Skip to main content

Author: Steven M

Getting to win-win: Can people and nature flourish on an increasingly cultivated planet?

Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earth’s history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanity’s moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.

Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby “sparing” a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.

In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield —for example, income, labor productivity, or resilience — the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.

Beyond the zero-sum game

At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.

On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.

Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.

This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of “controlled environment agriculture” such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.

Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)

“Agriculture is about flexibility and pragmatism,” said Frédéric Baudron, a system agronomist at CIMMYT and the lead author of the study. “Farmers need to be presented with a wider basket of solutions than the dichotomy of high-yielding and polluting agriculture versus low-input and low-yielding agriculture offered by land sharing/sparing. Virtually all production systems require both external inputs and ecosystem services. In addition, agricultural scientists have developed a variety of solutions, such as precision agriculture, to minimize the risk of pollution when using external inputs, and push-pull technology to harness ecosystem services for tangible productivity gains.

Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.

Imagining landscapes where biodiversity and people win

The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.

“It is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,” Baudron said.

Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)

Supporting the growth of local maize seed industries: Lessons from Mexico

Over the past several decades, maize breeders have made considerable strides in the development and deployment of new hybrids. These offer higher yields compared to older varieties and reduce the risks farmers face from the vagaries of a changing climate and emerging pest and disease threats. But, for small-scale farmers to adopt new, improved climate-resilient and stress-tolerant maize hybrids at scale, they must be first available, accessible and their benefits need to be widely understood and appreciated. This is where vibrant national seed industries potentially play an important role.

Prior to the 1990s, government agencies tended to play the lead role in hybrid production and distribution. Since then, expectations are that the private sector — in particular locally owned small-scale seed enterprises — produce maize hybrids and distribute them to farmers. When successful, local seed industries are able to produce quality new hybrids and effectively market them to farmers, such that newer hybrids replace older ones in agrodealer stores in relatively short periods of time. If small seed enterprises lack capacities or incentives to aggressively market new hybrids, then the gains made by breeding will not be realized in farmers’ fields. By monitoring seed sales, breeders at CIMMYT and elsewhere, as well as seed business owners, gain insights into smallholders’ preferences and demands.

A recent publication in Food Security assesses the capacities of 22 small and medium-sized seed enterprises in Mexico to produce and market new maize hybrids. The study draws on the experience of the MasAgro project, a decade-long development whereby the International Maize and Wheat Improvement Center (CIMMYT), in partnership with Mexico’s Department of Agriculture and Rural Development (SADER), engaged with dozens of locally owned seed businesses to expand their portfolio of maize hybrids.

The authors, led by CIMMYT senior economist Jason Donovan, highlight the critical role the MasAgro project played in reinvigorating the portfolios of maize seeds produced by small and medium-sized enterprises. MasAgro “filled a gap that had long existed in publicly supported breeding programs” by providing easy access to new cultivars, available to local seed companies without royalties or branding conditions, and without the need for seed certification. The enterprises, in turn, showed a remarkably high capacity to take up new seed technology, launching 129 commercial products between 2013 and 2017.

“Without doubt the MasAgro project can be considered a success in terms of its ability to get new maize germplasm into the product portfolios of small seed companies throughout Mexico,” Donovan said.

The authors also delve into the challenges these maize enterprises faced as they looked to scale the new technologies in a competitive market that has long been dominated by multinational seed enterprises. They observed a lack of access to physical capital, which in turn evidenced a lack of financial capital or access to credit, as well as limited marketing know-how and capacity to integrate marketing innovations into their operations. While most maize enterprises identified the need to expand sales of new commercial products, “signs of innovation in seed marketing were limited” and most of them relied heavily on sales to local and state governments.

According to Donovan, “The MasAgro experience also shows that a strong focus on the demand side of formal seed systems is needed if breeding programs are to achieve greater impact in less time. This implies more attention to how farmers decide on which seed to purchase and how seed companies and seed retailers market seed to farmers. It also implies strong coordination between public sector to make building the local seed industry a national imperative.”

Beyond the Mexican context, the paper’s findings may be of particular interest to development organizations looking to supply local seed industries facing strong competition from regional and multinational companies. One example is the effort to support small seed businesses in Nepal, which face strong competition from larger Indian companies with long histories of engagement in Nepalese seed markets. There are also important lessons for policymakers in eastern and southern Africa, where strict controls over seed release and certification potentially lead to higher production costs and slower rates of introduction of new products by local maize seed companies.

Read the full article:
Capacities of local maize seed enterprises in Mexico: Implications for seed systems development

This paper is complemented by two CIMMYT-led publications in a special issue of Outlook on Agriculture that highlights experiences in sub-Saharan Africa. That special issue grew out of the CGIAR Community of Excellence for Seed Systems Development where CIMMYT led the discussion on seed value chains and private sector linkages.

Cover image: Farmers in Mexico attend a workshop organized by CIMMYT to build their capacity in seed production. (Photo: X. Fonseca/CIMMYT)

State-of-the-art maize doubled haploid facility inaugurated in India

Main building of CIMMYT’s maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)
Main building of CIMMYT’s maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)

On December 3, 2021, the International Maize and Wheat Improvement Center (CIMMYT) and its partners inaugurated a state-of-the-art maize doubled haploid (DH) facility in Kunigal, in India’s Karnataka state. The facility was established by CIMMYT in partnership with the University of Agricultural Sciences, Bangalore (UAS Bangalore), with financial support from the CGIAR Research Program on Maize (MAIZE).

It is the first public sector facility of its kind in Asia, fulfilling a very important need for maize breeding programs in the region. The facility, operated by CIMMYT, will provide DH production services for CIMMYT’s and UAS Bangalore’s breeding programs, as well as for national agricultural research institutions and small- and medium-sized seed companies engaged in maize breeding across tropical Asia. This is expected to result in accelerated development and deployment of a greater number of elite, climate-resilient and nutritionally-enriched maize hybrids in tropical Asia.

DH technology has the potential to enhance genetic gains and breeding efficiency, especially in combination with other modern tools and technologies, such as molecular markers and genomic selection. The facility occupies 12 acres of land at the Agricultural Research Station in Kunigal, in southwestern India. It is expected to produce at least 25,000-30,000 maize DH lines per year.

For more information, and to request these services, visit CIMMYT’s Maize Doubled Haploid Technology website.

R.S. Paroda (center) cuts the ribbon to inaugurate the maize doubled haploid facility in Kunigal, Karnataka state, India. He is flanked by S. Rajendra Prasad (left), vice chancellor of UAS Bangalore and B.M. Prasanna (right), director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. (Photo: CIMMYT)
R.S. Paroda (center) cuts the ribbon to inaugurate the maize doubled haploid facility in Kunigal, Karnataka state, India. He is flanked by S. Rajendra Prasad (left), vice chancellor of UAS Bangalore and B.M. Prasanna (right), director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. (Photo: CIMMYT)

Fast-track maize breeding in Asia

R.S. Paroda, who is a Padma Bhushan awardee in India and the chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, thanked CIMMYT for its role in developing the facility. “The maize DH facility will revolutionize hybrid maize programs in both the public and private sectors in Asia, enabling fast-tracked development of climate-resilient and genetically diverse maize hybrids suitable for the rainfed maize-growing areas.”

S. Rajendra Prasad, vice chancellor of UAS Bangalore, appreciated the partnership between his institution and CIMMYT. “The facility will create opportunities to modernize maize breeding programs in India, besides serving as an educational and training hub for young students at the University,” he said. Members of UAS Bangalore Board of Management also participated in the formal opening of the facility.

