Skip to main content

Author: Sarah McLaughlin

Exploring the potential for scaling nutritious cereal-based foods

Agrifood systems contribute to at least 12 of the 17 Sustainable Development Goals (SDGs). To advance these goals, agrifood systems need to deliver more nutritious food to more people and simultaneously be environmentally sustainable and resilient. Changes are required at multiple levels to include more sustainable farming, reduce food losses in distribution and retail, and increase the intake of healthier foods by consumers.

Recent studies show that piecemeal interventions focusing on only one aspect or area are insufficient to make the required transformation. Issues related to food security and improved nutrition are complex, and their solutions must transcend traditional disciplinary and institutional boundaries.

Agrifood systems research looks to understand how systems work and actions by governments, non-governmental organizations (NGOs), and the private sector that can positively influence outcomes at scale. Researchers and development professionals use this approach to assess how different actors, practices and policies share the production, marketing, availability, and consumption of food. Agriculture, trade, policy, health, environment, transport, infrastructure, gender norms and education all have a role to play in achieving resilient agrifood systems that deliver greater benefits to farmers and consumers.

CIMMYT combines the expertise of economists, agronomists, crop breeders, nutritionists, and gender specialist to create more sustainable, nutritious, and profitable agrifood systems in multiple ways. It works to ensure that cereal crops are grown in the most sustainable way, that the public and private sectors are informed about consumer preferences, and that quality improved seed is available to farmers when they need it. CIMMYT also aims to better understand how cereal based foods are processed and sold to consumers and develop options for promoting the consumption of more nutritious cereal-based foods.

Pasta and other supplies on display in a supermarket, Mexico.

Consumer demand in Mexico

Recently, CIMMYT partnered with the National Institute of Public Health of Mexico (INSP), to compare access to healthy processed cereal-based food in supermarkets, convenience stores, and corner stores for consumers from low- and high-income neighborhoods in Mexico City. Discussions continue to rage about how policies can support more nutritious and healthier diets in Mexico, including the new requirement for food warning labels on the front of packaging.

The study showed that availability of healthy products was scarce in most stores, particularly in convenience stores. Compared to supermarkets in the low-income areas, those in high-income areas exhibited a greater variety of healthy products across all categories. A follow up study is underway that examines the outcomes of the new food label warnings on product availability and health claims.

Other CIMMYT studies have explored the demand by lower- and middle-income consumers in central Mexico for healthy cereal-based foods, including their demand for blue maize tortillas and whole grain bread. These studies help policy makers and non-governmental organizations (NGOs) design strategies on how to increase access and consumption of healthier processed wheat and maize products in fast-evolving food systems.

Farmer Gladys Kurgat prepare wheat chapatti with help from her nephew Emmanuel Kirui for her five sons at home near Belbur, Nakuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Blending wheat products in Kenya

In many parts of the world, the Ukraine-Russia war has intensified the need to change how wheat-based products are formulated. For example, Kenya is a country where wheat consumption has been growing rapidly for a decade, yet imports have comprised 90% of its wheat supplies, which up until recently came from Ukraine and Russia. Wheat flour blending in Kenya is a promising option for reducing wheat imports, generating demand for other, lesser-utilized cereals, such as sorghum, and increasing the nutrient profile of bread products. But wheat blending, despite having been discussed for many years in Kenya, has yet to gain traction.

In response, CIMMYT and the Jomo Kenyatta University of Agriculture and Technology (JKUAT) are exploring the feasibility of reducing wheat imports in Kenya by replacing between 5-20% of wheat flour with flour derived from other cereals, including sorghum and millet. While existing evidence suggests that consumers may except up to 10% blending in cereal flours, the stakes are high for both the wheat industry and government. Robust and context specific evidence is needed on consumers’ willingness to accept blended products in urban Kenya and the economic feasibility of blending from the perspective of millers and processors.

Among the critical questions to be explored by CIMMYT and JKUAT: What flour blends will consumers most likely to accept? What are the potential health benefits from blending with sorghum and millet? Is there enough sorghum and millet readily available to replace the wheat removed from flour? And finally, what is the business case for wheat flour blending?

