet in your house with electricity,” he says.

Woltering joined CIMMYT last year as part of the German Development Cooperation’s effort to aid the scaling-up of agricultural innovations. New, improved seeds, small-scale machinery and conservation practices can all play a role in achieving several of the Sustainable Development Goals, but Woltering says many other non-technological factors, such as markets and policies, can prevent these innovations from having significant impact.

Roadside vendor sells roasted maize cobs in Kenya. (Photo: P.Lowe/CIMMYT)
Roadside vendor sells roasted maize cobs in Kenya. (Photo: P.Lowe/CIMMYT)

“Many research institutes and nongovernmental organizations tend to focus on technology as the solution for everything,” he says. “But we find that 9 out of 10 cases, limiting factors have more to do with financing not being available to people, or poor policies that are hampering the adoption of technology.”

For example, CIMMYT has many initiatives in South Asia to promote conservation agriculture. Adopting no-till practices can help reduce erosion and improve soil health for better yields, but farmers who make this transition often need access to a different kind of machinery, such as the Happy Seeder, to plant their seeds. If government subsidies exist for conventional rototillers but not for the Happy Seeder, it is difficult to persuade farmers to make that economic sacrifice.

“It is a completely different ballgame in the real world, and you have to be honest about whatever fake reality you created in your project,” says Woltering.

Projects are designed in a very controlled way. They have a fixed budget and a fixed end date, and they are often shielded from the social and economic complexities that can propel or hinder an innovation from scaling.

“So if a donor says, ‘We want two million people to be reached,’ well, how are you going to do that? That’s where the Scaling Scan can help,” says Woltering.

Extension agents in Mexico use the Scaling Scan. (Photo: L. Woltering/CIMMYT)
Extension agents in Mexico use the Scaling Scan. (Photo: L. Woltering/CIMMYT)

The Scaling Scan helps an individual analyze, reflect on, and sharpen one’s scaling ambition and approach through a series of questions and prompts. It focuses on ten scaling ‘ingredients’ that need to be considered (e.g. knowledge and skills, public sector governance, awareness and demand) to reach the desired outcome.

The Scaling Scan helps you figure out what exactly is required, what is possible, and what bottlenecks exist that you need to address in your strategy,” Woltering says.

Woltering collaborated with The PPPLab, a consortium of four Dutch institutes, to release the first version of the Scaling Scan last year. They tested it with project teams in the Netherlands, Mexico, India, Nepal and Kenya, and based on the feedback, they are now releasing a second version, which is available here.

In the trials with the first Scaling Scan, some teams realized the results they wanted to achieve were too ambitious given the circumstances. For other teams, it helped them clarify exactly what they wanted to achieve.

“Having a project objective is not enough to internalize the main goal,” says Woltering. “It also changes over time, especially if it’s a long-term project. The scaling scan can be good for an annual checkup.”

Woltering emphasizes that successful scaling requires multidisciplinary collaboration.

“If you only have a team of agronomists, you will not reach a scale of millions you want to achieve. If you only have a team of policy experts, you will not succeed,” he says. “There are professionals that can really help and add value to what we are doing.”

“It’s hard to get an agronomist and an economist in the same room together, but we’re not going to change the world if we don’t work together with others who have their specific specialty or expertise,” he says.

The Scaling Scan also includes a responsibility check through some very simple but strategic questions.

“Every system has its pros and cons – some people benefit, some do not. Some have power, some do not,” says Woltering. “So what does it mean if your innovation goes to scale? Maybe there’s a whole new power dimension.”

Successfully scaling something may have unintended consequences. There are always tradeoffs and resistance to change. Woltering says the responsibility check can help actors in the development sector to think through these questions and consider what the possible outcomes could be.

For more explanation on how and when to use the tool, we invite you to download the Scaling Scan (also available in Spanish) which contains detailed practical information. We recommend the Excel sheet (also available in Spanish) to have the average scores and results generated automatically. A condensed, two-page PDF is also available.

This work is supported by the German Development Cooperation (GIZ) and led by the International Maize and Wheat Improvement Center (CIMMYT).

Wheat-rye crosses provide control for deadly sap-sucking aphid

Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.
Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.