B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE), spearheaded the process of establishing this important breeding facility. “Along with similar maize DH facilities in Mexico and Kenya, which respectively serve Latin America and Africa, this third facility for Asia rounds up CIMMYT’s commitment to strengthen tropical maize breeding programs across the globe,” he explained.

Bram Govaerts, CIMMYT’s director general, participated through a recorded video message.

Attending the ceremony were also 150 post-graduate students, faculty from UAS Bangalore, researchers from UAS Raichur and the Indian Institute of Maize Research, CIMMYT maize scientists, and private-sector members of the International Maize Improvement Consortium for Asia (IMIC-Asia).

R.S. Paroda, chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, unveils the inauguration plaque for the maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)
R.S. Paroda, chairman of the Trust for Advancement of Agricultural Sciences (TAAS) in New Delhi, unveils the inauguration plaque for the maize doubled haploid facility in Kunigal, Karnataka state, India. (Photo: CIMMYT)

Collaboration networks

A technical workshop titled “Transforming India’s Agriculture and Modernizing Maize Breeding Programs” was held the same day. The workshop featured talks by Paroda on the role of youth in Indian agriculture, Prasanna on modernizing maize breeding and enhancing genetic gain, CIMMYT scientist Vijay Chaikam on maize doubled haploid technology, and CIMMYT breeder Sudha Nair on genomic technologies for maize improvement.

IMIC-Asia held a General Body Meeting soon after the technical workshop, at which B.S. Vivek, maize breeder at CIMMYT, introduced the framework for the third phase of IMIC-Asia. Participants included representatives of the Indian Institute of Maize Research, the All-India Coordinated Maize Improvement Program, and private seed companies with membership in the consortium. Meeting participants expressed a keen interest in utilizing the new doubled haploid facility’s services.

A new tool to strengthen the fight against fall armyworm in Asia

Together with the United States Agency for International Development (USAID) and Feed the Future, the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE) are pleased to announce the release of “Fall Armyworm in Asia: A Guide for Integrated Pest Management.”

The publication builds on intensive, science-based responses to fall armyworm in Africa and Asia.

Fall armyworm in Asia: A guide for integrated pest management“I have encountered few pests as alarming as the fall armyworm,” wrote USAID Chief Scientist Rob Bertram in the guide’s Foreword. “This publication … offers to a broad range of public and private stakeholders — including national plant protection, research and extension professionals — evidence-based approaches to sustainably manage fall armyworm,” Bertram adds.

“Partners from a wide array of national and international institutions have contributed to the mammoth task of formulating various chapters in the guide,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and of MAIZE. “While the publication is focused on Asia, it provides an updated understanding of various components of fall armyworm integrated pest management that could also benefit stakeholders in Africa.”

In January 2018, CIMMYT and USAID published a similar guide on integrated pest management of fall armyworm in Africa, which reached a large number of stakeholders globally and is widely cited. Prasanna spearheaded the development and publication of both guides.

The current publication also follows CIMMYT’s announcement of three fall armyworm-tolerant elite maize hybrids for sub-Saharan Africa.

Tracing the evolution of 50 years of maize research in CGIAR

CGIAR turned 50 in 2021. To mark this anniversary, two independent and highly reputed experts have authored a history of CGIAR maize research from 1970 to 2020.

The authors, Derek Byerlee and Greg Edmeades, focused on four major issues running through the five decades of CGIAR maize research: the diversity of maize-growing target environments, the role of the public and private sectors in maize research in the tropics, the approaches adopted in reaching smallholder farmers in stress-prone rainfed tropical environments with improved technologies, and the need for maintaining strong financial support for international maize research efforts under the CGIAR.

The work of the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA) and the CGIAR Research Program on Maize (MAIZE) and its partners features prominently in this account. The authors also reviewed the history of maize policy research undertaken by the International Food Policy Research Institute (IFPRI).

The authors bring a unique perspective to the challenging task of tracing the evolution of maize research in CGIAR as both “insiders” and “outsiders.” While they worked as CIMMYT researchers in the 1990s, and later on as reviewers of various projects/programs, both are currently unaffiliated with CIMMYT. Byerlee is affiliated with the School of Foreign Service at Georgetown University, Washington DC, USA, and Edmeades is an independent scholar based in New Zealand.

“A clear-eyed and unbiased appreciation of our past — both successes and missteps — can only enrich our efforts, make better progress, and effectively meet the challenges of the present and the future,” wrote B.M. Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program MAIZE , in the foreword.

According to Prasanna, “The challenges to the maize-dependent smallholders in the tropics are far from over. Optimal, stable and long-term investment in international maize improvement efforts is critical.”

Disclaimer: The CGIAR Research Program MAIZE supported only the review, formatting, and online publication of this document. The findings and conclusions are completely of the authors, and do not necessarily represent the institutional views of CIMMYT, IITA, IFPRI or CGIAR and its partners.

CRP Maize Annual Report 2020

The CGIAR Research Program on Maize (MAIZE) is proud to release its 2020 Annual Report.

Read the 2020 MAIZE Annual Report

Read the 2020 MAIZE Annual Report

In 2020, faced with the extraordinary challenges posed by the COVID-19 pandemic, MAIZE continued its mission to strengthen maize-based agri-food systems while improving the food security and livelihoods of the most vulnerable, especially resource-constrained smallholder farmers and their families.

MAIZE and its partners made great advances in the development of improved stress-tolerant maize varieties, the battle against fall armyworm (including the announcement of three first-generation fall armyworm-tolerant maize hybrids), testing and promoting of conservation agriculture and sustainable intensification, and in deepening our grasp of how to best empower women in the quest for gender equality and social inclusion in maize-based agri-food systems.

Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR Consortium partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, South Asia and Latin America.

AAA drought-tolerant maize now available in Myanmar

This month smallholder farmers in Myanmar’s central dry zones will be able to access drought-tolerant hybrid maize for the first time. The variety, known as TA5085, was jointly developed by the International Maize and Wheat Improvement Center (CIMMYT) and Syngenta, and has been commercially registered as ASC 108 by Ayeryarwady Seed in Myanmar. An initial, two-acre seed production pilot by Ayeyarwady Seed resulted in a yield of 1.2 tons per acre.

TA5085 was developed as an International Public Good as part of the decade-long Affordable, Accessible, Asian (“AAA”) Drought-Tolerant Maize project, a public-private partnership between CIMMYT and Syngenta and funded by the Syngenta Foundation. The project aims to make tropical maize hybrids accessible to Asian smallholders, especially those producing under rain-fed conditions in drought-prone areas.

An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)
An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)

“AAA maize is not just a product,” said B.S. Vivek, regional maize breeding coordinator and principal scientist at CIMMYT. “The development of affordable and accessible drought-tolerant maize hybrids helps drive the maize seed market in underserved maize markets in Asia.”

TA5084, the previous iteration of this variety, was first commercialized in central India, where climate change is driving rising temperatures and increasingly erratic rainfall. From 2018 to 2020, TA5084 adoption in the region grew from 900 to 8,000 farmers. In 2020, 120 metric tons of AAA-maize were planted on 6,000 hectares in central India. Farmers who switched to TA5084 earned an average of $100/ha more than those using conventional maize.

