Skip to main content

Author: Sam Storr

CGIAR research highlighted among climate innovations to meet net zero emissions

(Image: Wondrium.com)

Agriculture is one of the five main greenhouse gas-emitting sectors where innovations can be found to reach net zero emissions, according to the new documentary and ten-part miniseries “Solving for Zero: The Search for Climate Innovation.” The documentary tells the stories of scientists and innovators racing to develop solutions such as low-carbon cement, wind-powered global transportation, fusion electricity generation and sand that dissolves carbon in the oceans.

Three CGIAR scientists are featured in the documentary, speaking about the contributions being made by agricultural research.

Whereas all sectors of the global economy must contribute to achieve net zero emissions by 2050 to prevent the worse effects of climate change, agricultural innovations are needed by farmers at the front line of climate change today.

CIMMYT breeder Yoseph Beyene spoke to filmmakers about the use of molecular breeding to predict yield potential. (Image: Wondrium.com)

Breeding climate-smart crops

“Climate change has been a great disaster to us. Day by day it’s getting worse,” said Veronica Dungey, a maize farmer in Kenya interviewed for the documentary.

Around the world, 200 million people depend on maize for their livelihood, while 90% of farmers in Africa are smallholder farmers dependent on rainfall, and facing drought, heatwaves, floods, pests and disease related to climate change. According to CGIAR, agriculture must deliver 60% more food by 2050, but without new technologies, each 1°C of warming will reduce production by 5%.

“Seed is basic to everything. The whole family is dependent on the produce from the farm,” explained Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at the International Maize and Wheat Improvement Center (CIMMYT). As a child in a smallholder farming family with no access to improved seeds, Beyene learned the importance of selecting the right seed from year to year. It was at high school that Beyene was shown the difference between improved varieties and the locally-grown seed, and decided to pursue a career as a crop breeder.

Yoseph Beyene examines breeding lines. (Image: Wondrium.com)

Today, the CIMMYT maize program has released 200 hybrid maize varieties adapted for drought conditions in sub-Saharan Africa, called hybrids because they combine maize lines selected to express important traits over several generations. Alongside other CGIAR Research Centers, CIMMYT continues to innovate with accelerated breeding approaches to benefit smallholder farmers.

“Currently we use two kinds of breeding. One is conventional breeding, and another one is molecular breeding to accelerate variety development. In conventional breeding you have to evaluate the hybrid in the field,” Beyene said. “Using molecular markers, instead of phenotypic evaluation in the field, we are evaluating the genetic material of a particular line. We can predict based on marker data which new material is potentially good for yield.”

Such innovations are necessary considering the speed and the complexity of challenges faced by smallholder farmers due climate change, which now includes fall armyworm. “Fall armyworm is a recent pest in the tropics and has affected a lot of countries,” said Moses Siambi, CIMMYT Regional Representative for Africa. “Increased temperatures have a direct impact on maize production because of the combination of temperature of humidity, and then you have these high insect populations that lead to low yield.”

Resistance to fall armyworm is now included in new CIMMYT maize hybrids alongside many other traits such as yield, nutrition, and multiple environmental and disease resistances.

Ana María Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity and CIAT, spoke about CGIAR’s community-focused climate work. (Image: Wondrium.com)

Building on CGIAR’s climate legacy

Ana María Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), told the filmmakers about CGIAR’s community-focused climate work, which includes Climate-Smart Villages and Valleys. Launched in 2009, these ongoing projects span the global South and effectively bridge the gap between innovation, research and farmers living with the climate crisis at their doorsteps.

“Technological innovations are critical to food system transformation,” said Loboguerrero, who was a principal researcher for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). “But if local contexts are not considered, even the best innovations may fail because they do not respond to beneficiaries needs.”

CCAFS’s impressive legacy — in research, influencing policy and informing $3.5 billion of climate-smart investments, among many achievements — is now being built upon by a new CGIAR portfolio of initiatives. Several initiatives focus on building systemic resilience against climate and scaling up climate action started by CCAFS that will contribute to a net-zero carbon future.