In an excellent example of scientific collaboration spanning borders and generations, Mustapha El-Bouhssini, entomologist at the International Centre for Agricultural Research in the Dry Areas (ICARDA), screened wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) under glasshouse infestations of Russian wheat aphid (Diuraphis noxia), a major global pest of wheat. At least one of the lines, which were developed through crosses of wheat with related crop and grass species, showed high levels of resistance.

Scientists at CIMMYT began research on sources of RWA resistance for wheat in the early 1990s. Good sources of resistance from rye were accessed via wide crosses that combined major portions of both crop’s chromosomes, in collaborative work led by Adam J. Lukaszewski, University of California, Riverside.

“In our experiments, we did an initial screening with one replication and then a replicated test with a Pavon line and the check,” said El-Bouhssini.

Pavon is a semi-dwarf wheat variety developed by Sanjaya Rajaram, former CIMMYT wheat director and 2014 World Food Prize laureate. The version of Pavon referred to by El-Bouhssini had been crossed with rye by Lukaszewski and entered CIMMYT’s wheat genetic resource collections; the check was a popular high-yielding variety with no resistance to Russian wheat aphid.

The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.
The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.

Pavon had been used by Lukaszewski and colleagues as a model variety for wide crosses to transfer pest and disease resistance to wheat from its distant relatives. More recently Leonardo Crespo-Herrera, CIMMYT wheat breeder, pursued this research for his doctoral studies. It was he who provided a selection of wide-cross lines to El-Bouhssini.

“Resistance to pests in wheat is a valuable trait for farmers and the environment,” said Crespo-Herrera. “It can protect yield for farmers who lack access to other control methods. For those with access to insecticides, it can minimize their use and cost, as well as negative impacts on the environment and human health.”

 

 

 

 

CIMMYTNEWSlayer1

Breaking Ground: Tom Hagen brings IT expertise to crop breeding

Postcard_Tom HagenFrom an early age, Tom Hagen has enjoyed watching plants grow and solving complex problems. Now, as the enterprise breeding system manager at the International Maize and Wheat Improvement Center (CIMMYT), Hagen is combining his expertise in crop breeding and IT to help researchers and farmers be more successful.

“You could say I’m a hybrid scientific consultant – IT system architect,” said Hagen. “I will work with breeding teams to appropriately design software and then manage its development and deployment to facilitate breeding operations at CIMMYT and the International Rice Research Institute.”

The software will help breeders more effectively choose seed varieties, design field trials, collect data and analyze their outcomes. It is intended to assist farmers and extension agents as well.

“It will be able to give them advice about the appropriate seeds to use based on their specific environment and economic situation,” said Hagen. “It can also recommend ways to plant and manage their crop for better yields and higher income.”

Hagen’s interest in using computer programing to analyze large sets of biological data emerged shortly after obtaining a doctorate in plant genetics from the University of Georgia. It was the early 1990s, and bioinformatics was a new frontier. Hagen founded and managed the university’s Center for Scientific Computing and Visualization, and helped create the Bioinformatics Graduate Program.

In 1999, Hagen decided to leave the world of academia for the private sector.

“Universities are about inventing things, not applying them,” he said. “It is important to base your practice on theory, but at the end of the day, I personally think you need to apply it because otherwise – well, what is the point of it all?”

Hagen joined DuPont Pioneer, a large U.S. producer of hybrid seeds, where he and a team of designers created different technologies for breeders. Specifically, they worked on technologies that would help breeders develop a line of drought-resistant maize.

“By being in that group, I was both a scientist trying to invent and validate these methods while also designing and building the IT for that,” said Hagen.

During his last two years at DuPont Pioneer, Hagen was the architect of all analytics software. He also conducted research on crop growth modeling for predicting genotype-environment interactions for maize hybrids. This information has helped breeders, extension agents and farmers choose appropriate seed varieties for their specific environmental conditions.

Hagen joined the CGIAR Excellence in Breeding Platform (EiB) in January 2018. Led by CIMMYT, EiB aims to modernize breeding programs, specifically targeting the developing world for greater impact on food and nutrition security, climate change adaptation and development.