Cover photo: Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: CIMMYT/ Peter Lowe)

The critical role of smallholder farmers of the Eastern Gangetic Plains in the global food chain

The Eastern Gangetic Plains (EGP) are vulnerable to climate change and face tremendous challenges, including heat, drought, and floods. More than 400 million people in this region depend on agriculture for their livelihoods and food security; improvements to their farming systems on a wide scale can contribute to the Sustainable Development Goals (SDGs).

The Australian Centre for International Agricultural Research (ACIAR) has been supporting smallholder farmers to make agriculture more profitable, productive, and sustainable while also safeguarding the environment and encouraging women’s participation through a partnership with the International Maize and Wheat Improvement Center (CIMMYT). On World Food Day, these projects are more important than ever, as scientists strive to leave no one behind.

The EGP have the potential to significantly improve food security in South Asia, but agricultural production is still poor, and diversification opportunities are few. This is a result of underdeveloped markets, a lack of agricultural knowledge and service networks, insufficient development of available water resources, and low adoption of sustainable farming techniques.

Current food systems in the EGP fail to provide smallholder farmers with a viable means to prosper, do not provide recommended diets, and impose undue strain on the region’s natural resources. It is therefore crucial to transform the food system with practical technological solutions for smallholders and with scaling-up initiatives.

Zero tillage wheat growing in the field in Fatehgarh Sahib district, Punjab, India. It was sown with a zero tillage seeder known as a Happy Seeder, giving an excellent and uniform wheat crop. (Photo: Petr Kosina/CIMMYT)

ACIAR: Understanding and promoting sustainable transformation of food systems

Over the past ten years, ACIAR has extensively focused research on various agricultural techniques in this region. The Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project sought to understand local systems, demonstrate the efficacy of Conservation Agriculture-based Sustainable Intensification (CASI) approaches, and create an environment that would support and scale-up these technologies.

To establish a connection between research outputs and development goals, the Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar) project expands on previous work and partnership networks. This is a collaborative venture with CIMMYT that demonstrates inclusive diversification pathways, defines scaling up procedures for millions of smallholder farmers in the region, and produces a better understanding of the policies that support diversification.

Building the future and inspiring communities

Men and women both contribute substantially to farming activities in the EGP of India, Bangladesh, and Nepal, but gender roles differ according to location, crops and opportunities. It is a prevalent perception supported by culture, tradition, and social biases that women cannot be head of the household.

In Coochbehar, India, the unfortunate passing of Jahanara Bibi’s husband left her as head of her household and sole guardian of her only son. Though a tragic event, Bibi never gave up hope.

Going through hardships of a rural single female farmer intensified by poverty, Bibi came to know about CASI techniques and the use of zero-till machines.

Though it seemed like a far-fetched technique at first and with no large network to rely on for advice, Bibi decided to gather all her courage and give it a try. Being lower cost, more productive, adding income, and saving her time and energy all encouraged Bibi to adopt this zero-till machine in 2013, which she uses to this day. Today, she advocates for CASI technology-based farming and has stood tall as an inspiration to men and women.

“I feel happy when people come to me for advice – the same people who once thought I was good for nothing,” said Bibi.

With no regrets from life and grateful for all the support she received, Bibi dreams of her future as a female agro-entrepreneur. Being a lead female farmer of her community and having good contact with the agriculture office and conducive connection with local service providers, she believes that her dream is completely achievable and can inspire many single rural female farmers like herself to encourage them to change perceptions about the role of women.

Cover photo: Jahanara Bibi standing by her farm, Coochbehar, India. (Photo: Manisha Shrestha/CIMMYT)

Nestlé Mexico and CIMMYT expand their collaboration for responsible sourcing through Plan Maíz

Nestlé and CIMMYT executives at CIMMYT HQ. (Photo: Francisco Alarcón/CIMMYT)

In the framework of National Maize Day, Nestlé Mexico, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), strengthens its commitment to support the development of farmers in Mexico, through the Plan Maíz initiative, which aligned with the goals of the Sustainable Development Goals (SDGs), seeks to boost productivity, increase and improve the practices of regenerative agriculture to positively impact food security, environmental impact and social inclusion of the Mexican fields.