Loboguerrero pointed to other innovations that were adopted because they addressed local needs and were culturally appropriate. These include the uptake of new varieties of wheat, maize, rice and beans developed by CGIAR Research Centers. Taste, color, texture, cooking time and market demand are critical to the success of new varieties. Being drought-resistant or flood-tolerant is not enough.

Local Technical Agroclimatic Committees, another CCAFS innovation that is currently implemented in 11 countries across Latin America, effectively delivers weather information in agrarian communities across the tropics. Local farmers lead these committees to receive and disseminate weather information to better plan when they sow their seeds. “This success would not have been possible if scientists hadn’t gotten out of their labs to collaborate with producers in the field,” Loboguerrero said.

Climate adaptation solutions

Across CGIAR, which represents 13 Research Centers and Alliances, and a network of national and private sector partners, the goal is to provide climate adaptation solutions to 500 million small-scale farmers around the world by 2030. This work also covers reducing agricultural emissions, environmental impacts and even the possibility of capturing carbon while improving soil health.

Interested in learning more? The documentary “Solving for Zero: The Search for Climate Innovation” is available at Wondrium.com alongside a 10-part miniseries exploring the ongoing effort to address climate change.

Development of the Enterprise Breeding System well underway

Members of the Enterprise Breeding System advisory committee listen to a presentation from Tom Hagen. (Photo: Alfonso Cortés/CIMMYT)
Members of the Enterprise Breeding System advisory committee listen to a presentation from Tom Hagen. (Photo: Alfonso Cortés/CIMMYT)

Members of the Enterprise Breeding System (EBS) advisory committee met on January 17-18, 2019, to review progress on the development of a full-spectrum breeding data management software.

CGIAR plant breeders currently rely on a suite of different software projects to make use of the data that is crucial to developing better varieties. Developed under the CGIAR Excellence in Breeding Platform (EiB), the EBS aims to provide a single solution that links data across new and existing applications so that the entire breeding data workflow — from experiment creation to analytics — can be accessed from a single user-friendly dashboard.

Development of the system is well underway, with the goal of providing a “minimum viable implementation” to pilot users at the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI) in 2020. More advanced functions, institutions and crops will be added to the EBS over the next three years.

Working between breeders and developers to ensure needs are translated into software functions, the EBS team has trained CIMMYT staff and consultants as requirements analysts, five of whom presented to members of the EBS advisory committee the meeting on progress in the five “domains” of breeding software functions.

Sharing bits and bytes

Rosemary Shresthra introduced experiment creation, where users can quickly select the type of experiment they wish to run and automatically set up all the steps needed to complete it in the EBS.

Kate Dreher took the attendees through field implementation, where it is possible to map fields in the system and connect them to a range of plot data collection tools developed by external projects.

Ricardo León outlined the germplasm management component of the system, where the seed inventory is kept, and new entries made after trials are harvested to go on to the next stage.

Pedro Medeiros explained how an analytics request manager will allow EBS users to push their data to different analytics tools that support decision-making and, ultimately, their ability to deliver better varieties that meet farmers’ needs.

Finally, Star Gao, a breeding informatics specialist for the Genomic and Open-Source Breeding Informatics Initiative (GOBii), showed how users will be able to request phytosanitary, genotypic and quality analysis of samples from their trials through the EBS system. The system will provide an overview of the status of all samples submitted for analysis with different service providers, in addition to the ability to connect with various databases.

“We can do all this because all information in the EBS is treated the same way, from experiment creation through implementation,” said EBS coordinator Tom Hagen in summary.

The EBS advisory group, which includes user representatives from CIMMYT and IRRI breeding teams alongside EiB staff, ended the day by discussing and prioritizing new functions that could be added to the EBS over the next three years.