“Despite the unprecedented challenges we all faced in 2020, AAA hybrid maize sales more than doubled from the previous year, to 120 tons,” said Herve Thieblemont, head of Seeds2B Asia and Mekong Director at the Syngenta Foundation. “I’m delighted to report that the second country to introduce AAA maize is Myanmar. Our local seed partner Ayeyarwady Seed recently completed the registration and will proceed with the first sales this coming season.”

The AAA initiative is one of the few examples of a public-private partnership delivering International Public Goods benefiting smallholders in central India and now Myanmar. The chosen regions are rainfed and drought-prone. Seed marketing in these regions is considered risky and unpredictable, disincentivizing multinationals and large seed companies from entering the market.

Mapping the way to lower nitrous oxide emissions

Like many issues besetting contemporary agri-food systems, the question of nitrogen use appears to yield contradictory problems and solutions depending on where you look. Many parts of the globe are experiencing the environmental consequences of excessive and inefficient use of nitrogen fertilizers. Elsewhere nitrogen-poor soils are a hindrance to agricultural productivity.

Addressing these seemingly contradictory issues means ensuring that nitrogen is applied with maximum efficiency across the world’s croplands. Farmers should be applying as much nitrogen as can be taken up by their crops in any given agroecology. Apply more, and the excess nitrogen leads to nitrous oxide (N2O) emissions — a potent greenhouse gas (GHG) — and other environmental degradation. Apply less, and agricultural potential goes unmet. Given the twin challenges of global climate change and the projected need to increase global food production over 70% by 2050, neither scenario is desirable.

Maize and wheat agri-food systems are at the heart of this dilemma. These staple crops are critical to ensuring the food security of a growing population. They also account for around 35% of global nitrogen fertilizer usage. Tackling the problem first requires an accurate accounting of global N20 emissions from maize and wheat fields, followed by quantification of mitigation potential disaggregated by region. This is the task undertaken by a recent study published in Science of the Total Environment and co-authored by a team of researchers including scientists at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

“Spatially explicit quantification of N2O emission and mitigation potential helps identify emission hotspots and priority areas for mitigation action through better nitrogen management consistent with location-specific production and environmental goals,” says Tek Sapkota, CIMMYT’s climate scientist and review editor of the Intergovernmental Panel on Climate Change (IPCC)’s sixth assessment report.

A map shows global hotspots for nitrogen emissions linked to maize and wheat production. (Graphic: Tesfaye et al./CIMMYT)

A model approach

Researchers compared N20 emissions estimates produced using four statistical models (Tropical N2O model, CCAF-MOT, IPCC Tier-1 and IPCC Tier-11). They also compared the models’ estimates against actual emissions as recorded at 777 globally distributed points. While all four models performed relatively well vis-à-vis the empirical measurements, the IPCC Tier-II estimates showed a better relationship to the measured data across both maize and wheat fields and low- and high-emissions scenarios.

Researchers found that, for both maize and wheat, emissions were highest in East and South Asia, as well as parts of Europe and North America. For maize, parts of South America also appeared to be emissions hotspots. In Asia, China, India, Indonesia and the Philippines were major emitters for both crops. Researchers also observed that China, along with Egypt, Pakistan and northern India have the highest excess nitrogen application (i.e., nitrogen in excess of what can be productively taken up by crops).

Trimming the excess

Specifically identifying hotspots of excess nitrogen application is important, as they represent promising areas to target for emissions reductions. For a given region, the volume of emissions may be a factor simply of large areas under maize or wheat cultivation coupled with of high levels of nitrogen usage. However, farmers in such regions may be not have much room to reduce nitrogen application without affecting yield. And reducing the area under cultivation may not be desirable or viable. Where the rate of excess nitrogen application is high, however, reducing the rate of application and increasing the efficiency of nitrogen use is a win-win.

A farmer in Ethiopia prepares to spread UREA fertilizer by hand in his field after the sowing of wheat. (Photo: CIMMYT)

The researchers estimate that a nitrous oxide emission reduction potential of 25-75% can be achieved through various management practices, such as the 4Rs, which stand for the right source, right timing, right placement and right application rate. Not only would such a reduction drastically reduce N2O emissions and lessen other environmental impacts of maize and wheat production, it would represent a significant cost savings to farmers. Improved efficiency in nitrogen application can also have positive effects on crop yield.

“Promoting integrated nitrogen management approaches through the right policies, institutional supports and good extension systems is essential to improving the use efficiency of nitrogen in order to meet food security, climate action and other sustainable development goals,” says Sapkota.

Kindie Tesfaye, a CIMMYT scientist and one of the authors of the paper, adds, “The policy importance of the study is that the estimated mitigation potentials from global maize and wheat fields are useful for hotspot countries to target fertilizer and crop management as one of the mitigation options in their Nationally Determined Contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC).”

Breaking Ground: Natalia Palacios gets the most out of maize

It’s often joked that specialists learn more and more about less and less until they know everything about nothing, while for generalists it’s just the opposite.

In the case of Natalia Palacios, neither applies. She may have the word specialist in her title — she is a maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT) — but throughout her career she has had to learn more and more about a growing range of topics.

As leader of the Nutrition Chapter of the Integrated Development Program and head of the Maize Quality Laboratory, Palacios’ job is to coordinate CIMMYT’s efforts to ensure that maize-based agri-food systems in low- and middle-income countries are as healthy and nutritious as possible. The scope of this work spans the breadth of maize-based agri-food systems — from seed to supper.

“What ultimately matters for human health and nutrition is the nutritional quality of the final product,” says Palacios. “High quality, nutritious grain is an important part of the puzzle, but so are the nutritional effects of various post-harvest storage, processing, and cooking techniques.”

Natalia Palacios (front, center) with colleagues on CIMMYT’s Quality Maize team during an Open House event at CIMMYT HQ. (Photo: Alfonso Cortés/CIMMYT)

Seeing the forest and the trees

Originally from Bogota, Colombia, Palacios studied microbiology at the Universidad de los Andes before pursuing a PhD in plant biology at the University of East Anglia and the John Innes Centre in the United Kingdom.

“I had the opportunity to work as research assistant at the International Center for Tropical Agriculture (CIAT) in Cali, Colombia,” she explains. “The exposure to interdisciplinary and international teams working for agricultural development and the leadership of my boss at that time, Joe Tohme, not only helped convince me to pursue post graduate studies in plant biology, they fostered an excitement around the real-world applications of scientific research.”

When she joined CIMMYT in 2005, Palacios worked on maize biofortification, supporting efforts to breed maize varieties rich in provitamin A and zinc. With time, she found her attention shifting towards the effect of food processing on the nutritional quality of maize-based food products, as well as to the importance of maize safety. For example, for a recent project, Palacios and her team have been analyzing the effect of a traditional thermal alkaline maize treatment known as nixtamalization on the physical composition of the grain and the nutritional quality of end products. Because of its important benefits, they are promoting this ancient technique in other geographies.

For Palacios, shifts such at this are completely in keeping with the overall goal of her work. “The main challenge we face as agricultural researchers is contributing to a nutritious, affordable diet produced within planetary boundaries,” she says. “Tackling any part of this challenge requires us to communicate between disciplines, to look at agri-food systems as a whole, and to link production and consumption.”

At the same time, for Palacios, the beauty of her work lies in going deep into a specific research question before bringing her focus back to the big picture. This movement between the specific and the general keeps her motivated, generates new questions and avenues of research, and keeps her from falling into silver-bullet thinking.

