Skip to main content

Author: Susan Otieno

Building capacities for advanced modern breeding programs in Africa

In December 2022, more than 40 scientists from African National Agricultural Research Institutes (NARI) and Small and Medium Enterprise (SME) seed companies received training on the design and implementation of modern maize breeding programs.

The training, explains Yoseph Beyene, project leader in the Accelerating Genetic Gains (AGG) – Maize project, was designed to improve maize breeders’ knowledge of the most advanced technologies and methodologies in order to increase genetic gains in their respective breeding programs. It was supported by AGG-Maize and the CGIAR Accelerated Breeding Initiative (ABI) and formed part of ongoing efforts to modernize NARI breeding programs under AGG-Maize.

Yoseph Beyene, Accelerating Genetic Gains-Maize Project leader, makes introductory remarks at the start of the Senior Breeders Training in Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Over the course of five days in Nairobi, Kenya, participants from 13 countries where AGG-Maize is implemented worked to develop their skills in the use of new technologies and approaches to improving genetic gains and breeding efficiencies. Topics covered included the prioritization of market segmentation and product profile development, application of quantitative genetics principles in maize breeding, seed production research, improved designs for regional on-farm trials, and much more.

“The training was an eye opener supported by detailed explanations on applications of diverse research methodologies in maize breeding,” said Isiah Aleri, a research assistant for the International Maize and Wheat Improvement Center’s (CIMMYT) Maize Program in Kenya. “I met teams who had different views on some breeding techniques, but later received guided explanations from trainers on why certain standards and requirements are set for effective decision making.”

Veronica Ogugo, a research associate in the same CIMMYT program, agreed saying: “It was very educative and in-depth in all the areas that were covered by the different specialists. The best part was that each of the components complimented one another.” She added that the training also offered a good opportunity for interaction with other experts.

B.M. Prasanna, CIMMYT Global Maize Program director, speaks at the Senior Breeders Training in Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

What and whom to breed for

In his opening remarks at the training, B.M. Prasanna, Global Maize Program director at CIMMYT, noted the need for efficient use of limited resources, and encouraged scientists to work smartly, for instance, by leveraging available germplasm across phenotyping networks from other regions to diversify germplasm base for increased genetic gains. He emphasized the importance of clearly determining market segments and developing product profiles that have clear objectives, as well as the key traits to be considered, such as tolerance to drought, heat, and pests and diseases like fall armyworm.

Prasanna highlighted zinc as an example of an important feature to focus on, pointing out the micronutrient’s vital role in mental well-being and its immune boosting properties, especially in children. “Different geographies have different ways of using maize,” he explained. “In general, maize provides 15-56% of total calorie intake in the rain-fed tropics, hence its importance for improving not only smallholder farmer incomes but also food and nutrition security.”

He also outlined how important partnerships with national programs and seed companies are for achieving the fullest impact of CIMMYT’s work. “The strong regional collaborative maize breeding and seed systems is fundamental for impact,” he said. “It is also the reason for arguably the largest public sector maize germplasm testing network in the Global South, in rain-fed stress-prone tropical environments.”

Scaling impact of dryland crops research through regional crop improvement networks

A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.

The meeting followed a series of consultative visits and discussions between three CGIAR research centers — the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) — African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.

“The idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, it’s really a collaborative model,” said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).

Paradigm shift for African National Agricultural Research Institutes

Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. “Dryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food security”, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.

Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.

Director General of Uganda’s National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.

He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. “The NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projects”, said Agona.

Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

Challenge to deliver effectively

During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. “It is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,” said Govaerts.

Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.

CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.

The meeting heard One CGIAR’s commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITA’s Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.

PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.

Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.