“I’m excited to be part of the work that’s starting to ramp up here at CIMMYT and the other CGIAR centers,” said Hagen. “I’m here to learn and engage, and do whatever I can to help others learn.”

Funding for the Excellent in Breeding Platform comes from the CGIAR, the Bill & Melinda Gates Foundation, national governments, development banks and other public and private agencies. Contributors include CGIAR system centers, the Biosciences eastern and central Africa- International Livestock Research Institute Hub, Cornell University, Diversity Arrays Technology, DuPont Pioneer, the Integrated Breeding Platform, Monsanto and Queensland University.

CIMMYTNEWSlayer1

Screening cycle for deadly MLN virus set to begin in Kenya during July 2018

The third installment of the 2018 maize lethal necrosis (MLN) phenotyping (screening/ indexing) cycle will be held in July 2018 at the MLN artificial inoculation screening site in Naivasha, Kenya. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.

In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.

CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm (for hybrid, inbred and open pollinated varieties) against MLN in a quarantined environment.

This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 120,000 accessions (more than 210,000 rows of maize) from more than 15 multinational and national seed companies and national research programs.

Partners can now plan for annual MLN Phenotyping (Screening / Indexing) during 2018 with the below mentioned schedule. The improved and streamlined approach for MLN phenotyping should enable our partners to accelerate breeding programs to improve resistance for Maize MLN for sub-Saharan Africa.

Schedule for 2018 – annual phenotyping (Indexing / Screening).

When the seeds are available  Planting Period – Planned MLN Screening / Indexing
December Second Week of January MLN Indexing
March Second week of April MLN Screening
June Second Week of July MLN Indexing
August Second Week of September MLN Screening
October Second week of November MLN Indexing

More information about the disease and resources for farmers can be found on CIMMYT’s MLN portal.

Please note that it can take up to six weeks to process imports and clear shipments.

For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:

Dr. L.M. Suresh
Tel: +254 20 7224600 (direct)

Email: l.m.suresh@cgiar.org

CIMMYT–Kenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041–00621
Nairobi, Kenya.

CIMMYT projects working to enhance business agility of South Asian seed companies

Participants of the international training. Photo: S.Thapa/CIMMYT-Nepal
Participants of the international training. Photo: S.Thapa/CIMMYT-Nepal

Improved seed with proper management practices is an important agricultural input which can boost crop productivity by more than 50 percent. This gain is necessary to achieve food security and alleviate poverty in many developing countries. However, it can be challenging for farmers to find high-quality seeds as availability, affordability and accessibility remain hurdles to improved seed distribution.  In Nepal, the majority of rural farmers use farm-saved seeds of inferior quality leading to low productivity and subsistence livelihood.

The seed industry in Nepal, as in most developing countries, is still emerging and largely untapped. Lack of availability of start-up working capital, business incentives in the sector, new technologies and required technical expertise limit the current seed value chain.

To address this, the Nepal Seed and Fertilizer (NSAF) project is engaging Nepalese seed companies in a business mentoring process to enhance their ability to test and deploy new products, develop business and marketing plans and sustain a viable, competitive seed business, particularly in hybrid seeds.

The NSAF project, in collaboration with the Nepal Agricultural Research Council (NARC) & the Seed Entrepreneurs Association of Nepal (SEAN) organized an “International Training Workshop on Seed Business Management” for senior-level seed company managers and business owners representing 15 private seed companies from Nepal and Pakistan. Held from April 23 to 25 in Kathmandu, the training aimed to develop market-oriented seed businesses that emphasize hybrid seed. The training focused on increasing the technical, financial and market management capacities of senior managers and conveying the requirements of a competitive seed business using case studies from Africa and Asia.

Navin Hada, AID project development specialist at the United States Agency for International Development (USAID)-Nepal highlighted the timeliness of the training and congratulated the NSAF team for bringing south Asian seed companies and international experts together for experience sharing and collaborations.

“SEAN has more than 2000 registered members in Nepal and business-oriented training like this help our members to enhance their efficiency,” said Laxmi Kant Dhakal, chairman of SEAN and president of the Unique Seed Co Plc.

