Skip to main content

New global research alliance joins fight against fall armyworm

NAIROBI (Kenya) — As the invasion of the voracious fall armyworm threatens to cause US$3-6 billion in annual damage to maize and other African food staples, 35 organizations announced today the formation of a global coalition of research for development (R4D) partners, focused on developing technical solutions and a shared vision of how farmers should fight against this pest. After causing extensive crop damage in Africa, the presence of the fall armyworm was recently confirmed in India.

The new Fall Armyworm R4D International Consortium will serve to develop and implement a unified plan to fight this plant pest on the ground. Focusing on applied research, the consortium joins other global efforts and coordinates with international bodies working against this pest. The Fall Armyworm R4D International Consortium will be co-led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA).

“This pest caught us all by surprise and it continues eating away at maize and other crops that are important for the food security and livelihoods of African farmers. We can no longer afford to work in isolation,” said the Director General of CIMMYT, Martin Kropff. “Many organizations in the public and private sector are working intensively on different approaches,” he added, “but farmers are not interested in half solutions. They want to have integrated solutions, supported by strong science, which work effectively and sustainably.”

Consortium members will coordinate efforts to pursue a wide range of options for fighting fall armyworm, with a strong emphasis on integrated pest management, which includes host plant resistance, environmentally safer chemical pesticides, biological and cultural control methods, and agronomic management.

The Deputy Director General for Partnerships for Delivery at IITA, Kenton Dashiell, said that efforts are underway to identify and validate biopesticides, or “very safe products that don’t harm the environment or people but kill the pest.” In some areas, Dashiell explained, farmers may need to consider temporarily switching to a food crop that is not susceptible to armyworm.

A fall armyworm on a damaged leaf in Nigeria, 2017. (Photo: G. Goergen/IITA)
A fall armyworm on a damaged leaf in Nigeria, 2017. (Photo: G. Goergen/IITA)

The Vice President of Program Development and Innovation at the Alliance for a Green Revolution in Africa (AGRA), Joe DeVries, said his organization is serving as a bridge between scientists and farmers. AGRA is developing a network of “village-based advisers” across 15 countries who will be connected to farmers via a “private sector-led” extension system to help farmers deal with fall armyworm infestations. AGRA and its partners already have trained more than 1,000 advisers and expect to add several thousand more who can “quickly bring to farmers the latest knowledge about the best methods of control.”

The Chief Scientist at the Bureau of Food Security of the United States Agency for International Development (USAID), Rob Bertram, expressed his excitement about the formation of the consortium, both for its immediate relevance for fighting fall armyworm and as a forerunner of “more resilient” agriculture systems in Africa, which is likely to see similar threats in the future. CIMMYT and USAID, together with global experts, developed an integrated pest management guide to fight fall armyworm, available in English, French and Portuguese.

The Director General of Development at the Center for Agriculture and Biosciences (CABI), Dennis Rangi, noted that the ability for people to more rapidly travel around the world is also making it easier for plant pests to hop from continent to continent. “Today we are focusing on the fall armyworm, tomorrow it could be something different,” he said.

The members of the Fall Armyworm R4D International Consortium will hold their first face-to-face meeting on October 29-31, 2018, in Addis Ababa, Ethiopia. This international conference will be organized by CIMMYT, IITA, AGRA, CABI, FAO, icipe, FAO, USAID and the African Union Commission.

The technical coordinators of the consortium are B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Global Maize Program at CIMMYT, and May-Guri Saethre, Deputy Director General of Research for Development at IITA.


PARTNERS OF THE FALL ARMYWORM R4D INTERNATIONAL CONSORTIUM

Leads:

  • International Maize and Wheat Improvement Center (CIMMYT)
  • International Institute of Tropical Agriculture (IITA)

Members:

  • African Agricultural Technology Foundation (AATF)
  • Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA)
  • Alliance for a Green Revolution in Africa (AGRA)
  • Bayer
  • Bill & Melinda Gates Foundation
  • Biorisk Management Facility (BIMAF)
  • Brazilian Agricultural Research Corporation (Embrapa)
  • Center for Agriculture and Biosciences (CABI)
  • Corteva
  • CropLife International
  • Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ)
  • Food and Agriculture Organization of the United Nations (FAO)
  • Forum for Agricultural Research in Africa (FARA)
  • International Centre of Insect Physiology and Ecology (icipe)
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
  • Lancaster University
  • Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures)
  • Michigan State University (MSU)
  • Mississippi State University (MSU)
  • North-West University (NWU)
  • Norwegian Institute of Bioeconomy Research (NIBIO)
  • Oregon State University (OSU)
  • Rothamsted Research
  • Syngenta
  • UK Department for International Development (DFID)
  • United States Agency for International Development (USAID)
  • University of Bonn
  • University of Florida (UFL)
  • University of Greenwich
  • Virginia Polytechnic Institute and State University (Virginia Tech)
  • Wageningen University and Research (WUR)
  • West and Central African Council for Agricultural Research (CORAF/WECARD)
  • World Agroforestry Centre (ICRAF)

MEDIA CONTACTS

For more information, please contact:

GeneviĂšve Renard, Head of Communication, CIMMYT
g.renard@cgiar.org, +52 (55) 5804 2004, ext. 2019.

Katherine Lopez, Head of Communication, IITA
k.lopez@cgiar.org, +234 0700800, ext. 2770

MULTIMEDIA

Photos of the fall armyworm are available here:
https://www.flickr.com/photos/cimmyt/sets/72157677988561403

Winners of the 2018 MAIZE Youth Innovators Awards – Asia announced

The 2018 MAIZE Youth Innovators Awards – Asia recognize the contributions of young women and men who can inspire fellow young people to get involved in maize-based research, social change and farming. The awards are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).

The awardees have been invited to attend the 13th Asian Maize Conference in Ludhiana, India, where they will present their work and receive their awards.

The winners in the two categories are:

RESEARCHER

Dinesh Panday, Nepal

Focus: Soil fertility and nutrient management

Dinesh Panday.