A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

International Year of Millets, 2023

The gathering commemorated the International Year of Millets by listening to a keynote address on “Millets for food and nutritional security and mitigating climate change – #IYM2023” by Lake Chad Research Institute, Nigeria, Research Director, Zakari Turaki. The keynote was followed by statements on the importance of millets for various countries and wider Africa from: Sanogo Moussa Daouda, representing Director General of Mali’s Institut d’Économie Rurale (IER); Ibrahima Sarr, Director of Senegal’s Institut Sénégalais de Recherches Agricoles’s Centre National de Recherches Agronomiques; Hamidou Traore, Director of Burkina Faso’s Institut de L’Environnement et de Recherches Agricoles; and Ambrose Agona, Director General of NARO, Uganda.

High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzania’s Agricultural Research Institute (TARI), Francis Kusi of Ghana’s Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegal’s Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).

AVISA Achievements

Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.

Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forum’s efforts to build on the gains made by the project in developing the new approach.

“By the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of land”, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.

The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghana’s Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).

Plant Health Innovation Platform at Kiboko, Kenya: integrating and testing eco-friendly solutions against fall armyworm

Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)

CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.

The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.

“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)

Participatory assessment

Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.

“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.

Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.

The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.

Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.

”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”

A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)

Plant Health Innovation Platform catalyzes collaboration

The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.

“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.

Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.

KALRO research station at Kiboko revamped to accelerate crop breeding

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna cutting a ribbon at the entrance of a new shed housing, marking the commissioning of five new seed drying machines courtesy of the of the Accelerating Genetic Gains (AGG) Project. (Photo: Susan Otieno/CIMMYT)

Kenya Agricultural and Livestock Research Organization (KALRO)’s research station at Kiboko, Kenya, where several partner institutions including the International Maize and Wheat Improvement Center (CIMMYT), conduct significant research activities on crop breeding and seed systems, is now equipped with five new seed drying machines along with a dedicated shed to house these units, a cold room for storing breeding materials, and an additional irrigation dam/reservoir. These infrastructural upgrades are worth approximately US $0.5 million.

During the commissioning of the new facilities on February 7, 2023, CIMMYT Global Maize Program Director, BM Prasanna thanked the donors, Crops to End Hunger (CtEH) Initiative and Accelerated Genetic Gains (AGG) project, that supported the upgrade of the research station, and recognized the strong partnership with KALRO.

“Today is a major milestone for CIMMYT, together with KALRO, hosting this center of excellence for crop breeding. This facility is one of the largest public sector crop breeding facilities in the world, with hundreds of hectares dedicated to crop breeding. These new facilities will enable CIMMYT and KALRO crop breeders to optimize their breeding and seed systems’ work and provide better varieties to the farming communities,” said Prasanna.

Kenya suffered one of its worst droughts ever in 2022, and the newly commissioned facilities will support expedited development of climate-resilient and nutritious crop varieties, including resistance to major diseases and pests.

Visitors at the KALRO research station in Kiboko, Kenya, looking at the newly commissioned cold room storage. (Photo: Susan Otieno/CIMMYT)

Improvements and enhancements

The efficiency of the seed driers capabilities to quickly reduce moisture content in seed from above 30% to 12% in two to three days, reducing the time taken for seed drying and allowing for more than two crop seasons per year in a crop like maize.

The additional water reservoir with a capacity of 16,500 cubic meters will eliminate irrigation emergencies and will also enhance the field research capacity at Kiboko. Reliable irrigation is essential for accelerating breeding cycles.

At the same time, the new cold room can preserve the seeds up to two years, preventing the loss of valuable genetic materials and saving costs associated with frequent regeneration of seeds.

KALRO Director General Eliud Kireger officiating the opening of the cold room storage facility at KALRO research station at Kiboko, Kenya. Looking on is CIMMYT Global Maize Program Director, BM Prasanna. (Photo: Susan Otieno/CIMMYT)

World-class research center

“The Kiboko Research Center is indeed growing into an elite research facility that can serve communities in entire sub-Saharan Africa through a pipeline of improved varieties, not only for maize but in other important crops. This will not only improve climate resilience and nutrition, but will contribute to enhanced food and income security for several million smallholder farmers,” said Prasanna.