Suma Karki from Seed Quality Control Center (SQCC) of Nepal receiving certification of participation Photo: E. Kohkar/CIMMYT-Pakistan.
Suma Karki from Seed Quality Control Center (SQCC) of Nepal receiving certification of participation Photo: E. Kohkar/CIMMYT-Pakistan.

The training was facilitated by John MacRobert, a consultant for business mentoring of Nepalese seed companies and former principal seed system specialist for CIMMYT with the support of the NSAF team. The training workshop included lectures, discussions and customized exercises to develop business plans; marketing, production and financial strategies; seed quality control; and research and development plans.

During the reflection session to close the training, Dyutiman Choudhary, NSAF project coordinator, appreciated the professional interaction and experience sharing among Nepalese and Pakistani seed companies and acknowledged the role of MacRobert in bringing diverse experiences from Africa and other regions.

At the closing ceremony, Yubak Dhoj G.C, secretary, Ministry of Agriculture, Land Management and Co-operative, emphasized the importance of hybrid seed self-sufficiency for Government of Nepal initiatives for attaining food security and alleviating poverty.

The Nepal Seed and Fertilizer project is funded by the United States Agency for International Development (USAID) and is a flagship project in Nepal. NSAF aims to build a competitive and synergistic seed and fertilizer systems for inclusive and sustainable growth in agricultural productivity, business development, and income generation in Nepal. The International Maize and Wheat Improvement Center (CIMMYT)-led, USAID-funded, Agricultural Innovation Program (AIP) for Pakistan supported the participation of Pakistani seed companies to the training. 

Better farming practices key to combating desertification and drought

Combating desertification and drought is critical, but focusing on the bigger challenge of unsustainable agriculture can deliver more for farmers. Research from India offers new insights on practical solutions for better soil fertility, more efficient water use, reduced air pollution and lower greenhouse gas emissions.

Irrigated wheat field. Photo: S. Sukumaran/CIMMYT.
Irrigated wheat field. Photo: S. Sukumaran/CIMMYT.

The world has made significant progress in reducing poverty and malnutrition over the last century. The number of people living in extreme poverty has been cut by half over the last twenty years, while the percentage of young children suffering from the effects of malnutrition has also declined 17 percent in fewer than 20 years (UNICEF). Yet these improvements have come at a cost to our planet. Can we feed the world and fight poverty without continuing to deplete water, degrade soils and change our climate?

June 17 is the UN Day to Combat Drought and Desertification, which puts a spotlight on efforts to reverse land and soil degradation. Land degradation and drought affect farmers everywhere, especially poor farmers, but tackling these issues without looking at the big picture may not accomplish the long-term change needed, according to researchers from the International Maize and Wheat Improvement Center (CIMMYT).

“Land degradation and abiotic stresses, especially drought, are often symptoms of a bigger problem,” says M.L. Jat, a Principal Scientist and Cropping Systems Agronomist at CIMMYT. “Unsustainable land use, particularly poor farming practices and policies, have led to a wide set of challenges in many rapidly-developing countries. In addition to drought and land degradation, we are experiencing climate change, increased air pollution and water scarcity” he points out. The answer, he says, can be found by taking systems focus and selecting the right combination of agricultural techniques that improve the resilience and productivity of farms while combating drought, land degradation, climate change and air and water pollution.

 

A farmer at work weeding in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.
A farmer at work weeding in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.

Reversing the worrying trends in India

In India, a recent CIMMYT analysis led by Jat’s team and national partners underscores the need for action to improve current agricultural practices, which are “severely stressing the natural resource base.” The analysis shows that Indian farmers are grappling with many issues that intersect with desertification and drought. The Green Revolution, which led to enormous advances in India’s agricultural productivity and fed a rapidly expanding population, also left a worrying aftermath of inefficient or inappropriate resource use.

“The extent of land degradation is alarming” write the authors, with up to 145 million hectares of farmland now considered “practically infertile” and unable to sustain long-term agricultural production. Meanwhile, over pumping of India’s water resources for rice production has depleted groundwater to “critically low levels,” putting India in the unfortunate top world position in terms of withdrawal of fresh water from aquifers.