First steps taken to unify breeding software

Participants of the EBS DevOps Hackathon stand for a group photo at CIMMYT's global headquarters in Texcoco, Mexico. (Photo: Eleusis Llanderal Arango/CIMMYT)
Participants of the EBS DevOps Hackathon stand for a group photo at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Eleusis Llanderal Arango/CIMMYT)

From October 21 to November 1, 2019, software developers and administrators from several breeding software projects met at the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico to work on delivering an integrated solution to crop breeders.

Efforts to improve crop breeding for lower- and middle-income countries involves delivering better varieties to farmers faster and for less cost. These efforts rely on a mastery of data and technology throughout the breeding process.

To realize this potential, the CGIAR Excellence in Breeding Platform (EiB) is developing an Enterprise Breeding System (EBS) as a single solution for breeders. EBS will integrate the disparate software projects developed by different institutions over the years. This will free breeders from the onerous task of managing their data through different apps and allow them to rapidly optimize their breeding schemes based on sound data and advanced analytics.

“None of us can do everything,” said Tom Hagen, CIMMYT-EiB breeding software product manager, “so what breeding programs are experiencing is in fact fragmented IT. How do we come together as IT experts to create a system through our collective efforts?”

For the EBS to succeed, it is essential that the system is both low-cost and easy to deploy. “The cost of the operating environment is absolutely key,” said Jens Riis-Jacobson, international systems and IT director at CIMMYT. “We are trying to serve developing country institutions that have very little hard currency to pay for breeding program operations.”

Stacked software

During the hackathon, twelve experts from software projects across CGIAR and public sector institutions used a technology called Docker to automatically stack the latest versions of their applications into a single configuration file. This file can be loaded into any operating environment in less than four minutes — whether it be a laptop, local server or in the cloud. Quickly loading the complete system into a cloud environment means EBS can eventually be available as a one-click, Software-as-a-Service solution. This means that institutions will not need sophisticated IT infrastructure or support staff to maintain the software.

Behind the scenes, different applications are replicated in a single software solution, the Enterprise Breeding System. (Photo: CIMMYT)
Behind the scenes, different applications are replicated in a single software solution, the Enterprise Breeding System. (Photo: CIMMYT)

“If everything goes as planned, the end users won’t know that we exist,” said Peter Selby, coordinator of the Breeding API (BrAPI) project, an online collective working on a common language for breeding applications to communicate with each other. Updates to individual apps will be automatically loaded, tested and pushed out to users.

As well as the benefits to breeders, this automated deployment pipeline should also result in better software. “We have too little time for development because we spend too much time in deployment and testing,” said Riis-Jacobson.

A cross-institution DevOps culture

Though important technical obstacles were overcome, the cultural aspect was perhaps the most significant outcome of the hackathon. The participants found that they shared the same goals, language and were able to define the common operating environment for their apps to work together in.

“It’s really important to keep the collaboration open,” said Roy Petrie, DevOps engineer at the Genomic and Open-Source Breeding Informatics Initiative (GOBii) based at the Boyce Thompson Institute, Cornell University. “Having a communications platform was the first thing.”

In the future, this could mean that teams synchronize their development timeline to consistently release updates with new versions of the EBS, suggested Franjel Consolacion, systems admin at CIMMYT.

“They are the next generation,” remarked Hagen. “This is the first time that this has happened in CGIAR informatics and it validated a key aspect of our strategy: that we can work together to assemble parts of a system and then deploy it as needed to different institutions.”

By early 2020, selected CIMMYT and International Rice Research Institute (IRRI) breeding teams will have access to a “minimal viable implementation” of the EBS, in which they can conduct all basic breeding tasks through a simple user interface. More functionality, breeding programs and crops from other institutions including national agricultural research programs will be added in phases over three years.