KALRO Director General Eliud Kireger appreciated the establishment of the new facilities and thanked CIMMYT and its partners for their support.

“Today is a very important day for us because we are launching new and improved facilities for research to support breeding work and quality seed production. This research station is in Makueni County, a very dry area yet important place for research because there is adequate space, especially for breeding,” said Kireger. “We are significantly improving the infrastructure at Kiboko to produce and deliver better seed to our farmers.”

For more than three decades, CIMMYT has conducted research trials at the Kiboko Research Station, focusing on drought tolerance, nitrogen use efficiency, and resistance to pests and diseases, such as fall armyworm and stem borer. The maize Double Haploid (DH) facility established in 2013 at Kiboko, with the support of the Bill & Melinda Gates Foundation, offers DH line production service for organizations throughout Africa, and is key to increasing genetic gains in maize breeding.

Supporting the careers of women in science

Happy Makuru Daudi, Head of Groundnut Research Program at the Tanzania Agricultural Research Institute (TARI) based at Naliendele Research Center in Mtwara, is a plant breeder specializing in groundnut. For the United Nations International Day of Women and Girls in Science, she shares with us her passion for what she does and why more women should venture into plant breeding.

What inspired you to get into your career?

I was in love with science and my intention was to be a doctor but later I changed my mind. I loved biology a lot and that set my focus on my academic path. At university I had good mentors who influenced my career direction as well.

When I achieved my first degree, I was recruited by the Government of Tanzania as an agricultural officer. My then boss, Omar Mponda, inspired me to be a plant breeder. He encouraged me and I went ahead to study plant breeding for both my Masters and PhD. My first degree was in Agronomy, I then did a Masters in Crop Science, specializing in Plant Breeding, and eventually completed a PhD in Plant Breeding as well.

What did you love about plant breeding?

I realized breeders are very active people. Always trying to improve and change things. Always looking for ways to make a difference. This desire to make a change makes us active lifelong learners.

The other thing I learnt from breeders is that they can change the life of farmers. Most smallholder farmers are women. I love my crop (groundnut) because it is a ‘woman’s crop’. If the breeder develops a product such as groundnut with high impact, it means they have changed the life of women. I realized I work a lot with women in my field and even if I only change the smallest of things, it means I get to change their lives and boost them from one step to the next.

Please elaborate on why you refer to groundnut as a woman’s crop.

Groundnut is a nutritious crop and is used a lot in processing and preparing children’s food, hence most women value it and engage in farming the crop, even though in small plots of land, in order to have nutritious food for their families’ health.

Most women especially in Tanzania view groundnut as their ATM, in that when they need money for use at home, they only need to sell some of their harvested groundnut and get cash to meet their home’s needs, such as buying schoolbooks for their children.

Women are involved in the entire groundnut value chain, that is from farming the crop in the field up to the processing stages, unlike men who mostly only come in at the market stage to sell the produce. Therefore, groundnut is source of income for many women in Tanzania.

Happy Makuru Daudi presents at the Drylands Legumes and Cereals Crop Improvement Review and Planning meeting in Ghana in January 2023. (Photo: Susan Otieno/CIMMYT)

Has the International Maize and Wheat Center (CIMMYT) and the CGIAR at large contributed in any way to your career growth?

Yes! They have contributed a lot. First in building my capacity and, as I work with them in the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. My PhD was sponsored by the Tropical Legumes III Project. I remember when interacting with scientists from these organizations, I observed how they carried themselves with confidence, both the women and men; it motivated me and built my confidence.

What was the focus of your PhD?

My PhD was on breeding for groundnut resistance for rust and high yield in Tanzania.

What is your message for young women and girls interested in getting into science, technology, engineering, and mathematics (STEM) careers?

First, they need to trust themselves. They can do anything in this world. They should not be fearful. For instance, those interested in breeding might observe that most breeders are men, and they may tell themselves that it is a difficult career and run away from it. But I would like them to tell themselves they can be and do even better than men. They only need to trust themselves and build their confidence.