Dinesh Panday’s family has a long history in agriculture, which strongly rooted his passions in the field of soil science. He is a Doctorate Graduate Research Assistant in Soil Fertility and Nutrient Management at the University of Nebraska-Lincoln under the supervision of Bijesh Maharjan and Richard Ferguson.

His research aims to determine the effectiveness of high carbon char in reducing environmental nitrogen loss and improving nitrogen fertilizer use efficiency in fertilized soils in semi-arid regions. Using active and passive sensors to detect maize nitrogen stress, predict grain yield and determine in-season and additional side-dress applications of nitrogen fertilizer it is possible to reduce environmental impacts.

Jie Xu, China

Focus: Drought stress in maize root systems

Jie Xu.

An associate researcher at Sichuan Agricultural University, China, Jie Xu is interested in how maize roots influence performance under drought stress. By studying maize inbred lines that exhibit different drought tolerance, her research explores their genome and transcriptome variations to understand the genetic basis of plant adaptation to drought. The findings can then be used in breeding drought-tolerant maize.

Jie Xu and her team have developed methods to dissect the genetic and epigenetic mechanisms underlying maize drought stress response. This work involves the identification of non-synonymous SNPs and corresponding candidate genes for drought tolerance using analyses such as common variant and clustering techniques. Her team also revealed the impact smRNAs and histone modifications have in the regulation of maize drought stress response.

Vignesh Muthusamy, India

Focus: Development of biofortified provitamin-A rich QPM maize hybrids

Vignesh Muthusamy.

Vignesh Muthusamy is from a farming community in the Namakkal district in Tamil Nadu. A Senior Scientist at the Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, he specializes in maize genetics and breeding. His research demonstrates the use of modern biotechnological tools in crop improvement. He was associated with the development of India’s first provitamin A enriched maize hybrid ‘Pusa Vivek QPM 9 Improved’ and with the development of three quality protein maize hybrids that possess high lysine and tryptophan in protein. These biofortified maize hybrids offer tremendous scope to address widespread human malnutrition. Further research work includes the development of a high-yielding sweet corn hybrid and several novel maize genetic resources for nutritional quality traits.

Muthusamy has received many prestigious awards from different societies and scientific organizations, including Jawaharlal Nehru Award for Outstanding Doctoral Thesis Research in Agricultural and Allied Sciences from Indian Council of Agricultural Research. As Principal Investigator, he is handling projects funded by Department of Biotechnology and Department of Science & Technology, Government of India for development of nutritionally rich maize and specialty corn genotypes. Besides research, he is also actively involved in teaching and guidance of post graduate students of the institute.

CHANGE AGENT

Samjhana Khanal, Nepal

Focus: Social inclusion of young people and site-specific nutrient management (SSNM) using Nutrient ExpertÂź

Samjhana Khanal.

Samjhana Khanal, an agricultural graduate, has founded and co-founded various social organizations at a local level in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger.

Besides taking part in agricultural trainings, workshops and conferences during her undergraduate degree, Samjhana worked as a R&D Research Assistant at the Eastern Regional Agricultural Directorate in Nepal and has published a number of research papers. Her most recent research involves the productivity and profitability of hybrid maize using the Nutrient ExpertÂź Maize model in eastern Terai, Nepal. Using Nutrient ExpertÂź, a dynamic nutrient management tool based on site-specific nutrient management (SSNM) principles, farm-specific fertilizer recommendations for maize are possible, resulting in higher grain yield and improved productivity and profits for farmers.

International experts to convene for 13th Asian Maize Conference

International experts to convene in Ludhiana, India, to discuss the way forward to increase climate resilience and productivity of maize, and to strengthen maize-based cropping systems in Asia.

A farmer checks her maize as it comes out of a shelling machine powered by a four-wheel tractor, Nepal. (Photo: P.Lowe/CIMMYT)
A farmer checks her maize as it comes out of a shelling machine powered by a four-wheel tractor, Nepal. (Photo: P. Lowe/CIMMYT)

Ludhiana, India (CIMMYT) — Maize is one of the most important crops in Asia, alongside rice and wheat, and provides important economic opportunities to smallholder farmers. The 13th Asian Maize Conference will take place in Ludhiana, India, on October 8-10, 2018. It will bring together key Asian maize partners and global experts to discuss the present status, challenges, and future opportunities for enhancing maize for food, feed, nutrition and environmental security in Asia.

The conference is jointly organized by the Indian Council of Agricultural Research (ICAR), the International Maize and Wheat Improvement Center (CIMMYT), the ICAR-Indian Institute of Maize Research (ICAR-IIMR), Punjab Agricultural University (PAU), the CGIAR Research Program on Maize (MAIZE) and the Borlaug Institute for South Asia (BISA).

The importance of maize in Asian cropping systems has grown rapidly in recent years, with several countries registering impressive growth rates in maize production and productivity. China ranks first in the world in terms of area under maize, with nearly 36 million hectares. In South and South East Asia, maize is cultivated on more than 22 million hectares, where farmers produce nearly 80 million metric tons of maize (FAOSTAT, 2018).

Despite the achievement of increased maize production in Asia, there is a need to keep up with ever-increasing and competing demands for food, feed and industry needs. The demand for maize in Asia is expected to double by 2050. However, the magnitude and dynamics of abiotic and biotic stresses are rapidly increasing due to changing climates, placing constraints on maize production. Existing constraints to maize production and productivity in several Asian countries exacerbates the pressure to meet demand, further emphasizing the need for improved technologies and management practices. Therefore, continued investment in maize research for development (R4D) is required to ensure future maize production can meet demand.

Farm workers harvest maize. (Photo: P. Lowe/CIMMYT)
Farm workers harvest maize. (Photo: P. Lowe/CIMMYT)

Tremendous opportunities exist for innovations in maize breeding, precision agriculture, seed systems, and value chains, offering exciting prospects for future growth and development of maize in the region. The 13th Asian Maize Conference will focus on ways and means to enhance Asian farmers’ access to high-yielding, climate-resilient and quality seeds, along with climate-smart agronomic management practices. Further topics of discussion include institutional innovations and enabling policies for sustainable intensification of maize-based cropping systems in Asia, and increasing engagement of women and young farmers and entrepreneurs in maize value chains.