CIMMYT research at the forefront of the digital revolution in African agriculture

At the African Green Revolution Forum 2019, global and African leaders come together to develop actionable plans that will move African agriculture forward. This year, the forum is taking place in Ghana on the week of September 3, 2019, under the theme “Grow digital: Leveraging digital transformation to drive sustainable food systems in Africa.” Participants will explore the practical application of the emerging elements of the digital era such as big data, blockchain, digital IDs, drones, machine learning, robotics, and sensors.

CIMMYT’s work in this area is showcased in a new leaflet entitled “Data-driven solutions for Africa: Using smart tools to combat climate change.” The leaflet highlights innovations such as crowdsourced crop disease tracking and response systems in Ethiopia, low-cost imaging tools to speed up the development of hardier varieties, and combining geospatial data with crop models to predict climate change and deliver personalized recommendations to farmers.

A new publication highlights the diverse ways in which CIMMYT's research is propelling the digital transformation of agriculture in Africa.
A new publication highlights the diverse ways in which CIMMYT’s research is propelling the digital transformation of agriculture in Africa.

Speaking at the conference attended by 2,000 delegates and high-level dignitaries, CIMMYT Director General Martin Kropff will give the keynote remarks during the session “Digital innovations to strengthen resilience for smallholders in African food systems” on September 3. This panel discussion will focus on how the data revolution can support African smallholder farmers to adapt quickly challenges like recurrent droughts or emerging pests, including the invasive fall armyworm. The Global Resilience Partnership (GRP), the Food and Agriculture Organization of the United Nations (FAO), CABI, and the Minister of Agriculture of Burkina Faso will be among the other panelists in the session.

The same day, CIMMYT will also participate to an important “Agronomy at scale through data for good” panel discussion with speakers from the Bill & Melinda Gates Foundation, research organizations and private companies. The session will highlight how digital agriculture could help deliver better targeted, site-specific agronomic advice to small farmers.

During the forum, the CIMMYT delegation will seek collaborations in other important drivers of change like gender transformation of food systems and smallholder mechanization.

They will join public sector leaders, researchers, agri-preneurs, business leaders and farmers in outlining how to leverage the growth in digital technologies to transform food systems and agricultural livelihoods in Africa.

Breaking Ground: Tawanda Mashonganyika unites crop breeders and market experts for more impactful varieties

Tawanda Mashonganyika

The low rate at which farmers adopt improved varieties is one of the biggest obstacles to overcoming food insecurity. The average maize variety grown by farmers in sub-Saharan Africa is 15 years old, even though maize breeders have been releasing more than 50 new varieties every year.

When it comes to climate change, for example, thanks to a plentiful arsenal of genetic diversity crop breeders are developing varieties adapted to increased heat and drought, but farmers continue to grow crops developed for the climate of yesterday.

One part of the answer is that it is not enough merely to create a variety resistant to heat, drought or flooding; complex dynamics are at play in crop markets and in farmers’ fields that must be reflected in the design of new varieties.

This where product manager Tawanda Mashonganyika comes in, working for the CGIAR Excellence in Breeding Platform (EiB) out of CIMMYT-Kenya, and one of the first to occupy such a role in the CGIAR system.

“This position is supposed to bring in a business kind of thinking in the way products and varieties are developed,” said Mashonganyika, who studied agricultural economics, agribusiness and value chains at the universities of Reading, U.K. and Queensland, Australia, and has professional experience with crops grown in Africa.

“You need to know who you are developing varieties for, who are your customers and clients, and you also need to design products so that they can have success on the market.”

Mashonganyika’s role is to support CGIAR and national agricultural research system (NARS) breeders to design new varieties focused on replacing older products in a specific market, as opposed to only breeding for an agro-ecological zone. Key to this approach is the involvement of experts from other disciplines such as gender, socioeconomics and nutrition, as well as people involved in the value chain itself, such as food processors, seed producers and farmers.

The outcome of this collaboration is a product profile: a written description of a new product with all the traits needed to replace the variety that currently dominates the target market. The profile serves as a common goal for CGIAR and NARS collaboration, and as a tool to communicate with donors. With the breeding program accountable for delivering a pipeline of new products designed for impact, they can ensure that these varieties also deliver traits such as biofortification to farmer’s fields.