Tell me about the formation of your team – are you intentional in working with women in your team?

Yes, I’m usually intentional about this. I always give equal chance to both genders but when I get an opportunity to hire for my team, it makes me happier if a woman lands the job. I realized women are good workers and ready to learn. Most of my casual laborers on my team are also women. They work meticulously. The main work for breeders entails crossing. The best people for crossing are women! I have observed that the success rate of the crosses is higher with women! Crossing is intensive work, physically as well, and needs utmost concentration. So, I trust them in this.

Is there anything else you would like to add?

I want to encourage women not to run away from sciences, and especially agricultural sciences such as breeding. We want more women breeders. They can change this world and help more people put food on the table. The agricultural sector, especially the farms, are dominated by women, and it is easier for them when they interact with other women. When we go meet them in the fields, it is easier for us to understand their needs and change their lives. So, I call girls and women to come on board in this sector and change the lives of many.

Cover photo: Happy Makuru Daudi (center) discussing groundnut varieties with colleagues from TARI and CIMMYT in Mtwara, Tanzania, in 2022. (Photo: Susan Otieno/CIMMYT)

Groundnut ESA crop improvement network sets regional and country level priorities

Members of Umoja, Tuaminiane, Upendo and Ukombozi groundnut farming groups in Naliendele, Tanzania showing their groundnut harvests in May 2022. (Photo: Susan Otieno/CIMMYT)

The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project has developed draft national groundnut target product profiles in Malawi, Mozambique, Sudan, Tanzania, Uganda and Zambia.

Groundnut is grown in eastern and southern Africa, where it remains an important food and oil crop from small holder farmers.

The new findings from the project are a result of work from groundnut crop breeding and improvement teams from the National Agricultural Research and Extension Systems (NARES) representatives from the six largest groundnut producing countries in the eastern and southern Africa region.

Their important research was carried out with the support of representatives from the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and CGIAR.

Developing target product profiles for groundnut

For the first time, through the International Maize and Wheat Improvement Center (CIMMYT)-led AVISA program, funded by the Bill & Melinda Gates Foundation, groundnut breeding teams discussed and documented country level priorities at a meeting in Dar es Salaam, Tanzania.

Their findings were developed using a standard target product profile template recently developed by CGIAR Excellence in Breeding (EiB) in conjunction with CGIAR’s Market Intelligence Initiative. The template serves as a tool to capture market segments and develop targeted product profiles.

The groundnut breeding teams also shared information on current groundnut production metrics and trends in the six national programs. This also helped to establish a common understanding of countries’ level research priorities.

Futhi Magagula from CCARDESA and Elailani Abdalla, Mohamed Ahmed and Abdelrazeg Badadi from ARC-Sudan deliberate on groundnut market segments for Sudan. (Photo: Biswanath Das/CIMMYT)

Agnes Gitonga, market strategist at CGIAR Genetic Innovations Action Area, who led the team in understanding and applying the template, explained that the quality of a target product profile (TPP) is dependent on how well market segments are defined. “To ensure target product profiles are an accurate reflection of customer needs, who include farmers, consumers, and processors,” she said.

“National groundnut teams nominated Country Product Design Teams that will meet nationally before the end of 2022 to review and update country TPPs. These multi-stakeholder teams will ensure that the needs of diverse groups are captured and that breeding efforts are accurately focused.”.

Harish Gandhi, Breeding Lead, Dryland Legumes and Cereals (DLC) at CIMMYT, further explained that a bottom-up approach for defining country and regional priorities was used, where each country defined market segments and target product profile based on the use of the produce and growing conditions of farmers. This strategy involved each country defining its market segments and TPP, which was based on the use of the produce and growing conditions of farmers.

Building on the draft national target product profiles that were defined at the meeting, participants went on to prioritize traits such as diseases, nutrition and stress tolerance. These factors can be critical at regional level and important in identifying potential locations for conducting phenotyping. The phenotyping locations are distributed based on capacity of stations in different countries to screen for traits, such as late leaf spot disease screening in Msekera in Zambia, which is a known hotspot for the disease.