The 2018 Maize-Asia Youth Innovators Awards were launched in collaboration between the CGIAR Research Program on Maize (MAIZE) and YPARD (Young Professionals for Agricultural Development) during the run-up to the conference. The awards recognize the contributions of innovative young women and men who can inspire fellow young people to get involved with maize-based agri-food systems. Winners from different categories (researchers and change agents) have been invited to attend the 13th Asian Maize Conference, where they will make brief presentations of their work and receive their awards.

The Conference is expected to draw around 275 participants from several maize-growing countries in Asia, besides experts outside the continent. The delegates come from a broad range of stakeholders, including researchers, policy makers, seed companies, service providers, innovative farmers, and representatives of several development organizations and funding agencies.

The conference program and details will be available on http://maize.org/.

For further information, contact:

Jennifer Johnson
Communications Officer
CGIAR Research Program on Maize (MAIZE)
CIMMYT, Mexico
Telephone: +52 (55) 5804 2004 ext. 1036
Email: j.a.johnson@cgiar.org

Innovation, partnerships and knowledge for African farmers meet at AGRF 2018

KIGALI, Rwanda (CIMMYT) — The African Green Revolution Forum (AGRF) is the place to be for organizations interested in Africa’s agricultural development. Research institutions, development agencies, funders, farmers’ organizations, large agribusinesses and green start-ups came together for the latest edition of this event in Kigali, Rwanda, on September 4-8. Organized by the Alliance for a Green Revolution in Africa (AGRA) since 2010, this year’s theme was “Lead. Measure. Grow.”

The President of Rwanda, Paul Kagame, recalled a sentence stuck in his memory since childhood: “Everything is agriculture, the rest is good luck”. All the top leaders present at AGRF 2018 agreed that investing in smallholder agriculture is a top development priority, since the growth of the primary sector “drives down poverty, two to four times faster than other sectors” and provides livelihoods for three quarters of the African population.

Transforming policy declarations into impact on the ground

Even though African governments agreed on a roadmap towards inclusive agricultural growth — the Comprehensive African Agriculture Development Programme, or CAADP — in 2003, the agriculture sector has remained stagnant since the 1980s. A majority of African countries continue to be net food importers despite their bountiful natural resources, as highlighted in the Africa Agriculture Status Report 2018.

Some African food ventures are quite successful exporting beans, roses or avocados to Europe. However, most African farmers still live on less than one dollar a day, on small rain-fed plots of less than two hectares, having to cope with high climate variability and damages from numerous pests and diseases. They often plant low quality seeds, on acid and degraded soils, with little fertilizer. Rapid ageing of the farming population, 60 years old on average, is a particular concern at a time when many young people are underemployed.

“African agriculture is at a defining moment” was a message hammered home by several keynote speakers of AGRF 2018. So what makes this moment different?

In recent years, some countries have seen a significant rise in farm productivity. Ethiopia, for instance, exceeded the CAADP target of 6 percent annual agricultural growth in the last 25 years, halving its poverty rates over the same period.

African agriculture is facing new threats, from climate change to devastating pests like the fall armyworm, but researchers can be fast to respond, particularly if they are properly funded and listened to.

“The challenge is to design the right partnerships or business models between research, government, civil society and the private sector, to reach impact at scale”, explained CIMMYT’s director general, Martin Kropff.  One example would be the Fall Armyworm Research for Development (R4D) International Consortium, officially launched at AGRF 2018.

CIMMYT has also partnered with public and private organizations to implement a very successful breeding program to fight maize lethal necrosis and to develop detailed guidelines for integrated pest management of the fall armyworm.

Research has to anticipate and respond to the needs of smallholder farmers in diverse ecological and socioeconomic contexts. The agenda has to become demand-driven and researchers have to look at new collaborations if they want to reach the farmers.

The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion "Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit." (Photo: CIMMYT)
The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion “Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit.” (Photo: CIMMYT)

Make agriculture resilient and attractive to youth

Leaders discussed the ways to build viable, fair and sustainable food systems that will provide good opportunities for African farmers, especially the next generation, and affordable, nutritious food for the whole population.

In their view, the roadmap for the coming years includes several key actions: investing in infrastructure, investing in youth and education, investing in value addition and food processing and removing trade barriers.

Speakers also flagged irrigation as a top priority. “African farmers do not need rain; they need water,” summed up John Mellor, who coordinated the African State of Agriculture Report 2018. He explained that top-down irrigation schemes are difficult to manage and maintain, so the focus should rather be on farmer-led irrigation.

The conference highlighted how digital agriculture, big data and other innovations offer the opportunity to leapfrog agriculture growth and make farming attractive to youth. For instance, Hello Tractor, a CIMMYT partner, is an Uber-like service linking tractor owners and machinery service providers with farmers. CIMMYT research shows that appropriate rural mechanization adapted to smallholders, like two-wheel tractors, will ease labor problems and enable adoption of more sustainable practices, like direct sowing. This can make farming more attractive for young people and create opportunities for them to become service providers.

Taking knowledge to farmers

Many innovations are out there to help African farmers grow more and better food; from climate resilient new varieties and customized agronomic advice to new e- or m-business models.

Mobile finance solution Tulaa brings together farmers, agro-dealers and credit providers on a virtual marketplace. Through Tulaa, farmers can borrow money to purchase the right fertilizers or seeds at the right time. Another platform, Precision Agriculture for Development, is providing more than 120,000 Kenyan farmers with agronomic advice via SMS, so they can better identify and manage fall armyworm. Other new digital platforms are linking smallholder farmers with quality inputs, extension services, finance, food processing and market opportunities.

All these operators will need to use accurate, science-based data. That is where CIMMYT’s expertise could play a big role, for instance providing customized fertilization recommendations to individual farmers, as planned in the Taking Maize Agronomy to Scale in Africa (TAMASA) project.

B.M. Prasanna, director of CIMMYT’s Global Maize Program, concluded that “AGRF is an excellent platform to network, debate issues relevant to African agriculture, form alliances and think forward.” Providing more resources in agricultural research for development will generate a stream of new technologies and solutions that will drive agricultural growth. Something African countries urgently need with their fast-growing population (2-3 percent annually) and one additional billion people to feed by 2050.