Instead of breeding for all the traits that may be desirable in a new variety, what sets the product profile approach apart is that breeding programs can then focus resources on the traits that will have the greatest impact in the market, and therefore the field. This market-focused approach also enables better collaboration between breeders and experts from other disciplines:

“When you bring a cross-functional team together, you really need to give them an understanding of the desired goal of what we want to design and eventually put onto the market,” said Mashonganyika. “We put an emphasis on data-driven decisions, so it is not just a meeting of experts with different opinions; we always try to create a platform to say ‘we need to follow what the market is saying.’”

“[Non-breeding experts] are usually very excited to talk about the data that they have about markets, and the knowledge that they have about how gender or nutrition affects products on the market,” said Mashonganyika. “There are so many women farmers, especially in Africa, so when you begin to incorporate gender, we are increasing the scope of impact.”

Although actors such as seed producers or food processors may have no breeding expertise, Mashonganyika views their input as essential: “They are the ones that are at the mouthpiece of the market, they eventually take up the varieties and they multiply the seed, so they have very good information.”

One example is a collaboration with the National Agricultural Research Organization (NARO), Uganda, where representatives from private sector seed companies are being included to help breeders better understand their customers. “They give information about seed multiplication processes, and what makes a variety be considered for multiplication in seed systems.”

EiB has created a standardized tool to create product profiles, and 200 were submitted to the growing database in the first three months of the pilot period alone, including profiles submitted by 10 national agricultural research programs in Africa and Asia.

In addition to promoting the use of product profiles, a product manager is also involved ensuring communication and accountability throughout the development of new products.

“With product profiles we say a breeder should be accountable for delivering each product in a certain timeframe,” said Tawanda. “We always emphasize that a breeding program should have an annual product review process, because markets are dynamic, they are bound to change. This is a good habit to ensure that your products remain relevant and designed for impact.”

Although Mashonganyika is one of the first CGIAR product managers, a desire to see greater impact in the field is turning others in the same direction.

“I hope that in the near future we will see other CGIAR centers developing similar positions,” said Mashonganyika.

Breeders find strength in diversity at EiB contributor meeting

Around 115 members of the CGIAR breeding community, plus others representing national programs, universities, funders and the private sector, met for a three-day discussion of how to co-develop the next generation of advanced breeding programs that will improve the rate at which resource-poor farmers are able to adopt improved varieties that meet their needs.

The annual Excellence in Breeding Platform (EiB) Contributor’s meeting, held this year in Amsterdam from 13-15 November, caps a year of engagement with CGIAR Centers and national agricultural research system (NARS) partners around the world.

Paul Kimani, from the University of Nairobi, speaks during the meeting. (Photo: Sam Storr/CIMMYT)
Paul Kimani, from the University of Nairobi, speaks during the meeting. (Photo: Sam Storr/CIMMYT)

“Although breeding is one of the oldest functions in CGIAR, we have never had a meeting like this with scientists from all the centers,” said Michael Baum, director of Biodiversity and Crop Improvement at the International Center for Agricultural Research in the Dry Areas, (ICARDA). “Within CGIAR, plant breeding started as a science, but now we are looking at how to implement it not as a science but as an operation, as it is done in the private sector, so there are many new concepts.”

Key items on the agenda for November were new tools to develop product profiles and create improvement plans that will define the modernization agenda in each center and across the Platform itself, based in part on the Breeding Program Assessment Tool (BPAT) that most Centers completed in 2018.

The conversation was enriched by Paul Kimani (University of Nairobi) presenting on the Demand-led Variety Design project, which produced the book, “The Business of Plant Breeding.”

Ranjitha Puskur, gender research coordinator at the International Rice Research Institute (IRRI), started an animated discussion on how to incorporate gender into product design by thinking about customer segments.