For example, her work on provitamin A biofortified maize led her to ask questions about how much of the vitamin reached consumers depending on how the grain was stored and handled. The vitamin is prone to degradation through oxidation. This led to storage and processing recommendations meant to maximize the crop’s nutritional value, including storing provitamin A maize as grain and milling it as late as possible before consumption. Researchers also worked to identify germplasm with more stable provitamin A carotenoids to be used in the breeding program.

In one study, Palacios and her coauthors found that feeding biofortified maize to hens increased the provitamin A value of their eggs, suggesting that for rural households the nutritional benefits of the improved grain could be spread out across different foodstuffs.

Natalia Palacios extracts carotenoids from maize kernels in a CIMMYT lab in Mexico. (Photo: Alfonso Cortés/CIMMYT)

Bringing it all together

In a paper published last spring, Palacios and her co-authors bring together the insights of these various avenues of research into one comprehensive review. The point, Palacios explains “was to identify opportunities to exploit the nutritional benefits of maize — a grain largely consumed in Africa, Latin America and some parts of Asia as important part of a diet — from understanding how to leverage the its genetic diversity for the development of more nutritious varieties to mapping all the different parts of the food system where nutritional gains can be made.”

The paper encompasses sections on the biochemistry of maize, maize breeding, maize-based foodways and culture, and traditional agronomic practices like milpa intercropping. It exemplifies Palacios’ interdisciplinary approach and her commitment to exploring multiple, interconnected pathways towards more nutritious maize agri-food systems.

As CGIAR’s 2030 Research and Innovation Strategy makes clear with its emphasis on the need for a systems-level transformation of food, land and water systems, this approach is timely and much needed.

In Palacios’ words: “Food security, nutrition and food safety are inextricably linked, and we must address them from the field to the plate and in a sustainable way.”

 

Consider the seed

Seed viability test at the CIMMYT genebank. (Photo: Alfonso Cortés/CIMMYT)
Seed viability test at the CIMMYT genebank. (Photo: Alfonso Cortés/CIMMYT)

The conservation of plant genetic diversity through germplasm conservation is a key component of global climate-change adaptation efforts. Germplasm banks like the maize and wheat collections at the International Maize and Wheat Improvement Center (CIMMYT) may hold the genetic resources needed for the climate-adaptive crops of today and tomorrow.

But how do we ensure that these important backups are themselves healthy and not potential vectors of pest and disease transmission?

This was the question that animated “Germplasm health in preventing transboundary spread of pests and pathogens,” the second webinar in Unleashing the Potential of Plant Health, a CGIAR webinar series in celebration of the UN-designated International Year of Plant Health.

“Germplasm refers to the source plants of either specific cultivars or of unique genes or traits that can be used by breeders for improved cultivars,” program moderator and head of the Health and Quarantine Unit at the International Potato Center (CIP) Jan Kreuze explained to the event’s 622 participants. “If the source plant is not healthy, whatever you multiply or use it for will be unhealthy.”

According to keynote speaker Saafa Kumari, head of the Germplasm Health Unit at the International Center for Agricultural Research in the Dry Areas (ICARDA), we know of 1.3 thousand pests and pathogens that infect crops, causing approximately $530 billion in damages annually. The most damaging among these tend to be those that are introduced into new environments.

Closing the gap, strengthening the safety net

The CGIAR has an enormous leadership role to play in this area. According to Kumari, approximately 85% of international germplasm distribution is from CGIAR programs. Indeed, in the context of important gaps in the international regulation and standards for germplasm health specifically, the practices and standards of CGIAR’s Germplasm Health Units represent an important starting point.

“Germplasm health approaches are not necessarily the same as seed and plant health approaches generally,” said Ravi Khaterpal, executive secretary for the Asia-Pacific Association of Agricultural Research Institutions (APAARI). “Best practices are needed, such as CGIAR’s GreenPass.”

In addition to stronger and more coherent international coordination and regulation, more research is needed to help source countries test genetic material before it is distributed, according to Francois Petter, assistant director for the European and Mediterranean Plant Protection Organization (EPPO). Head of the CGIAR Genebank Platform Charlotte Lusty also pointed out the needed for better monitoring of accessions in storage. “We need efficient, speedy processes to ensure collections remain healthy,” she said.

Of course, any regulatory and technological strategy must remain sensitive to existing and varied social and gender relations. We must account for cultural processes linked to germplasm movement, said Vivian Polar, Gender and Innovation Senior Specialist with the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Germplasm moves through people, she said, adding that on the ground “women and men move material via different mechanisms.”

“The cultural practices associated with seed have to be understood in depth in order to inform policies and address gender- and culture-related barriers” to strengthening germplasm health, Polar said.

The event was co-organized by researchers at CIP and the International Institute of Tropical Agriculture (IITA).

The overall webinar series is hosted by CIMMYT, CIP, the International Food Policy Research Institute (IFPRI), IITA, and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).

The third of the four webinars on plant health, which will be hosted by CIMMYT, is scheduled for March 10 and will focus on integrated pest and disease management. 

Costich retires, but her odyssey continues

Denise E. Costich, the recently retired head of the Maize Collection at the Germplasm Bank of the International Maize and Wheat Improvement Center (CIMMYT), sometimes likes to include a Woody Allen quote in her presentations.

“I have no idea what I’m doing,” declares the text over a photo of a befuddled-looking Allen. “But incompetence never stopped me from plunging in with enthusiasm.”

This is perhaps Costich’s tongue-in-cheek way of acknowledging the unusual trajectory that led her to the Germplasm Bank and her zeal for new and interesting challenges. But it is in no way an accurate reflection of the skill, knowledge and humane managerial style she brought to the job.

“CIMMYT requires individuals with a broad set of experiences,” says Tom Payne, head of the Wheat Collection at CIMMYT’s Germplasm Bank. Though she was not trained as a crop scientist, and despite having never worked in a genebank before, Costich’s rich set of professional and life experiences made her an ideal person for the job.

From Ithaca and back again

Born and raised in Westbury, NY, Costich spent much of her childhood on a tree nursery. Her grandfather was the manager, her father became the sales director and eventually her sister also went into the horticulture business. While her experiences on the nursery contributed to an early interest in plants and ecology, the business aspect of the nursery eluded her. “I just can’t sell things. I’m terrible,” Costich says. “But I really do like to study them.”

This studiousness took her to Cornell University in Ithaca, NY, where she initially declared as a wildlife biology major. Her notion of what it meant to “study things” was influenced by her early heroes, primatologists and field biologists Dian Fossey and Jane Goodall. It involved travel. Fieldwork in faraway places. So, when the opportunity arose at the end of her sophomore year to travel to Kenya with Friends World College, Costich didn’t hesitate.

Costich eventually spent four years in Kenya, studying baboons. When she finally returned to Ithaca, she knew two things. Fieldwork was absolutely her thing, and she wanted to pursue a doctorate.

A chance conversation with her housemates in her last semester led to a post-graduation fieldwork stint in the Brazilian Amazon under the supervision of the legendary tropical and conservation biologist, Thomas Lovejoy. But instead of a dissertation topic, she stumbled across a parasite, a case of leishmaniasis and the realization that the rainforest was not the work environment for her.

Unexpected influences and outcomes continued to mark Costich’s career throughout her graduate studies at the University of Iowa. She found her plant not in the field, but while reading a dusty review paper as an exchange student at the University of Wisconsin. Her study of Ecballium elaterium (a wild species in the Cucurbitaceae, or squash, family) did not take her back to the tropics — where most of her peers were working and where she expected to be headed as a grad student — but rather to Spain where, incidentally, she first learned Spanish.