Further challenges in India include adapting farming to climate change (particularly increasing temperatures), reducing greenhouse gas (GHG) emissions to mitigate climate change impacts and dramatically cutting air pollution caused by the widespread burning of rice crop residues. The data indicate an urgent need to improve air quality, reverse soil degradation, and reduce GHG emissions.

 

A farmer at work in a wheat field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.
A farmer at work in a field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.

Treat the causes instead of the symptoms

“Rather than treating each problem separately, we’re trying to find answers that can address a multitude of urgent challenges,” says Jat. “It’s like a doctor understanding and treating the whole person rather than the physical symptoms of the disease – but for agricultural systems,” he explained.

For the rice and wheat growing areas of Northwest India, taking a systems approach means building a closed-loop farming system. Farmers customarily burn leftover rice stems in the field in order to plant wheat, a practice that causes air pollution and depletes soil nutrition. The innovative ‘Turbo Happy Seeder’ tool allows farmers to sow wheat seed directly into unplowed fields and rice residues. Leaving the residues not only helps improve air quality in this region but builds up organic carbon and nitrogen in soils. It also offers a low-cost alternative to chemical fertilizers, saving the farmers money and reducing greenhouse gas emissions and environmental damage from overuse of fertilizers.

The scientists are also experimenting with “layering” various techniques to produce even more benefits to people and the planet. Field tests in India include combinations of climate-smart technologies for tillage, crop establishment, residue and nutrient management, along with use of improved crop varieties, information and communication technology and crop insurance. The scientists found that layering climate-smart agriculture practices improved productivity of the rice-wheat system up to 19 percent. Layering techniques helped farmers use 20 percent less water for irrigation. And global warming potential was cut by 40 percent. The results to date bring to light new possibilities for highly productive and resilient farms that have a smaller environmental footprint. This includes healthier soils, cleaner air and water, and fewer greenhouse gas emissions.

 

From India to the rest of the world

The early evidence from India is promising and could offer inspiration for other countries grappling with their own resource and food challenges. India’s leaders have embarked on a conscious effort to invest in and promote technologies that simultaneously protect the environment, support farmers and feed its people. This approach marks a shift from the last 50 years of thinking and represents the kind of transformative change needed around the world to help accomplish several of the United Nation’s Sustainable Development Goals.

 

Further Reading

Agricultural policies and investment priorities for managing natural resources, climate change and air pollution – Policy brief

“Layering” climate smart rice-wheat farming practices in India boosts benefits – CIMMYT Blog

Kakraliya SK, Jat hs, Singh I, Sapkota TB, Singh LK, Sutaliya JM, Sharma PC, Jat RD, Choudhary M, Lopez S, Jat ML. 2018. Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agricultural Water Management 202:122-133.

 

This work is led by the International Maize and Wheat Improvement Center (CIMMYT) and supported by the Trust for Advancement of Agricultural Sciences (TAAS), the Indian Council of Agricultural Research (ICAR), the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), and the World Bank Group

CIMMYTNEWSlayer1

CIMMYT director general visits India

Work plan signing ceremony, Kropff and Mohapatra. Photo: CIMMYT.
Work plan signing ceremony, Kropff and Mohapatra. Photo: CIMMYT.

Last week director general of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff touched down in India.

For Kropff, the visit would help establish and strengthen several strong private-sector partnerships for CIMMYT, including with UPL Limited, the largest manufacturer of agrochemicals in India.

During his trip, Kropff hosted all India-based staff and partners to a gala dinner to give updates from the headquarters in Mexico and thank stakeholders for their valuable contributions to the CIMMYT mission of i mproving the livelihoods of smallholder farmers.

Kropff spoke at a “Climate-smart agriculture as an investment destination for CSR” talk organized by the CGIAR program on Climate Change and Food Security (CCAFS), the Borlaug Institute of South Asia (BISA) and CIMMYT in association with The Federation of Indian Chambers of Commerce and Industry partners.