“We had a good opportunity to consider grower needs as well as consumer needs in each country for purposes of defining the relevant groundnuts market segments. I believe this will have a positive impact on future work in groundnuts in the East and Southern Africa region,” reflected Gitonga.

The collaboration of the teams involved was a key factor for the project’s success so far and will be crucial in working towards its goals in the future.

“Involving different stakeholders in designing target product profile was an effective way of enabling transformation of individual preferences (area of interest) to collective preferences (targeted product) with consumer needs and markets in mind,” said Happy Daudi, Groundnut Breeding lead at the Tanzania Agricultural Research Institute (TARI).

Tanzania Agricultural Research Institute (TARI) Naliendele Station Groundnut Research Team ((L-R) Bakari Kidunda, Gerald Lukurugu, Anthony Bujiku and Dr. Happy Daudi) deliberate on national groundnut breeding priorities. (Photo: Biswanath Das/CIMMYT)

Strengthening groundnut breeding programs in east and southern Africa

The project’s first meeting will provide an important foundation for future research, which will use the new findings as a blueprint.

Biswanath Das, Plant Breeder, Groundnut for East and Southern Africa region and NARES Coordinator and Programming lead for EiB said, “Defining national TPPs, identifying regionally important traits and mapping a testing network are fundamental building blocks of a modern breeding program.”

At the meeting, a schedule was laid out for peer-to-peer assessments of breeding programs within the regional network to take stock of current efforts and gaps. This step helps to develop customized capacity development plans for each network partner.

“Through targeted and demand led capacity development, the East and Southern Africa groundnut crop improvement network aspires to strengthen the role of each network member in collaborative, regional breeding efforts,” Das said.

The meeting laid the ground for coordinated regional groundnut breeding and took steps towards formalizing a regional NARES-CGIAR-SME groundnut crop improvement network. By building on excellent connections that already exist among national groundnut breeding teams. Das underscored that the move will strengthen alignment of NARES, CGIAR and regional research efforts around a common vision of success.

In addition, David Okello who leads groundnut research at National Agriculture Research Organization (NARO) Uganda, noted that the meeting provided a good opportunity for consolidating the existing network. He also looked forward to welcoming more groundnut improvement programs in the region on board.

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.

Exploring the potential for blended wheat flours in Kenya  

Over the years, wheat-based foods have increasingly been incorporated as part of Kenyan meals. One example is packaged bread, which has become a common feature on Kenyan breakfast tables with millions of loaves from industrial bakeries delivered to retail shops daily, countrywide. Another example is chapati — a round unleavened flat bread. Once reserved for special occasions, chapati can now be purchased from roadside venders throughout the capital Nairobi.

Millers and processors in Kenya are highly dependent on imported wheat to meet the strong demand for wheat-based food products. The conflict between Russia and Ukraine, two of the most important sources of imported wheat for Kenya, presents a major threat to millers and industrial bakeries.  Prices for bread and chapati are increasing and may continue to increase. Governments and wheat-related industries are looking at short- and long-term options to reduce utilization of imported wheat. One short-term option is the blending of wheat flour with flour derived from locally available crops, such as cassava, millet or sorghum.

Record-high price of wheat

A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)
A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)

A visit to local industrial bakeries and wheat flour millers on the outskirts of Nairobi by International Maize and Wheat Improvement Center (CIMMYT) researchers confirmed the effects of record-high global prices of wheat.  Global Wheat Program director Alison Bentley and senior economist Jason Donovan had conversations with leaders of industrial bakeries and millers, who gave insights into their grain demands, production processes and sales volumes.

One of the leaders of an established industrial bakery divulged that they use approximately 15,000 tons of wheat flour monthly to make baked products, with only 10% of the wheat obtained locally.