In Mexico, maize is not only a staple food, but also a fundamental component of the gastronomic and cultural heritage and identity of Mexicans. For this reason, since 2017, Nestlé Mexico and CIMMYT signed a collaboration agreement to work together and contribute not only to improve the quality of life of farmers, but also to take care of the resources that produce one of the most important grains for our country, for the world and for the agrifood sector.

The event, Plan Maíz, commitment to regenerative agriculture and sustainability, was attended by Bram Goavaerts, director general of CIMMYT, and Julieta Loaiza, Vice President of Communication and Corporate Affairs of Nestlé Mexico, as well as representatives and managers of both institutions, in order to present progress and ratify the agreements for the future, with the aim of continuing to combine resources and actions for the development of agriculture in Mexico.

“At Nestlé we are committed to the sustainability and development of the Mexican fields. We have more than 90 years of work, commitment and experience in this beautiful country, so we will expand our support for the development and training of farmers to improve their production processes through regenerative agricultural practices for the care of natural resources and food security in Mexico,” said Loaiza.

Govaerts said, “At CIMMYT we are very committed to maize and wheat producers in Mexico, so this Nestlé-CIMMYT alliance allows us to multiply the impact to protect and conserve Mexico’s agricultural resources and strengthen the food security of Mexicans.”

The results of Plan Maíz obtained to date are significant: 400 farmers have benefited by adopting sustainable practices for the production of both maize and wheat, since they attended training and demonstration events that promoted a more sustainable commercial production model.

Thanks to the agreement’s training, the volume of maize and wheat produced grew to a cumulative total volume of more than 193,000 tons of maize and 21,690 tons of wheat. The project impacted more than 9,000 hectares of maize and wheat. In total, and during eight productive cycles, the accumulated number of hectares impacted amounted to more than 19,000, where there is a record of at least the adoption of sustainable practices such as: integral fertility, integral and responsible management of fertilizers and phytosanitary products, among others.

Nestlé has aimed to achieve zero net emissions in its operations by 2050. In this regard, it focuses its efforts on acting on climate change by supporting and expanding regenerative agriculture. This means refining and growing agricultural sustainability programs in key commodities.

To achieve this, they are intensifying their commitment to farmers so that the solutions they create for and with them achieve a positive and sustainable change both in their agricultural processes and in the main raw materials. Therefore, the goal is for 20% of maize and wheat from Plan Maíz to come from regenerative agriculture practices by 2025 and 50% by 2030, thus continuing to build on the commitment to develop the full power of food to improve the quality of life, today and for future generations.

About Grupo Nestlé Mexico:

Nestlé is the world’s largest food and beverage company. It is present in 187 countries around the world, and its 300,000 employees are committed to Nestlé’s purpose of improving the quality of life and contributing to a healthier future. Nestlé offers a broad portfolio of products and services for people and their pets throughout their lives. Its more than 2,000 brands range from global icons to local favorites. The company’s performance is driven by its nutrition, health and wellness strategy. Nestlé is headquartered in the Swiss city of Vevey, where it was founded more than 150 years ago. With 90 years of presence in Mexico, Nestlé is also the leading Nutrition, Health and Wellness company in the country, with the support of 32 global Research Centers, 17 factories in 7 states and 16 distribution centers, where 13,000 jobs are generated. Visit: www.nestle.com.mx

About the International Maize and Wheat Improvement Center (CIMMYT):

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

Press contacts:

Nestlé Mexico: Norma Vázquez | norma.vazquez@mx.nestle.com

Hill+Knowlton Strategies: Aremi de la Cruz | aremi.delacruz@hkstrategies.com

Read this article in Spanish.

Is uptake of rust-resistant wheat linked to gender equality?

Sieg Snapp presents research on agroecological approaches to maize farming in Malawi and Zimbabwe at Tropentag 2022. (Photo: Ramiro Ortega Landa/CIMMYT)

Farmers, development practitioners and scientists gathered at Tropentag 2022 between September 14-16 to answer a question that will affect all our futures: can agroecological farming feed the world?

Tropentag is an annual interdisciplinary conference on research in tropical and subtropical agriculture, natural resource management and rural development, jointly organized by nine European universities and the Council for Tropical and Subtropical Agricultural Research (ATSAF e.V), in cooperation with the GIZ Fund International Agricultural Research (FIA).