Researchers find “hotspot” regions in the wheat genome for high zinc content, new study shows

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)
The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on September 10.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as two wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.

“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”

More than 17 percent of humans, largely across Africa and Asia, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.

Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.

“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses and rice.”

Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years, according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.

Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.

This article was originally published on the website of the CGIAR Research Program on Wheat.

 

What is green manure? And how is it helping maize farmers?

Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)
Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)

Honest Musafari, a fifty-year-old farmer from rural Zimbabwe, eagerly picks up a clump of soil from his recently harvested field to show how dark and fertile it is. A farmer all his life, Musafari explains the soil has not always been like this. For years, he and his neighbors had to deal with poor eroding soil that increasingly dampened maize yields.

“My soil was getting poorer each time I plowed my field, but since I stopped plowing, left the crop residues and planted maize together with legumes the soil is much healthier,” says Musafari. His 1.6-hectare maize-based farm, in the Murehwa district, supports his family of six.

For over two years, Musafari has been one of the ten farmers in this hot and dry area of Zimbabwe to trial intercropping legumes and green manure cover crops alongside their maize, to assess their impact on soil fertility.

The on-farm trials are part of efforts led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with Catholic Relief Services (CRS) and government extension services to promote climate-resilient cropping systems in sub-Saharan Africa.

Increasing land degradation at the farm and landscape level is the major limitation to food security and livelihoods for smallholder farmers in sub-Saharan Africa, says CIMMYT senior cropping systems agronomist Christian Thierfelder.

“Over 65 percent of soils in Africa are degraded. They lack the nutrients needed for productive crops. This is a major part of the reason why the region’s maize yields are not increasing,” he explains. “The failure to address poor soil health will have a disastrous effect on feeding the region’s growing population.”

The area where Musafari lives was chosen to test intercropping, along with others in Malawi and Zambia, for their infamous poor soils.

Mixing it up

When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)
When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)

Planted in proximity to maize, legumes — like pigeon pea, lablab and jack beans — add nitrogen to the soil, acting as green manure as they grow, says Thierfelder. Essentially, they replace the nutrients being used by the cereal plant and are an accessible form of fertilizer for farmers who cannot afford mineral fertilizers to improve soil fertility.

“Our trials show legumes are a win for resource poor family farmers. Providing potentially 5 to 50 tons per hectare of extra organic matter besides ground cover and fodder,” he notes. “They leave 50 to 350 kg per hectare of residual nitrogen in the soil and do not need extra fertilizer to grow.”

Added to the principles of conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping — farmers are well on their way to building a resilient farm system, says Geoffrey Heinrich, a senior technical advisor for agriculture with CRS working to promote farmer adoption of green manure cover crops.

For years Musafari, as many other smallholder farmers in Africa, tilled the land to prepare it for planting, using plows to mix weeds and crop residues back into the soil. However, this intensive digging has damaged soil structure, destroyed most of the organic matter, reduced its ability to hold moisture and caused wind and water erosion.

Letting the plants do the work

Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)
Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)

Musafari says the high price of mineral fertilizer puts it out of reach for farmers in his community. They only buy little amounts when they have spare cash, which is never enough to get its full benefit.

He was at first skeptical green manure cover crops could improve the quality of his soil or maize yields, he explains. However, he thought it was worth a try, considering growing different crops on the same plot would provide his family with more food and the opportunity to make some extra cash.

“I’m glad I tried intercropping. Every legume I intercropped with my maize improved the soil structure, its ability to capture rain water and also improved the health of my maize,” he says.

Thierfelder describes how this happens. Nitrogen fixation, which is unique to leguminous crops, is a very important process for improving soil fertility. This process involves bacteria in the soil and nitrogen in the air. The bacteria form small growths on the plant roots, called nodules, and capture the atmospheric nitrogen as it enters the soil. The nodules change the nitrogen into ammonia, a form of nitrogen plants use to produce protein.

In addition, legumes grown as a cover crop keep soil protected from heavy rains and strong winds and their roots hold the soil in place, the agronomist explains. They conserve soil moisture, suppress weeds and provide fodder for animals and new sources of food for consumption or sale.

Farmers embrace intercropping

Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)

Working with CIMMYT, Musafari and his wife divided a part of their farm into eight 20 by 10 meter plots. On each plot, they intercropped maize with a different legume: cowpea, jack bean, lablab, pigeon pea, sugar bean and velvet bean. They also tried intercropping with two legumes on one of the plots. Then they compared all those options to growing maize alone.

“Season by season the soil on each of the trial plots has got darker and my maize healthier,” describes Musafari. “Rains used to come and wash away the soil, but now we don’t plow or dig holes, so the soil is not being washed away; it holds the water.”

“I really like how the legumes have reduced the weeds. Before we had a major problem with witchweed, which is common in poor soils, but now it’s gone,” he adds.

Since the first season of the trial, Musafari’s maize yields have almost tripled. The first season his maize harvested 11 bags, or half a ton, and two seasons later it has increased to 32 bags, or 1.5 tons.

Musafari’s wife Eveline has also been convinced about the benefits of intercropping, expressing the family now wants to extend it to the whole farm. “Intercropping has more advantages than just growing maize. We get different types of food on the same space. We have more to eat and more to sell,” she says.

The family prefers intercropping with jack bean and lablab. Even though they were among the hardest legumes to sell, they improved the soil the most. They also mature at the same time as their maize, so they save labor as they only have to harvest once.

The benefits gained during intercropping have influenced farmers to adopt it as part of their farming practices at most of our trial sites across southern Africa, CRS’s Heinrich says.

“Immediate benefits, such as reduced weeding labor and legume cash crops that farmers can sell off quick, provide a good incentive for adoption,” he adds.

Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)
Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)

Climate-resilient farming systems for Africa

Food security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the continent by 2025. Temperatures are increasing: the past three decades have been the warmest on record, according to the International Panel on Climate Change.

Hotter climates, more dry spells and erratic rainfall are a major concern to farmers in sub-Saharan Africa, where over half of maize is grown in rain-fed farming without irrigation.