Several years after defending, Costich landed a tenure-track position in the Biology Department at The College of New Jersey. She continued to publish on Ecballium elaterium. Her career appeared to be settling into a predictable, recognizable academic trajectory — one with no obvious intersection with CIMMYT.

Then Costich saw an ad in the Ecological Society of America bulletin for a managing editor position for all of the Society’s journals. Her husband, a fellow biology Ph.D., had been working as an academic journal editor for several years. When Costich saw the ad she immediately drove over to her husband’s office. “I slapped the thing on his desk and said, ‘Here’s your job!’” she recalls.

Costich was right. Soon after, she was on her way back to Ithaca — where the Society’s offices were located — with a family that now included three children. While it was the right move for her family, it came at the cost of her budding academic career. In Ithaca, she soon found herself stuck in the role of itinerant postdoc.

Denise Costich in Spain in 1986, doing fieldwork on Ecballium elaterium with her daughter Mara.
Denise Costich in Spain in 1986, doing fieldwork on Ecballium elaterium with her daughter Mara.

An amazing turn of events

Costich admits that, especially the beginning, the return to Ithaca was tough, even depressing. Her recollections of these years can sound a bit like a game of musical chairs played with research laboratories. As one post-doc or research project wound down, she’d find herself scanning the campus for her next perch. She became very adept at it. “In ten years, I never missed a paycheck,” Costich says.

The turn of the millennium found Costich scanning the horizon yet again. As the days wound down at her latest post, a maize geneticist moved into the lab next door. What started as hallway jokes about Costich jumping ship and joining the maize lab soon turned into an interview, then a job offer.

The job introduced her to nearly everyone at Cornell working in maize genetics. Costich soon found herself managing the Buckler Lab’s work on maize population genetics. Meanwhile, she dabbled in side projects on Tripsacum, a perennial grass genus that is closely related to maize, and managed a major project on switchgrass. At the end of her postdoc, Buckler set to work trying to create a permanent position for her. Once again, Costich’s trajectory was beginning to take a stable, predictable form.

Then CIMMYT scientist Sarah Hearne showed up. “I’d heard through the grapevine — or maybe through the corn field — that the position of manager of the Maize Collection of CIMMYT’s Germplasm Bank was open… and that they were having a hard time trying to find a person for the position,” Costich recalls. She had met Hearne previously and personally knew and had worked with Suketoshi Taba, the pioneering longtime director of the germplasm bank. Naturally the topic emerged as she and Hearne caught up in Ithaca.

Hearne admitted that the search hadn’t yet been successful. “But I know the perfect person for the job,” she added.

“Yeah, who’s that?” Costich asked, not getting the setup.

Denise Costich, the maize collection manager at CIMMYT’s Maize and Wheat Germplasm Bank, shows one of the genebank's more than 28,000 accessions of maize. (Photo: Luis Salazar/Crop Trust)
Denise Costich, the maize collection manager at CIMMYT’s Maize and Wheat Germplasm Bank, shows one of the genebank’s more than 28,000 accessions of maize. (Photo: Luis Salazar/Crop Trust)

A stranger in a strangely familiar land

Costich was not a little surprised by the suggestion. She had never worked at a germplasm bank before. She was finally finding some stability at Cornell.

At the same time, her early dreams of exploring new places through her work, especially the tropics, beckoned. Her youngest son was nearly college-aged. Against the advice of some who had watched her work so hard to establish herself at Cornell, she took the plunge.

By the time she reached the CIMMYT campus in Texcoco, Costich had crisscrossed a good part of the globe, picking up Spanish here, management skills there, a deep knowledge of maize and its biological and cultural evolution yonder. During this life journey, she developed a deep humanism that is all her own.

It all seemed like happenstance, perhaps, until she reached Mexico and — suddenly, counterintuitively — found herself in the field she was perfectly adapted for. “It turned out that being a germplasm bank manager was the perfect job for me, and I didn’t even know it!” Costich says. “I ended up using everything I learned in my entire career.”

That isn’t to say that it was easy, especially at first. Taba, her predecessor, had occupied the post for decades, was a trained crop scientist, and had grown the bank from a regionally-focused collection with 12,000 accessions to the preeminent maize germplasm bank globally with 28,000 accessions, a state-of-the-art storage facility, and a slew of pioneering practices.

Not only had Taba left enormous shoes to fill, during his tenure — as is common in the expansionary phase of many projects — it had been difficult for the bank to keep a full accounting and understanding of all the new material that had been added. According to germplasm bank coordinator Cristian Zavala, by the time Costich joined CIMMYT “we knew very little about the material in our vaults.”

“Taba was primarily a breeder,” Costich says. “I actually think this oscillation between a focus on breeding and a focus on conservation and curation is good for the bank.”

Visiting a newly-built community seed reserve in Chanchimil, Todos Santos Cuchumatanes, Huehuetenango, Guatemala, in 2016. From left to right: Mario Fuentes (collaborator), a member of the community seed reserve staff, Denise Costich, Carolina Camacho (CIMMYT), Miriam Yaneth Ramos (Buena Milpa) and Esvin López (local collaborator).
Visiting a newly-built community seed reserve in Chanchimil, Todos Santos Cuchumatanes, Huehuetenango, Guatemala, in 2016. From left to right: Mario Fuentes (collaborator), a member of the community seed reserve staff, Denise Costich, Carolina Camacho (CIMMYT), Miriam Yaneth Ramos (Buena Milpa) and Esvin López (local collaborator).
Visiting one of the oldest community seed reserves in the region, Quilinco, Huehuetenango, Guatemala, in 2016. From left to right: Pedro Bello (UC Davis), Esvin López (local collaborator), Denise Costich, José Luis Galicia (Buena Milpa), Ariel Rivers (CIMMYT) and Miriam Yaneth Ramos (Buena Milpa).
Visiting one of the oldest community seed reserves in the region, Quilinco, Huehuetenango, Guatemala, in 2016. From left to right: Pedro Bello (UC Davis), Esvin López (local collaborator), Denise Costich, José Luis Galicia (Buena Milpa), Ariel Rivers (CIMMYT) and Miriam Yaneth Ramos (Buena Milpa).
Costich with the winners of the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state.
Costich with the winners of the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state.
Costich (left) measures ears of corn for the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state in 2019.
Costich (left) measures ears of corn for the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state in 2019.
Costich (center) shares some comments from the stage at the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state. To her left is Angel Perez, a participating farmer from La Cofradía, and to her right, Rafael Mier, Director of the Fundación Tortillas de Maíz Mexicana.
Costich (center) shares some comments from the stage at the Second Harvest Fair and Largest Mature Ear of Jala Maize Contest in Coapa, in Mexico’s Nayarit state. To her left is Angel Perez, a participating farmer from La Cofradía, and to her right, Rafael Mier, Director of the Fundación Tortillas de Maíz Mexicana.

A bank for farmers

However, according to Zavala, because of the limited knowledge of much material they were working with, many in the bank’s rank-and-file didn’t fully understand the importance of their work. Morale was mixed. Moreover, despite an assumption that her new job would see her working closely with local smallholders, Costich found that the institution was poorly known by everyday farmers in its host country. Where it was known, associate scientist on innovation and social inclusion, Carolina Camacho, notes, there was an assumption that CIMMYT only worked with hybrid varieties of maize and not the native landraces many smallholders in Mexico depend on.