“In the last ten years, local wheat production has comprised about ten to fifteen percent of our cereal mixture for bread, and we were already paying higher prices to farmers compared to import prices. The farmers were already being paid about 30 to 40 dollars more per ton,” a manager of a large baking industry in Kenya explained to the CIMMYT team.

According to government regulations, millers and bakeries must purchase locally produced wheat at agreed prices before they can buy imported wheat. He agreed that though the quality of local wheat is good, the local production cannot compete with the higher volume of imported wheat or its lower price.

Growing wheat in East Africa

It has been more than four months since the Russia-Ukraine conflict unfolded, and since then prices of wheat-based products have been increasing significantly. The current crisis has sparked the debate on low levels of self-sufficiency in food production for many countries. And this is especially the case for wheat in Kenya, and more widely in Africa.

Bentley points out that the biophysical conditions to produce wheat in East Africa are present and favorable. However, more work is needed to strengthen local wheat production, starting with efficient seed systems. Farmers who are interested in growing wheat need access to high performing and stress-tolerant wheat varieties.

CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)
CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Practical response to the crisis

With no certainty as to how long the conflict will continue and climate change resulting in significant crop loss in key production zones, wheat shortages on international markets could become a reality. Blending of wheat flour with locally available crops could be an option as an immediate response to the current scarcity of wheat in East Africa. “Blending [flour] is when for instance five percent of wheat flour is replaced with flour from a different crop such as sorghum or cassava,” Bentley explained.

Donovan added that, though it might seem like a small number, it becomes significant in consideration to the volume of wheat that industries use to make different products, translating into thousands of metric tons. He noted that blending flour therefore has the potential to create a win-win situtation, because it can boost the demand for local crops and address uncertainty and price volatility on international wheat markets.

Consumer acceptance of new products

Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)
Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)

During a full week of engagements with universities, partners, and industry experts in Kenya, the CIMMYT team explored the current interest of the sector in blending wheat flour. Several partners agreed that this could be a potential way forward for the grain industry but all highlighted one key element: the importance of consumer acceptance. If the functionality of the flour or taste would be negatively influenced by blending wheat flour, it would represent a no-go from the industry, even if blends would have higher nutritional benefits or lower prices. “This reinforces the need to understand consumer preferences and evaluate both the functionality of the flour to produce essential food products such as chapati or bread as well as the taste of those products,” Pieter Rutsaert explained.

CIMMYT researchers Sarah Kariuki and Pieter Rutsaert, both Markets and Value Chain Specialists, and Maria Itria Ibba, Head of the Wheat Quality Lab, are therefore engaging with local millers and universities in Kenya to design bread and chapati products derived from different wheat blends, to include blends comprised of 5%, 15% and 20% of cassava or sorghum. Lab testing and preliminary consumer testing will be used to identify the most promising products. These products will be taken to the streets in urban and peri-urban Nairobi to assess consumer tastes and preferences, through sensory analysis and at-home testing.

The market intelligence gained will offer foundational support for CGIAR’s Seed Equal Initiative to accelerate the growth of a demand-driven seed system. By gathering and analyzing consumer preferences on selected crops for blending, such as from farmers and milling industries, Donovan pointed out that CGIAR breeding will continue to make informed choices and prioritize breeding for specific crops, that seek to address specific challenges, therefore having greater impact.

Donovan noted that data and information from the studies will provide much needed evidence and fill information gaps that will support governments, millers, processors and farmers to make decisions in response to the evolving wheat crisis.

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

Researchers in East Africa add the Enterprise Breeding System to their work tools

Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)
Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)

Scientists overseeing breeding, principal technicians and data management and support staff from the International Maize and Wheat Improvement Center (CIMMYT) learned about the Enterprise Breeding System (EBS) at a training in Nairobi, Kenya, on May 4–6, 2022. This was the first in-person training on this advanced tool held in Eastern Africa.