The majority of African farmers are smallholders who cultivate less than 2 hectares, explains Thierfelder. If they are to meet the food demand of a population set to almost double by 2050, bringing it to over 2 billion people while overcoming multiple challenges, they need much more productive and climate-resilient cropping systems.

New research identifies that the defining principles of conservation agriculture alone are not enough to shield farmers from the impacts of climate change. Complementary practices are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, he warns.

“Intercropping with legumes is one complementary practice which can help building healthy soils that stand up to erratic weather,” says Thierfelder. “CIMMYT promotes climate-resilient cropping systems that are tailored to farmers’ needs,” he emphasizes.

“To sustainably intensify farms, growers need to implement a variety of options including intercropping, using improved crop varieties resistant to heat and drought and efficient planting using mechanization along with the principles of conservation agriculture to obtain the best results.”

Planting the seed of agricultural innovation in Africa

Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)
Service provider Bedilu Desta and his helper Fekadu Assefa drive a two-wheel tractor and thresher in the village of Gudoberet, Basona district, Ethiopia, in 2015. (Photo: Peter Lowe/CIMMYT)

In the last two decades, Africa has taken a leap forward in the development and adoption of agricultural innovations. We have seen an increased use of improved seed, appropriate technologies and agricultural machinery, all adapted to the specific needs of African farmers.

As leaders gather at the African Green Revolution Forum this month, it is time to discuss the best way to take this progress even further, so small farmers across the continent can reap the benefits of sustainable intensification practices and produce more food.

How can we spread access to these technologies and resources and put them into the hands of Africa’s half a billion farmers? How can we best align the efforts of governments, agribusiness and academia? How can we unlock Africa’s agricultural potential and achieve the Malabo Declaration to end hunger by 2025?

It all starts with a seed. Access to quality seed – that stands up to drought, resists diseases and pests, and has nutritional value – helps family farmers adapt to climate change. Bundled with sustainable agronomic practices and technologies, these seeds have the power to unleash an economic shift that could lift millions of Africans out of poverty.

To make this happen, a strong seed system is imperative. Local seed companies need adequate and reliable foundation seed, as well as access to elite germplasm they can include in their own breeding programs. They also want to use new hybrid varieties and improve their certified seed production. Only then they will be able to sell low-cost improved seed to smallholders with low purchasing power and limited market access.

Climate-resilient seeds

The negative effects of climate change have been felt throughout Africa, particularly for maize farmers. The staple for more than 200 million resource-poor people, maize crops have increasingly been affected by changing climate conditions.

To address this challenge, the International Maize and Wheat Improvement Center (CIMMYT) is developing a breeding pipeline of maize varieties, which are deployed by small and medium-sized local agribusinesses. Working in partnership with national governments, private companies and nonprofits, CIMMYT has so far released nearly 300 climate-resilient maize varieties, adapted to the different agroecologies in Africa.

Despite severe El Nino-induced droughts, farmers growing new maize varieties that withstand heat and drought have yielded twice as much as those with common commercial varieties, helping them ensure household food security. In Ethiopia, the estimated economic value of increased maize production due to climate-resilient varieties reached almost $30 million.

In other cases, biofortified food crops are helping to improve nutrition and fight ‘hidden hunger’, by adding micronutrients to people’s diets. For example, nutritious orange maize containing higher amounts of vitamin A is already growing in several southern African countries, preventing children from stunting and losing eyesight.

Modern seed production technologyis providing African seed companies with efficient and affordable ways to develop quality seed and get it to farmers.

Through strong public-private partnerships, the amount of climate-resilient maize grown by African farmers has more than doubled over the last eight years, benefiting an estimated 53 million people. The increased volumes of improved seed reaching farmers now is encouraging, but far from adequate.

When innovation meets collaboration

Traditionally, new varieties can take up to 20 years to reach farmers, but new technologies are helping to speed up the breeding process. Data from flying drones loaded with cameras and other sensors can cut the time to monitor crop health from days to minutes.

The establishment of the region’s first double haploid facility in Kenya reduces the cost and time for breeding work – it enables rapid development of homozygous maize lines and fast-tracks the release of new varieties. It was essential in the emergency response to the deadly Maize Lethal Necrosis, as breeders could release new varieties in just three years, instead of seven. The facility, open to public and private breeders, is currently being used to develop maize varieties that could resist the fall armyworm pest.

New types of small agricultural machines are helping to increase productivity, save time and reduce farmers’ workload. For example, two-wheel tractors allow smallholders to farm with more precision, conserve valuable resources and, ultimately, produce more. Renting agricultural equipment and providing mechanization services is also becoming a way for young entrepreneurs in rural areas to earn a living while giving access to powerful farming tools to family farmers who could not afford them otherwise.

Last June, representatives from dozens of African seed companies and national agricultural research institutions convened in Zimbabwe to establish the International Maize Improvement Consortium (IMIC) in Africa, similar to those already operating in Asia and Latin America. The consortium offers a systematic way to identify and share pre-release maize germplasm, which partners can use in their own breeding.

To address all these issues and democratize access to agricultural innovation, collaboration is crucial. Through past experience, we have learned that partnerships need to be more ambitious and that knowledge needs to be shared across borders. Any new solution must incorporate the expertise and action of national extension systems, private sector companies and other relevant stakeholders.

Donors need to consider long-term funding mechanisms that can operate at a regional and global scale.

Let’s build on the existing success and take it even further. Together, we can build robust seed systems and equip African farmers with the technology they need to envision a safe and sustainable future.

Martin Kropff is the director general of CIMMYT and Stephen Mugo is CIMMYT’s regional representative in Africa.

This article was originally published by Thomson Reuters.

CIMMYT recognized for support in restoring Guatemalan seed systems after hurricane

CIMMYT maize germplasm bank staff preparing the order for the repatriation of Guatemalan seed varieties. (Photo: CIMMYT)
CIMMYT maize germplasm bank staff preparing the order for the repatriation of Guatemalan seed varieties. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) maize germplasm bank recently received an award in recognition of its contributions towards the Buena Milpa initiative in Guatemala, which aims to enhance the sustainability of maize systems in the country. Denise Costich, head of the maize germplasm bank, received the award on behalf of CIMMYT during the event ‘Maize of Guatemala: Repatriation, conservation and sustainable use of agro-biodiversity,’ held on September 7, 2018, in Guatemala City.