These became the principal axes of Costich’s work at the bank: curation of backlogged material, staff development, and community outreach.

Thus, when Costich realized that records were being kept in a combination of paper and rudimentary digital formats, she sent Zavala, a promising young research assistant at the time, to an internship at the USDA’s Maize Germplasm Bank Collection in Ames, Iowa, to workshops at CGIAR germplasm banks in Colombia (CIAT) and Ethiopia (ILRI), and to meetings on specialized topics in Germany and Portugal.

Zavala had never left the country before, spoke little English, and remembers being “rebellious” at work. “I needed more responsibility,” he says. “Dr. Denise saw that and helped me grow.” Upon returning from an early trip, Zavala helped implement up-to-date traceability and data management processes, including migrating the genebank’s data onto the USDA’s GRIN-Global platform.

But as Payne points out, Costich’s tenure was never about simple bean — or, in this case, grain — counting. “She sees a more human aspect of the importance of the collections,” he says. The main tasks she set for the bank came to be subsumed into the overarching goal of a fuller understanding of the contents of the bank’s vaults, one that encompassed both their biological and sociocultural importance.

When Costich came across a collection of maize landraces from Morelos state assembled by Ángel Kato in the mid 1960s that conserved the name of the farmer who had donated each sample, she worked with Camacho and graduate student Denisse McLean-Rodriguez to design a study involving the donor families and their communities. McLean-Rodriguez, Camacho and Costich set out to compare the effects of ex-situ versus in-situ landrace conservation in both genetic and socioeconomic terms.

Similarly, when a colleague at INIFAP invited Costich to be a judge at a yearly contest for largest ear of Jala landrace maize in Mexico’s Nayarit state, they soon began discussing how they could contribute more than just their participation as judges to the community. Starting in 2016 Costich was a co-lead on a study of the landrace’s genetic diversity as well as an initiative to rematriate Jala seeds conserved at CIMMYT for over 60 years.

Costich and members of the Maize Collection team hosting Pedro Bello from UC Davis (center, glasses) at the CIMMYT Germplasm Bank in Texcoco, Mexico, for a workshop on seed longevity and conservation techniques.
Costich and members of the Maize Collection team hosting Pedro Bello from UC Davis (center, glasses) at the CIMMYT Germplasm Bank in Texcoco, Mexico, for a workshop on seed longevity and conservation techniques.

A genebank is not an island

Genebanks are bulwarks against genetic erosion. But, as Camacho explains, this mission can be understood in both very narrow and very broad senses. The narrow sense focuses on genetic processes per se: the loss of alleles. The broad sense includes the loss of cultural practices and knowledge built and sustained around the cultivation of a given landrace. Through the initiatives the bank has undertaken during her tenure, Costich has tried to demonstrate, both scientifically and in practice, how germplasm collections such as CIMMYT’s can complement, reinforce, and be enriched by the work of smallholders — de facto germplasm conservators in their own right — while contributing to the difficult task of combating genetic erosion in the broad sense.

One gets the sense that in Costich’s view this isn’t about a one-way process of big institutions “helping” smallholders. Rather it’s about collaboration among all the participants in an interdependent web of conservation. As she argued at her recent exit seminar, Costich views germplasm banks as one link in a chain of food security backups that begins at the farm level.

Indeed, Costich’s most recent initiative demonstrated how innovations intended for one link in the chain can travel upwards and find applications at bigger institutions.

Costich recently led an initiative with community seed banks in the Cuchumatanes mountain range of Guatemala to study the use of DryChain technology in post-harvest storage of maize. This experiment showed the enormous benefits that incorporating such technologies could yield for energy-insecure or low-tech family and community seed reserves.

Ultimately, however, the study led to a second experiment at CIMMYT’s tropical-climate station at Agua Fría in Mexico. With advice from collaborators at UC Davis and an industry partner (Dry Chain America), the seed conditioning team retrofitted an old drying cabinet at the station to dry maize without using heat, but rather by forcing air to circulate through sacks of drying beads. Under the direction of Filippo Guzzon, a postdoc and seed biologist working with Costich, the long-term viability of seeds dried using the accelerated technique versus traditional, slower techniques was tested. The study showed no loss in long-term viability using the accelerated drying technique.

Denise Costich, CIMMYT director general Martin Kropff, and the Maize Collection team confer certificates of participation to two visiting interns, Jiang Li (to the left of Kropff), a doctoral student from CAAS, Beijing, China, and Afeez Saka Opeyemi (to the right of Costich), a staff member of the IITA Germplasm Bank in Nigeria.
Denise Costich, CIMMYT director general Martin Kropff, and the Maize Collection team confer certificates of participation to two visiting interns, Jiang Li (to the left of Kropff), a doctoral student from CAAS, Beijing, China, and Afeez Saka Opeyemi (to the right of Costich), a staff member of the IITA Germplasm Bank in Nigeria.
Costich and the Maize Collection team at the 2018 CIMMYT Christmas party. Filippo Guzzon, seated to the right of Costich, had just been offered a postdoc with the team.
Costich and the Maize Collection team at the 2018 CIMMYT Christmas party. Filippo Guzzon, seated to the right of Costich, had just been offered a postdoc with the team.
Costich and the Maize Collection team at the 2018 CIMMYT Christmas party.
Costich and the Maize Collection team at the 2018 CIMMYT Christmas party.

A very busy retirement

At her exit seminar, Costich was presented a plaque in appreciation of her service at CIMMYT by Kevin Pixley, director of the genetic resources program. Terence Molnar, maize breeder with the Genetic Resources Team, has succeeded Costich as the Maize Germplasm Bank Head.

For some of her close colleagues, however, Costich’s departure is not the end of the road. “This is not a forever goodbye,” Guzzon says. “I will continue to be in touch with my cuatita,” says Camacho, who has also left CIMMYT.

For her part, Costich echoes that this is not a forever goodbye at all. Not to her friends and colleagues, and certainly not to her work. At a socially-distanced, maize-based farewell lunch Costich held just days before her departure, she was still busy weaving social connections and furthering collaborations among maize fanatics of all stripes — from chefs and designers to scientists and policy advocates.

She is already considering taking a part time position at her old lab at Cornell and a return to Tripsacum research. At the same time, she will be a visiting scientist at Mexico’s National Center for Genetic Resources (CNRG), where officially she will be heading up part of an international switchgrass study. Costich is hoping to leverage her tenure at CIMMYT by getting involved in a push to help improve the Mexican national system for plant genetic resources. Additionally, she has recently accepted an invitation from Seed Savers Exchange to join their board and she is looking forward to volunteering her time and expertise to various seed-saving initiatives within that organization and their many collaborators.

Asked what she’s looking forward to tackling in her retirement that isn’t work related, Costich betrays her deep allegiance to the plant world. “I don’t know,” she says, “I’m thinking of starting a big vegetable garden.”

Cover photo: Denise Costich stands for a photo during the inauguration of the CIMMYT Genebank museum in 2019. (Photo: Alfonso Cortés/CIMMYT)

CGIAR webinar unleashes multidisciplinary approach to climate change and plant health

Evidence of enormity and immediacy of the challenges climate change poses for life on earth seems to pour in daily. But important gaps in our knowledge of all the downstream effects of this complex process remain. And the global response to these challenges is still far from adequate to the job ahead. Bold, multi-stakeholder, multidisciplinary action is urgent.