Kate Dreher, Data Manager at CIMMYT, was the primary trainer. Dreher sought to ensure that scientists and their teams are well equipped to confidently use the EBS for their programs, including the creation and management of trials and nurseries. During the training, participants had the opportunity to test, review and give feedback on the system.

“The EBS is an online comprehensive system that brings together different types of data, including field observations and genotypic data, to harmonize processes across all teams and enable optimized decision-making in the short term and continuous learning for the long term,” Dreher said.

She explained that the EBS is more efficient than the former approach of using the Excel-based Maize Fieldbook software, even though it managed several useful processes.

The EBS is currently available to registered breeding and support team members and data managers from CIMMYT, IITA, IRRI and AfricaRice, across all geographies where related programs are implemented. Currently, the EBS is used by programs in maize, rice and wheat crops.

A more streamlined approach

“Although teams sent germplasm and phenotypic data for centralized storage in two databases (IMIS-GMS and MaizeFinder) managed by the data management team in Mexico in the past, this required curation after the data had already been generated,” Dreher said. “The EBS will enable teams to manage their germplasm and trial nursery data directly within one system.”

The EBS stores information on germplasm and linked seed inventory items. It is also designed to house and perform analyses using phenotypic and genotypic data. Users can also capture metadata about their trials and nurseries, such as basic agronomic management information and the GPS coordinates of sites where experiments are conducted.

Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at CIMMYT, observed that the training gave him firsthand information on the current capabilities and use of the live version to search germplasm and seed, and the capabilities to create nurseries and trials.

“In the AGG project, we have one primary objective which focuses on implementing improved data management, experimental designs and breeding methods to accelerate genetic gain and improved breeding efficiency. Therefore, implementing EBS is one of the top priorities for AGG project,” said Yoseph, who leads the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods Project (AGG).

Lourine Bii, an Assistant Research Associate who recently joined CIMMYT and the only female research technician on the Global Maize program based in Kenya, also found the training useful. “The EBS is a fantastic system that enables an individual to create experiments. The system links a team, for instance a product development team, to get live updates on the various stages of creating an experiment, reducing back and forth by email.”

The system’s software development is ongoing. The development team continues to add and enhance features based on feedback from users.

Who does what in maize farming in Kenya?

Women’s involvement in maize production is often shrouded in assumptions. One might assume that women have minimal say in management decisions, especially regarding jointly managed plots, due to rigid gender norms that prioritize men’s decisions on farming-related matters. However, operating under such assumptions about women’s role in the management of maize farms risks confining women to specific roles and not meeting their needs in the maize seed system.

To break these assumptions, Rachel Voss, Gender Specialist at the International Maize and Wheat Improvement Center (CIMMYT), and a team of fellow researchers are conducting a study, “Unpacking maize plot management roles of women and men in smallholder households in Kenya.” The study, part of the Accelerating Genetic Gains in Maize and Wheat (AGG) project, aims to asses the gender dynamics of maize management in Kenya in order to categorize plots and households, analyzing intrahousehold decision-making and evaluating which women have the power and agency to apply their preferences for seed on their farms — and which ones do not.

Challenging perceptions

Take, for example, Sofa Eshiali, a 60-year-old farmer from Ikolomani, western Kenya, who participated in the study. She defies the stereotype of women having a limited role in maize farming, as she is deeply involved in decision-making on maize production in her household and represents an important client for new breeding efforts and more inclusive seed distribution programs. Together with her husband, she has grown maize primarily for family consumption since getting married, getting involved in all matters concerning their half acre farm. “For us, when we want to plant [our maize seeds], we sit together and discuss the cash we have at hand and decide if we can get two hands to help us work our half acre of land,” she says.

Eshiali and her husband make a joint decision on the maize seed variety they plant every season based on performance of the previous planting season. “We previously used the H614D [maize seed variety] and it did well in our farm — except when it gets very windy, as our crops fall and our bean crop gets destroyed before it is ready for harvest. Last season, we decided to use the H624 because it remains there even when it is windy,” she said, demonstrating her knowledge of maize seed variety.