The seed varieties stored in the CIMMYT germplasm bank were of vital importance in efforts to restore food security in the aftermath of Hurricane Stan, which swept through Guatemala in 2005, leading to 1,500 deaths. Many farmers lost entire crops and some indigenous communities were unable to harvest seed from their traditional maize varieties, known as landraces. Generations of selection by farmers under local conditions had endowed these varieties with resistance to drought, heat, local pests and diseases. Such losses were further exacerbated by the discovery that the entire maize seed collection in Guatemala’s national seed bank had been damaged by humidity; the seeds were vulnerable to insects and fungus and could not be replanted.

In 2016, drawing upon the backup seed stored in its maize germplasm bank in Mexico, CIMMYT sent Guatemalan collaborators seed of 785 native Guatemalan maize varieties, including some of the varieties that had been lost. Collaborators in Guatemala subsequently planted and multiplied the seed from the historic CIMMYT samples, ensuring the varieties grow well under local conditions. On completion of this process, the best materials will be returned to local and national seedbanks in Guatemala, where they will be available for farmers and researchers to grow, study and use in breeding programs.

Jointly hosted by the government of Guatemala through the Ministry of Agriculture, Livestock and Food and the Ministry of Culture and Sport, the recent ceremony signified the official delivery of the repatriated seed into the national system. Attendees celebrated the importance of maize in Guatemala and witnessed the presentation of repatriated maize collections to local and national Guatemalan seedbank authorities, including the Institute of Agricultural Science and Technology (ICTA).

“Supporting the seed conservation networks, on both the national and community levels in countries like Guatemala, is a key part of the mission of the CIMMYT Germplasm Bank,” said Costich. “Our collaboration with the Buena Milpa project has enabled the transfer of both seed and seed conservation technologies to improve the food security in communities with maize-centered diets.”

The Buena Milpa initiative in Guatemala is improving storage practices in community seed reserves: tiny, low-tech seed banks meant to serve as backups for villages in cases of catastrophic seed loss. So far, Buena Milpa has enabled 1,800 farmers to access community seed reserves. In addition, 13,000 farmers have applied improved practices and technologies.

The CIMMYT maize germplasm bank, headquartered in Mexico, serves as a backup for farmers and researchers in times of catastrophic seed loss by safeguarding maize genetic diversity, a crucial building block in global food security.

This article was originally published on the website of the CGIAR Research Program on Maize.

New publications: Germplasm bank accessions add value to elite wheat lines

For the first time ever, a research team of more than 40 scientists has genetically characterized values of exotics in hexaploid wheat. CIMMYT scientists, together with partners in Demark, India, Mexico, Pakistan, and the UK, used next-generation sequencing and multi-environment phenotyping to study the contribution of exotic genomes to pre-breeding lines. Research required collaborative development, evaluation, and deployment of novel genetic resources to breeding programs addressing food security under climate change scenarios in India, Mexico, and Pakistan.

The team generated large-scale pre-breeding materials, which have been evaluated for important traits such as grain yield, quality, and disease resistance. Pre-breeding and haplotype-based approaches revealed useful genetic footprints of exotic lines in pre-breeding germplasm. Results of the study, recently published in Nature Scientific Reports, show that some DNA from exotic germplasm improved the biotic and abiotic stress tolerances of lines derived from crosses of exotics with CIMMYT’s best elite lines.

The practical successes of large-scale, impact-oriented breeding work will be useful to other wheat breeding programs around the world, and the information generated could be used to boost global wheat productivity.

Sukhwinder Singh, wheat lead on CIMMYT’s SeeD Project, explains that pre-breeding is in-demand and the resources developed through this study can serve as tools to address upcoming challenges in wheat production more efficiently, as desirable alleles from exotics have been mobilized into best elite genetic background. Breeding programs can now use this material to deliver outcomes in shorter timeframes by avoiding the lengthy process of searching for exotics first.

Read the full article in Nature Scientific Reports: “Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security.”

This research was conducted as part of the Seeds of Discovery and MasAgro projects in collaboration with the Borlaug Institute for South Asia, and was made possible by generous support from Mexico’s Department of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), the Government of Punjab, and the CGIAR Research Program on Wheat.

Wheat-seed-1

Check out other recent publications by CIMMYT researchers below:  

  1. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. GonzĂĄlez-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
  2. Bayesian functional regression as an alternative statistical analysis of high‑throughput phenotyping data of modern agriculture. Montesinos-LĂłpez, A., Montesinos-LĂłpez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-VĂĄzquez, F.J. In: Plant Methods v. 14, art. 46.
  3. Effect of ppd-a1 and ppd-b1 allelic variants on grain number and thousand-kernel weight of durum wheat and their impact on final grain yield. Arjona, J.M., Royo, C., Dreisigacker, S., Ammar, K., Villegas, D. In: Frontiers in Plant Science v. 9, art. 888.
  4. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
  5. Mexican tropical cream cheese yield using low-fat milk induced by trans-10, cis-12 conjugated linoleic acid: effect of palmitic acid. Granados-Rivera, L.D., Hernåndez-Mendo, O., Burgueño, J., Gonzalez-Munoz, S.S., Mendoza-Martinez, G.D., Mora-Flores, J.S.,  Arriaga-Jordan, C.M. In: CyTA-Journal of Food v. 16, no. 1, p. 311-315.

Forecast drought: ED engages experts

While traveling through Africa and stopping at CIMMYT’s regional offices, I had the pleasure of meeting the President of Zimbabwe, Emmerson Mnangagwa, and discussing ways of enhancing agricultural productivity in the face of erratic rains expected in the 2018-19 farming season.