Mindful of this, the first event in Unleashing the Potential of Plant Health, a CGIAR webinar series in celebration of the UN-designated International Year of Plant Health, tackled the complicated nexus between climate change and plant health. The webinar, titled “Climate change and plant health: impact, implications and the role of research for adaptation and mitigation,” convened a diverse panel of researchers from across the CGIAR system and over 900 audience members and participants.

In addition to exploring the important challenges climate changes poses for plant health, the event explored the implications for the wellbeing and livelihoods of smallholder farming communities in low- and middle- income countries, paying special attention to the gender dimension of both the challenges and proposed solutions.

The event was co-organized by researchers at the International Rice Research Institute (IRRI) and the International Centre of Insect Physiology and Ecology (icipe).

The overall webinar series is hosted by the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Food Policy Research Institute (IFPRI), the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).

This is important

The stakes for the conversation were forcefully articulated by Shenggen Fan, chair professor and dean of the Academy of Global Food Economics and Policy at China Agricultural University and member of the CGIAR System Board. “Because of diseases and pests, we lose about 20-40% of our food crops. Can you imagine how much food we have lost? How many people we could feed with that lost food? Climate change will make this even worse,” Fan said.

Such impacts, of course, will not be evenly felt across geographic and social divides, notably gender. According to Jemimah Njuki, director for Africa at IFPRI, gender and household relationships shape how people respond to and are impacted by climate change. “One of the things we have evidence of is that in times of crises, women’s assets are often first to be sold and it takes even longer for them to be recovered,” Njuki said.

The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)
The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)

Shifting risks

When it comes to understanding the impact of climate change on plant health “one of our big challenges is to understand where risk will change,” said Karen Garrett, preeminent professor of plant pathology at the University of Florida,

This point was powerfully exemplified by Henri Tonnang, head of Data Management, Modelling and Geo-information Unit at icipe, who referred to the “unprecedented and massive outbreak” of desert locusts in 2020. The pest — known since biblical times — has reemerged as a major threat due to extreme weather events driven by sea level rise.

Researchers highlighted exciting advancements in mapping, modelling and big data techniques that can help us understand these evolving risks. At the same time, they stressed the need to strengthen cooperation not only among the research community, but among all the stakeholders for any given research agenda.

“The international research community needs to transform the way it does research,” said Ana María Loboguerrero, research director for Climate Action at the Alliance of Bioversity International and CIAT. “We’re working in a very fragmented way, sometime inefficiently and with duplications, sometimes acting under silos… It is difficult to deliver end-to-end sustainable and scalable solutions.”

Time for a new strategy

Such injunctions are timely and reaffirm CGIAR’s new strategic orientation. According to Sonja Vermeulen, the event moderator and the director of programs for the CGIAR System Management Organization, this strategy recognizes that stand-alone solutions — however brilliant — aren’t enough to make food systems resilient. We need whole system solutions that consider plants, animals, ecosystems and people together.

Echoing Fan’s earlier rallying cry, Vermeulen said, “This is important. Unless we do something fast and ambitious, we are not going to meet the Sustainable Development Goals.”

Register for the other webinars in the series

Cover photo: All farmers are susceptible to extreme weather events, and many are already feeling the effects of climate change. (Photo: N. Palmer/CIAT)

MAIZE delivers “valuable solutions” for critical needs, according to an external review

A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT's Drought Tolerant Maize for Africa (DTMA) project, in partnership with Tanzanian seed company Tanseed International Limited. It is based on material from CIMMYT-Zimbabwe, CIMMYT-Mexico, and Tanzania. (Photo: Anne Wangalachi/CIMMYT)
A handful of improved maize seed from the drought-tolerant variety TAN 250, developed and registered for sale in Tanzania through CIMMYT’s Drought Tolerant Maize for Africa (DTMA) project, in partnership with Tanzanian seed company Tanseed International Limited. It is based on material from CIMMYT-Zimbabwe, CIMMYT-Mexico, and Tanzania. (Photo: Anne Wangalachi/CIMMYT)

The CGIAR Research Program on Maize (MAIZE) “uniquely fills a gap at the global and regional level, positioning it to continue catalyzing good science across borders,” according to a new report.

Commissioned by the CGIAR Advisory Services Shared Secretariat (CAS Secretariat), the report assesses the research-for-development program’s achievements and operations over the course of its second phase, from 2017-2019.

The reviewers commend MAIZE’s “valuable” technology transfer in the areas of double haploid production and stress-tolerance phenotyping, as well as its “proactive and productive” incorporation of crosscutting gender and youth focused issues in major projects such as Stress Tolerant Maize for Africa (STMA). They note that climate change is “central to all that the [program] is doing.”

In addition to the exceptional quality of the program’s scientific inputs and the overall quality of its outputs, the reviewers note the program’s capacity to mobilize “stakeholders, resources and knowledge to rapidly deliver valuable solutions for a critical need.” The review authors specifically note MAIZE’s efforts towards halting the spread of maize lethal necrosis (MLN).

While, like all CGIAR Research Programs, MAIZE is due to conclude at the end of 2021, much of the program’s pioneering work will continue under new guises, such as the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project.

“As we move towards the implementation of One CGIAR, MAIZE’s expertise in increasing genetic gains in tropical and sub-tropical, stress-prone environments through the integration of advanced breeding methodologies, a strong phenotyping network for various abiotic and biotic stresses, improved agronomic practices, and a rich network of public-private partnerships for scaling and deploying climate resilient improved maize varieties in Africa, Asia and Latin America — not to mention its capacity to respond quickly and successfully to devastating transboundary diseases and pests through multidisciplinary and multi-institutional initiatives — will be extremely valuable,” says B.M. Prasanna, director of MAIZE and of the International Maize and Wheat Improvement Center’s (CIMMYT) Global Maize Program.

MAIZE — led by CIMMYT in partnership with the International Institute of Tropical Agriculture (IITA) — spearheads international, multi-stakeholder research for development to improve the livelihoods and food security of poor maize producers and consumers. It simultaneously seeks to strengthen the sustainability of maize-based agri-food systems. The program focuses on maize production in low- to middle-income countries — accounting for approximately two-thirds of global maize production — where the crop is “key to the food security and livelihoods of millions of poor famers,” according to the report.

“MAIZE provides a very robust platform for collaboration with our national partners, including private companies, community seed produces and other stakeholders. Through projects such as Drought Tolerant Maize for Africa (DTMA) and STMA, research has been able to provide innovative solutions to challenges that smallholder farmers face in their daily lives, such as drought, poor soils, and pests and diseases,” says Nteranya Sanginga, IITA’s Director General.

The review concludes that MAIZE “good management and governance practice are a strong foundation for the remainder of [the program’s] running.” The reviewers also recommend that the “excellent,” participatory application of theory of change thinking in the second phase of MAIZE be mainstreamed at the CGIAR system level moving forward. Key recommendations for the program’s final phase include:

  • Building on MAIZE’s “strong network of partners” by deepening these relationships into “multidirectional partnerships.”
  • Building on existing cross-cutting work on capacity development, climate change, gender and youth.
  • Diversifying and expanding MAIZE’s knowledge dissemination efforts to more deeply engage with include multiple and non-scientific audiences.

To read more, see the report summary or visit the CGIAR Advisory Services page.

Taking stock of value chain development

In 1967 Albert O. Hirschman, the pioneering development economist, published Development Projects Observed. Based on an analysis of a handful of long-standing World Bank projects, the book was an effort, as Hirschman writes in the preface, “to ‘sing’ the epic adventure of development­ — its challenge, drama, and grandeur.” He sang this epic not in the register of high development theory,­ but rather through the ups and downs and unexpected twists of real-world development projects.