In addition to seed choice and farm labour, Eshiali and her husband also discuss what fertilizer to use and when they need to shift to a new choice, and they make decisions together concerning their farm and farm produce. This includes deciding what amount of harvest they can sell and what to do with the sale proceeds. For a household like Eshiali’s, new maize varieties need to appeal to — and be marketed to — both spouses.

Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)
Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)

Farming roles

Eshiali’s reality of equitable engagement in the farm may not be the case for other households in her community and across Kenya, meaning that reaching women with new varieties is not always simple.

As Voss points out, women are often less involved in major household decisions than men, frequently due to longstanding social norms. However, there is little understanding of how decisions are negotiated at the household level, particularly when crops are jointly produced. Furthermore, in many places, men are perceived to be the “real” farmers, while women are viewed to only play a supportive role within household farming. This can lead to the exclusion of women from extension activities, trainings and input marketing efforts.

Against this background, Voss notes that the ongoing study aims to identify in which types of households women have control over seed choice and in which households other constraints might be more important.

“To get new maize varieties into men’s and women’s fields, we need to identify the bottlenecks to reaching women. This means understanding, among other things, how decisions about seed are made within households and how households source their seed,” she explains.

Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)
Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)

Best-case scenario

To overcome the challenge of discussing the sensitive topic of decision-making roles between spouses and to encourage more culturally unbiased, candid responses, the study uses vignettes, or short stories, to describe various scenarios. This enables farmers to relate with different farm management decision making scenarios without pointing fingers at their spouses.

The study’s coauthor and research team leader, Zachary Gitonga, explains that the use of vignettes is still a relatively new method, especially in agricultural research, but enables digging deeper into sensitive topics.

Data collection involved a joint survey with both men and women household heads about maize plot management before breaking into separate discussions using the vignettes. These presented five possible decision-making scenarios with fictitious husband and wife characters. The five scenarios were then used to discuss strategic seed choices, operational decisions related to issues such as planting date and hiring farm labor, and financial decisions such as the use of the income from the maize sales.

“By presenting a set of short stories, a farmer can determine what scenario they relate with. In the study, farmers can talk about sensitive interaction without having to assign responsibility to their spouse, especially negatively, in the way decisions are made,” Gitonga said.

The vignettes also made it easier for both the enumerators to explain the scenarios and the farmers to understand and freely give their feedback. Sometimes, he pointed out, what men and women perceive as joint decision-making might not be the same. For instance, some men may think informing their wives that they are going to buy a particular seed means involving them. Here, the vignette activity aims to unpack the reality of joint decision-making in households.

From East Africa to Asia

During a recent field visit to the study area in Kakamega, Kenya, Hom Gartaula, Gender and Social Inclusion Research Lead at CIMMYT, noted the study’s importance to the inclusion of women in the farming cycle. “We urgently need to better understand the reality of women’s and men’s situation in terms of access to maize seed and other needed inputs and services. Otherwise, we risk designing breeding and seed systems that do not address the needs of the most vulnerable farmers, including women,” he said, adding that data from the study will enable insights into and comparison with the gender dynamics of wheat production in South Asia through cross-regional learning.

Gartaula also noted that, even though men predominantly manage South Asia’s wheat agriculture, women significantly contribute to it, especially in smallholder farming systems. In recent years, women’s contribution to providing labor and decision-making in wheat agriculture has increased due to the feminization of agriculture and livelihood diversification among smallholders.

Since women’s contributions to wheat farming are often vital to pre- and post-harvest processes, Gartaula notes they ought to be part of the entire maize and wheat value chain. That includes building more equitable seed delivery systems. “It is therefore important to have seed products that address the needs of different users and include home consumption and commercial sales,” he says.

The study will inform future efforts to ensure equitable seed access for both men and women farmers. Ultimately, if both men and women farmers access the best seed based on their needs and priorities, incomes will rise, households will be better sustained, and communities will become more food secure.

Explore our coverage of International Women’s Day 2022.