Read a news story about this meeting on The Herald: https://www.herald.co.zw/forecast-drought-ed-engages-experts/

CIMMYT's director general Martin Kropff (right) greets the president of Zimbabwe, Emmerson Mnangagwa, at Munhumutapa Offices in Harare. (Picture by Tawanda Mudimu)
CIMMYT’s director general Martin Kropff (right) greets the president of Zimbabwe, Emmerson Mnangagwa, at Munhumutapa Offices in Harare. (Picture by Tawanda Mudimu)

Suitcase-sized lab speeds up wheat rust diagnosis

A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)
A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)

Despite her unassuming nature, the literary character Miss Marple solves murder mysteries with her keen sense of perception and attention to detail. But there’s another sleuth that goes by the same name. MARPLE (Mobile And Real-time PLant disEase) is a portable testing lab which could help speed-up the identification of devastating wheat rust diseases in Africa.

Rust diseases are one of the greatest threats to wheat production around the world. Over the last decade, more aggressive variants that are adapted to warmer temperatures have emerged. By quickly being able to identify the strain of rust disease, researchers and farmers can figure out the best course of action before it is too late.

The Saunders lab of the John Innes Centre created MARPLE. In collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT), researchers are testing the mobile diagnostic kit in Holeta, central Ethiopia.

“These new pathogen diagnostic technologies 
 offer the potential to revolutionize the speed at which new wheat rust strains can be identified,” says Dave Hodson, a CIMMYT rust pathologist in Ethiopia. “This is critical information that can be incorporated into early warning systems and result in more effective control of disease outbreaks in farmers’ fields.”

Hodson and his colleagues will be presenting their research at the CGIAR Big Data in Agriculture Convention in Nairobi, on October 3-5, 2018.

Read more about the field testing of the MARPLE diagnostic kit on the ACACIA website.

Towards more sustainable food systems through a landscape lens

A Maasai woman holding a baby (center) attends the plenary session of the GLF Nairobi 2018. (Photo: Global Landscapes Forum)
A Maasai woman holding a baby (center) attends the plenary session of the GLF Nairobi 2018. (Photo: Global Landscapes Forum)

NAIROBI, Kenya (CIMMYT) — The latest event of the Global Landscapes Forum (GLF) took place on August 29-30 in Nairobi, Kenya, under the topic of forest and landscape restoration in Africa. To tackle the urgent issue of deforestation and land degradation, the sessions and panels covered topics as diverse as community-led restoration, how to address social inclusion in land management, or how to work with supply chain actors to achieve sustainable landscapes and better livelihoods for local communities.

Landscape degradation directly affects 1.5 billion people. Local communities are usually the first ones to experience the negative effects of this problem on their livelihoods, access to water and loss of topsoil and farm productivity.

However, Africa provides the most opportunities for landscape restoration.

When landscapes support nutrition

Sustainable landscapes play a role in CIMMYT’s work. In Ethiopia, CIMMYT’s research in collaboration with CIFOR showed that a landscape approach can improve the nutrition and resilience of farming families. The transfer of organic matter and nutrients from forest patches to farmers’ fields, through livestock manure and fuelwood, enriches the soils and increases the zinc and protein content of wheat grain.

CIMMYT scientists are also looking at the link between livestock management and farming. In the Central Rift Valley of Ethiopia, zero-grazing in farmland led to an 80 percent increase of organic matter in the topsoil after 8 years, and as a result teff yields increased by 70 percent.

While agronomy tends to look at the field’s scale, a landscape perspective may also be important for more efficient pest control, as CIMMYT’s research with Wageningen University found. A useful learning as agriculture experts look at ways to combat emerging pests like the fall armyworm.

Voices of the Landscape Plenary at the GLF Nairobi 2018. (Photo: Global Landscapes Forum)
Voices of the Landscape Plenary at the GLF Nairobi 2018. (Photo: Global Landscapes Forum)

Better soil and rights

Participants in GLF Nairobi 2018 called for concrete collective action to restore degraded landscapes.

Having real-time accurate dashboards of land degradation could help governments and development organizations build coherent policies and restoration programs. Mark Schauer from the Economics of Land Degradation Initiative explained why soil is important and how monetizing the costs and benefits of sustainable soil management practices could help decision-makers build more sustainable food systems. Sharing data in transboundary contexts is a challenge but can be overcome, as the Eastern Africa Forest Observatory (OFESA) has shown.

Asking uncomfortable questions is necessary to support the people who depend the most on landscapes’ health. Milagre Nuvunga from the MICAIA Foundation in Mozambique recommended to put women’s rights at the center of landscape restoration programs. Several testimonies reminded that women living in patriarchal societies often do not have land rights, so land will go back to the husband’s family in case of death or divorce. Even if they know the benefits of landscape restoration, “why would women care” to invest time and energy on it if their rights are not secured, she asked.

To learn more about the Global Landscape Forum Nairobi 2018, visit https://events.globallandscapesforum.org/nairobi-2018/.
The main event of the Global Landscapes Forum will take place on December 1-2, 2018, in Bonn, Germany.

CIMMYT collaborator wins Norman Borlaug Award for Field Research and Application

Matthew Rouse, a researcher with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), has been named the winner of the 2018 Norman Borlaug Award for Field Research and Application. Rouse is recognized for his essential leadership efforts to contain and reduce the impact of Ug99, a devastating new race of the stem rust pathogen that poses a serious threat to the world’s wheat crops and food security.

The Norman Borlaug Award for Field Research and Application is presented annually to a young extension worker, research scientist or development professional who best emulates the dedication, perseverance, and innovation demonstrated by Norman Borlaug while working in the field with Mexican farmers in the 1940s and ’50s.

“When I learned that I was selected for the Borlaug Field Award, I was humbled by both the legacy of Norman Borlaug and by the fact that any impact I made was a part of collaborations with talented and hard-working individuals at USDA-ARS, the University of Minnesota, CIMMYT, the Ethiopian Institute of Agricultural Research, and other national programs,” Rouse said.

Rouse has been an essential collaborator for a wide range of crucial projects to protect the world’s wheat crops. His research supports more than 20 breeding programs in the U.S. and 15 wheat genetics programs around the world, including those at CIMMYT. As the coordinator of ARS’s spring wheat nursery project in Ethiopia and Kenya, he has provided Ug99 resistance genes to breeders worldwide, accelerating the process for incorporating enhanced stem rust protection into wheat varieties.