Today, a new group of researchers have taken up a similar challenge. Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale, a new book edited by Jason Donovan, Dietmar Stoian and Jon Hellin, surveys over two decades of academic and practical thinking on value chains and value chain development. While value chain development encompasses a broad variety of approaches, it has largely focused on improving the ability of small scale, downstream actors — such as smallholders in agri-food value chains — to capture more value for their products or to engage in value-adding activities. Value chain development approaches have also focused on improving the social and environmental impacts of specific value chains. Donovan, Stoian and Hellin’s book assesses these approaches through careful analysis of real-world cases. The book was published with support from the CGIAR Research Programs on Maize and on Policies, Institutions, and Markets.

Lessons learned

The book takes an unsparing look at what has and hasn’t worked in the field of value chain development. It begins by dissecting the drivers of the high degree of turnover in approaches that characterizes the field. The editors argue that “issue-attention cycles” among project stakeholders, coupled with monitoring and evaluation metrics that are more focused on tracking project implementation rather than producing robust measurements of their social impact, too often lead to the adoption — and abandonment — of approaches based on novelty and buzz.

The unfortunate consequences are that strengths and limitations of any given approach are never fully appreciated and that projects — and even entire approaches — are abandoned before they’ve had a chance to generate deep social impacts. Moreover, the opportunity to really learn from development projects — both in terms of refining and adapting a given approach to local conditions, and of abstracting scalable solutions from real development experiences — is lost.

A recurring theme throughout the book is the tension between the context-sensitivity needed for successful value chain development interventions and the need for approaches that can be scaled and replicated. Programs must develop tools for practitioners on one hand and demonstrate scalability to funders on the other. For example, a chapter on maize diversity and value chain development in Guatemala’s western highlands illustrates how an approach that was successful in Mexico — connecting producers of indigenous maize landraces with niche markets — is ill-suited to the Guatemalan context, where most producers are severely maize deficient. And a chapter reviewing guides for gender-equitable value chain development highlights how — for all their positive impact — such guides often overlook highly context- and culturally-specific gender dynamics. Intra-household bargaining dynamics and local masculinities, for example, can play critical roles in the success or failure of gender-focused value chain development interventions.

This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.
This new book takes an unsparing look at what has and hasn’t worked in the field of value chain development.

Finally, while lauding the valuable impact many value chain development initiatives have achieved, the editors warn against an exclusive reliance on market-based mechanisms, especially when trying to benefit the poorest and most marginalized of smallholders. In the case of Guatemala’s maize-deficient highland farmers, for example, the development of niche markets for native maize proved to be a poor mechanism for achieving the stated goal of preserving maize biodiversity and farmers’ livelihoods. Non-market solutions are called for. Based on this and similar experiences, the editors note that, while value chain development can be a valuable tool, to truly achieve impact at scale it must be coordinated with broader development efforts.

“The challenge of ensuring that value chain development contributes to a broad set of development goals requires transdisciplinary, multisector collaboration within broader frameworks, such as integrated rural-urban development, food system transformation, and green recovery of the economy in the post COVID-19 era,” write the editors.

This bracing and clear reflection on the promise and limitations of current development approaches is not only timely; it is perhaps more urgent today than in Hirschman’s time. While tremendous gains have been made since the middle of the 20th century, many stubborn challenges remain, and global climate change threatens to undo decades of progress. Projects like Value Chain Development and the Poor and the ongoing Ceres2030 initiative provide development practitioners, researchers, funders and other stakeholders a much needed assessment of what can be built upon and what needs to be rethought as they tackle these gargantuan challenges.

Embracing uncertainty

At the time Development Projects Observed was published, the study and practice of development was already entering a crisis of adolescence, as it were. Having achieved quasi-independence from its parent discipline of economics, it had to settle on an identity of its own.

Hirschman’s book represented one possible way forward — an understanding of development practice as a blend of art and science. The book’s most famous concept, that of the Hiding Hand, illustrates how planners’ optimism could fuel enormously complex and challenging projects — undertakings that might never have been attempted had all the challenges been known beforehand. At the same time, projects’ inevitable failures and shortcomings could spur creative local responses and solutions, thus ensuring their eventual success and rootedness in their specific context.

As Michele Alacevich points out in the Afterword to the book’s most recent reissue, the World Bank’s response to Hirschman’s book demonstrates the road that development research and practice ultimately took. The book was disregarded, and the Bank turned to the growing literature on cost-benefit analysis instead. “Whereas Hirschman’s analysis had placed uncertainty — an unmeasurable dimension — center stage, cost-benefit analysis assimilated it to risk, therefore turning it into something measurable and quantifiable,” Alacevich writes. Faced with a newfound awareness of the limits to the field’s powers and abilities — a rite of passage for all prodigies — development institutions appeared to try to outrun these limitations through ever-increasing technification.

The issue-attention cycles identified by Stoian and Donovan may represent a new, more frenetic and self-defeating iteration of this discomfort with uncertainty. If so, Value Chain Development and the Poor serves as an urgent call for development institutions and practitioners to make peace with the messiness of their vocation. As Hirschman observed decades ago, only by embracing the uncertainty and art inherent in development work can its students and practitioners further the enormously complex scientific understanding of the endeavor, and, crucially, generate broad and lasting social change.

The eBook is available for free (Open Access):
Value Chain Development and the Poor: Promise, delivery, and opportunities for impact at scale

Cover image: A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Nixtamalization: An ingenious solution for healthier maize-based diets

Some 500 years ago — in the wake of the cataclysmic encounter between European powers and the indigenous cultures of the Americas — people, ideas, goods and enormous amounts of biological material were sucked into an unprecedented planetary network of commercial circuits and flung around the globe. But the process was chaotic and often violent. People, ideas and other living things that had long commingled and coevolved were torn apart, and often sent hurtling down very different trajectories.

Among the many forms of plant life caught up in this global dispersion event was a curious grain developed over thousands of years in Mesoamerica: maize. Today it is the world’s most widely planted cereal crop ­— a cornerstone of the global industrial food system on the one hand and many local and regional agri-food systems on the other.

The thing is that to truly understand a crop you arguably must look beyond the plant itself and see it in relation to a variety of human agricultural, culinary and socioeconomic practices. But maize moved around the globe shorn of its complement of indigenous knowledge and practices. As a food archeologist Bill Schindler argues in a new video for Wired, this rupture has had enormous consequences for the health and well-being of maize-consuming communities up to the present.

The video, which borrows from an explainer produced by the International Maize and Wheat Improvement Center (CIMMYT), notes that for centuries maize producers and consumers in the Americas have processed maize using a technique called nixtamalization. This treatment — cooking and steeping dried maize kernels in an alkaline solution made with water and lime or wood ash — provides several nutritional and sanitary benefits, including: increased niacin and iron bioavailability, increased calcium and resistant starch content, and decreased mycotoxin contamination.

Maize-dependent diets that do not incorporate nixtamalization have historically contributed to outbreaks of pellagra and other nutrient deficiency-driven health problems. Today un-nixtamalized maize is used as the nutritionally-poor but chemically malleable basis for many hyper-processed foodstuffs thought to have contributed to the meteoric rise of diet-related disease since the 1980s.

Faced with this, Schindler asks: what if more of the world finally reunited maize with it’s indigenous processing techniques. Heat, water and lime — it might just be a solution to some pretty big problems.