The visit culminated in the Ninth Executive Committee Meeting for BISA. BISA is a collaboration between CIMMYT and the Indian Council of Agricultural Research (ICAR). The committee reviewed BISA’s financial and research updates, ICAR reiterated its commitment and support to BISA and ICAR director general, Trilochan Mohapatra and Kropff signed the ICAR-CIMMYT five-year work plan for 2018-2022. The work plan was co-developed in consultation with ICAR and CIMMYT scientists and outlines areas of synergy and priority such as exchange of germplasm, technologies, technical cooperation, personnel, joint experimentation, joint publications and capacity enhancement in several frontier areas of research.

CIMMYTNEWSlayer1

Agricultural researchers boost fight against malnutrition with staple crops

TandooriBread-CGuzman

Tandoori bread (Photo: CIMMYT/Carlos Guzmán).

Breeding research by the International Maize and Wheat Improvement Center (CIMMYT) is generating not only higher-yielding maize and wheat varieties but also more nutritious ones, according to a recent post in the Thomson Reuters Foundation News.

The center’s mission to foster more productive, sustainable maize and wheat farming contributes directly to U.N. Sustainable Development Goal (SDG) 2, “Zero Hunger. But decades-long work to develop biofortified versions of maize and wheat is now bearing fruit in the form of nutrient-enhanced varieties of particular benefit for people who rely heavily on staple crops in their diets.

Quality protein maize – developed by CIMMYT in the 1980s – is grown on 1.2 million hectares around the world, while pro-vitamin A maize is grown on at least 100,000 hectares in Africa and has been shown to be as effective as vitamin supplements. High-zinc wheat is also taking off in Asia, and the first high-zinc maize varieties for Latin America were released in February.

Click here to read the entire post post in the Thomson Reuters Foundation News.

Maize partners collaborate to maintain yield gain momentum in Pakistan  

Last year’s maize-growing season in Pakistan yielded a record-breaking six-million tons, decreasing the country’s dependence on imported maize seed and boosting local sales and exports of maize-based products.

Officials and growers attribute this surge in yields extensive use of inputs such as fertilizer, high-yielding improved maize hybrid new varieties and collaborative programs that focus on targeting maize seed improvement to the local environment.

One such program is the International Maize and Wheat Improvement Center (CIMMYT) -led and United States Agency for International Development (USAID) -funded Agricultural Innovation Program (AIP) for Pakistan.

AIP annual maize working group meeting

During the recently held 5th Annual maize working group meeting, partners representing 25 public and private institutions discussed what can be done following efforts to consolidate and sustain innovative interventions by AIP. Approximately 50 Participants from Pakistan attended this two-day meeting, where participants shared progress on their respective maize activities, updates on the status of seed production and product identification under AIP, and future prospects.

In a thematic group discussion, participants helped to identify gaps, recognize the role of stakeholders, and develop doable recommendations across the value chain.

Yusuf Zafar, chairman of the Pakistan Agricultural Research Council (PARC), said he appreciated the contributions of CIMMYT and USAID to Pakistan’s maize sector. “The collaboration and partnership of the public and private sectors under AIP is an exemplary one. We will continue supporting the continuation of this platform with all available means and resources” said Zafar while ensuring PARC’s commitment to this initiative after the completion of the project.

While presenting the annual review, Muhammad Imtiaz, CIMMYT Country Representative for Pakistan discussed the status of the project. AIP will continue under a no-cost extension until 2019 and the project is looking for assistance from the private sector in order to continue into the future.

In closing, Anjum Ali, Member Plant Sciences Division, Pakistan Agricultural Research Council, PARC, acknowledged the effort of CIMMYT in bringing all the stakeholders of maize including academia, public and private R&D institutions, policymakers under one umbrella. He further added, “PARC will channel all the deliberations from this meeting and will work with relevant government bodies to come up with amicable solutions for the problems faced by the private sector in products testing and marketing.” The timely and doable recommendations of the working group will serve as a working document for the government in the future, Ali added.

The Agricultural Innovation Program’s mission to sustainably increase agricultural productivity and incomes in Pakistan is supported by the United States Agency for International Development. Partners who have been key in this effort include the Pakistan Agricultural Research Council, the International Livestock Research Institute, the University of California – Davis, the World Vegetable Center and the International Rice Research Institute. It has been under no-cost extension since the program ended in March 2017, which extends the program until 2019.

CIMMYTNEWSlayer1