Rouse also collaborated with CIMMYT in 2013, when a race of stem rust unrelated to Ug99 caused an epidemic in Ethiopia. He rapidly assembled a team of scientists from CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and USDA-ARS, and developed a research plan to establish four stem rust screening nurseries. This led to the selection of promising new wheat breeding lines by Ethiopian and CIMMYT scientists and the rapid 2015 release of the variety ‘Kingbird’ in Ethiopia, which was shown to be resistant to four of the most dangerous races of stem rust in addition to Ug99.

Read the announcement of the award on the World Food Prize website.

Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)
Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)

 

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Over 100,000 genes

After 13 years of research, an international team of more than 200 scientists recently cracked the full genome of bread wheat. Considering that wheat has five times more DNA than humans, this is a significant scientific breakthrough. The complete sequencing provides researchers with a map for the location of more than 100,000 genes which, experts say, will help accelerate the development of new wheat varieties.

Philomin Juliana, a Post-Doctoral Fellow in wheat breeding at the International Maize and Wheat Improvement Center (CIMMYT) talks about the relevance of the new map for the center, whose genetics figures in the pedigrees of wheat varieties grown on more than 100 million hectares worldwide.

Are you already using this resource, and how?

We have anchored the genotyping-by-sequencing marker data for about 46,000 lines from CIMMYT’s first-year wheat yield trials (2013-2018) to the new, International Wheat Genome Sequencing Consortium (IWGSC) reference sequence (RefSeq v1.0) assembly of the bread wheat genome, with an overall alignment rate of 64%. This has provided valuable information on the location of key genome regions associated with grain yield, disease resistance, agronomic traits and quality in CIMMYT’s wheat germplasm, identified from genome-wide association mapping studies.

We have also used the new reference sequence to understand the impact of marker densities and genomic coverage on the genomic predictability of traits and have gained a better understanding of the contributions of diverse chromosome regions (distal, proximal, and interstitial) towards different phenotypes.

How will use of the new wheat reference sequence help CIMMYT and partners to develop improved wheat for traits of interest?

There are so many ways we can use this new tool! It provides valuable insights into trait genetics and genomics in bread wheat and will help us to more quickly identify candidate genes associated with traits of interest and to clone those genes. We will also be able to design molecular breeding strategies and precisely select and introgress target regions of the genome.

More generally, the reference sequence already has a range of markers — among them, simple sequence repeats (SSR), diversity array technologies (DArT) markers, and single nucleotide polymorphisms (SNPs) — anchored to it, which will facilitate comparisons between mapping studies and the quick development and validation of useful new markers.

It will also help to apply tools like gene-editing to obtain desired phenotypes and will allow us to better characterize the genetic diversity in CIMMYT’s wheat, to identify useful genes in key CIMMYT parent lines and rapidly introgress them into breeding lines.

With the annotated whole genome information, breeders can design crosses focused directly on desired combinations of genomic regions or predict the outcome of crosses involving gene combinations.

It will definitely speed varietal testing in partner countries through quick and accurate molecular screens for the presence of desired genes, instead of having to perform multiple generations of field testing.

Finally, it will help us to detect molecular-level differences between CIMMYT varieties released in different countries.

Which traits are being targeted by CIMMYT and partners?

We are using the new reference sequence to understand better the molecular bases of grain yield, heat and drought tolerance, rust resistance, flowering time, maturity, plant height, grain and flour protein, and various other quality traits.

Philomin Juliana

A recipient of Monsanto’s Beachell-Borlaug International Scholars Program Award, Juliana completed a Ph.D. in Plant Breeding and Genetics at Cornell University in 2016. Her work at CIMMYT seeks to identify the genetic bases of key traits in CIMMYT wheat germplasm and to assess high-throughput genotyping and phenotyping to increase the rate of genetic gain for yield in the center’s bread wheat breeding. In this work, she partners with the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project and Jesse Poland of the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) and Kansas State University. Her research also forms part of USAID’s Feed the Future projects.

A tribute to the late Abraham Blum, plant physiologist and CIMMYT partner

Abraham Blum, 1934-2018. (Photo: Courtesy of Arnon Blum)
Abraham Blum, 1934-2018. (Photo: Courtesy of Arnon Blum)

Long-time CIMMYT partner and plant physiologist Abraham Blum passed away on March 10, 2018, at the age of 84, after having dedicated his career to understanding how plants cope with stress.

From 1968 to 2000 he was based at The Volcani Centre in Israel, where he led the Agriculture Research Organization’s dryland wheat and sorghum breeding programs. His research focused on the functional basis and improvement of heat and drought tolerance in cereals.

Blum and his team developed wheat and sorghum cultivars adapted to dryland conditions, using novel breeding methods. A strong advocate for multidisciplinary approaches, he pioneered and championed the study of observable traits to enhance the understanding of plants’ ability to cope with and adapt to changes in the environment.

Blum authored more than 100 scientific papers and reviews, challenging common beliefs concerning drought tolerance. His 1988 book, Plant Breeding for Stress Environments, describes how plants cope with drought stress through traits to avoid or tolerate dehydration and is considered the first comprehensive treatise on plant breeding for water-limited environments.

“Abraham initially visited CIMMYT in my first year, 1989,” said Matthew Reynolds, head of wheat physiology at CIMMYT, “but I later applied his advice to make more strategic crosses and this eventually became the core principle of our physiological breeding work.”

Blum sustained his engagement with CIMMYT, serving as an advisor and speaker at CIMMYT’s inaugural Yield Potential Workshop in Obregón, Mexico, in 1996, and again at the inaugural meeting of the Heat and Drought Wheat Improvement Consortium (HeDWIC) in Frankfurt in 2014.

He spent much of his retirement consulting, teaching, and curating his website, Plant Stress, which offers concentrated information on environmental plant stress, written or compiled by specialists. “The website he developed is a unique resource that has been used by plant and crop scientists worldwide for decades,” explained Reynolds, “and I am honored to have been asked to help continue this invaluable legacy.”

Plant physiologist Abraham Blum in the field. (Photo: Courtesy of the Journal of Experimental Botany)
Plant physiologist Abraham Blum in the field. (Photo: Courtesy of the Journal of Experimental Botany)