Tim Byrne from AbacusBio introduced methods for identifying farmer preferences to be targeted by breeding programs.

IRRI's Ranjitha Puskur started a discussion on how to incorporate gender into product design. (Photo: Sam Storr/CIMMYT)
IRRI’s Ranjitha Puskur started a discussion on how to incorporate gender into product design. (Photo: Sam Storr/CIMMYT)

In breakout sessions, contributors were able to have detailed discussions according to their various specializations: phenotyping, genotyping and bioinformatics/data management. The direct feedback from contributors will be incorporated into EiB workplans for training and tool development for the coming year.

A key outcome of the meeting was an agreement to finalize the product profile tool, to be made available to EiB members in early December 2018. The tool helps breeders to work with other specialisms, such as markets, socioeconomics and gender, to define the key traits needed in new products for farmers. This helps to focus breeding activities towards areas of greatest impact, supports NARS to play a greater role, and creates accountability and transparency for donors, in part by defining the geographic areas being targeted by programs.

“Breeding trees is different to the annual crops,” said Alice Muchugi, genebank manager at the World Agroforestry Centre (ICRAF), “but we are seeing what we can borrow from our colleagues. By uploading what we are doing in maps, for example, donors are able to perceive the specific challenges we are undertaking.”

EiB's George Kotch describes his vision of product profiles. (Photo: Sam Storr/CIMMYT)
EiB’s George Kotch describes his vision of product profiles. (Photo: Sam Storr/CIMMYT)

“I think we have realized there are lot of challenges in common, and the Platform is helping us all work on those,” said Filippo Bassi, durum wheat breeder at ICARDA. “I like to see all the people around the room, if you look at the average age there is a big shift; the number of countries present also tells you a lot.”

Tabare Abadie, R&D external academic outreach lead at Corteva Agriscience, also saw the meeting as a good opportunity to meet a broader group of people. “One of the take homes I hear is [that] there are a lot of challenges, but also a lot of communication and understanding. For me as a contributor it’s an incentive to keep supporting EiB, because we have gone through those changes before [at Corteva], and we can provide some know-how and experience of what happens,” Abadie explained.

“There are still a lot of gaps to fill, but this is a good start,” said Thanda Dhliwayo, maize breeder at the International Maize and Wheat Improvement Center (CIMMYT). “We need to get everyone involved, from leadership down to the guys working in the field.”

Michael Quinn, director of the CGIAR Excellence in Breeding Platform, discusses the CGIAR’s initiative on crops to end hunger.

Nutrient management tool wins award

A tool developed by CIMMYT and the International Plant Nutrition Institute (IPNI) offering site-specific nutrient management (SSNM) advice to help farmers achieve higher yields more efficiently recently won an innovation award.

Nutrient ExpertTM decision support tools received the best innovation award in the information and communications technology category at the Bihar Innovation Forum II, which recognizes innovations to improve rural livelihoods in India. These tools were in development by CIMMYT and IPNI for five years and were launched in June 2013.

In South Asia, 90 percent of smallholder farmers do not have access to soil testing. The computer-based support tools aim to provide them with simple advice on how to get the most from fertilizer inputs. An IPNI study funded by the CGIAR Research Program on Maize (MAIZE CRP) Competitive Grant Initiative (CGI) found that farming practices and the resources available to farmers vary hugely in east India.

The cutting-edge value of Nutrient ExpertTM is that it offers specific information at the farm level, where it can provide the greatest benefits. Nutrient ExpertTM is especially relevant because it was developed through dialogue and participation with stakeholders, which also raises awareness and eventual adoption by users.

It is now used by the Indian National Agricultural Research System and is a key intervention used by the CRP on Climate Change, Agriculture and Food Security (CCAFS) in its Climate Smart Villages. The Nutrient ExpertTM approach is also being applied to maize and wheat in other areas of Southeast Asia, China, Kenya and Zimbabwe.