This year’s event explored the potential of agroecology to contribute to improved nutrition, enhanced natural resource management and farm incomes.

Sieg Snapp, Director of the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) presented on agroecology approaches to enhance learning in a changing world based on experiences with maize-based cropping systems in southern Africa. Snapp suggested that accelerated learning and adaptative capacity are key to the local generation of suitable solutions to agricultural problems, and proposed agroecology as a foundational approach that emphasizes understanding principles, harnessing biological processes, and enhancing local capacity.

Snapp shared how an agroecology living laboratory in Malawi has supported farmer agency around soil health, crop diversification and sustainable intensification since 2013, while living labs are being established in “food territories” in Zimbabwe to support innovation and strategies for evaluating the benefits of farm-scale agroecology approaches. She also explored solutions for pest management, inclusive financing modalities and collaborative innovation generation between farmers and researchers.

Gender and disease-resistant varieties

Michael Euler, Agricultural Resource Economist at CIMMYT, presented in the conference session on technology adoption and dissemination for smallholder farms, which included contributions on the adoption and impact of improved forage production, use of biogas facilities, agroecological management practices, improved wheat seeds, and access to and use genetic diversity in gene banks.

Based on data from CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project in Ethiopia, Euler presented a study on how intra-household decision-making dynamics influence the adoption of rust-resistant wheat varieties.

By using questionnaires that were addressed separately to male and female spouses in the household, researchers obtained insights on perceived individual roles in decision-making and agreements. The study found that an increase in the role of the female spouse in household farming decisions is positively associated with the uptake of rust-resistant varieties.

Additional sessions from the event focused on crops and cropping systems, animal production systems, food security and nutrition, agroecology, and food processing and quality.

Annual Report 2021 launched

Today, the International Maize and Wheat Improvement Center (CIMMYT) is excited to share with you the Annual Report 2021: From Discovery to Scaling Up.

Read the CIMMYT Annual Report 2021Read the web version of the Annual Report 2021

Download the Annual Report 2021 in PDF format

Download the financial statements 2021

Our latest Annual Report captures the three ways in which CIMMYT science makes a difference:

  1. The scientific pathway from discovery and validation: In 2021, we embarked on an ambitious initiative to apply environmental genome-wide association methods to predict how today’s maize, rice, sorghum, cassava, groundnut, and bean varieties will perform in the future under climate scenarios, and help them succeed in three or four decades from now.
  2. Translating science to innovation: Last year, we made important strides in boosting the resilience of maize and wheat to a hotter and drier world — and to the threats of ever-evolving and invasive pests and diseases.
  3. Scaling up innovation for farmers and society: In collaboration with dozens of public- and private-sector partners in the countries where we work, in 2021 we scaled up sustainable technologies and farming practices for hundreds of thousands of farmers.

CIMMYT director general Bram Govaerts presented the current challenges: “A global food crisis fueled by conflict, trade disruptions, soaring commodity prices and climate change.” He also expressed CIMMYT is ready to respond to the immediate and long-term threats facing humanity. “We have solid, science-informed solutions, policy recommendations and proven methodologies that will help avert the global food security crisis that looms,” he said.

We want to thank all our funders and partners for their collaboration and support, year after year.

Technology addresses gender inequality in wheat farming

Despite the development of improved wheat varieties with increased productivity, farming systems in the Global South are still marred by inequitable access based on gender and other social characteristics.

At the International Maize and Wheat Improvement Center (CIMMYT), scientists present a case for wheat varietal improvement programs to include gender-sensitive technology development, dissemination and evaluation in order to remove barriers for women, poor and marginalized farmers.

Focusing on Ethiopia and India due to their large wheat economies and challenges with inequality, researchers assessed the barriers preventing male and female smallholders from using modern wheat varieties. Issues covered through evaluation could include wheat varietal trait preferences, adoption of technology, and decision-making and labor-use changes associated with new varieties.

Concluding the paper is the argument that institutional arrangements in research and development (R&D) programs must transform to address gender equity and inclusivity in wheat improvement.

Read the study: Gender, wheat trait preferences, and innovation uptake: Lessons from Ethiopia and India

Cover photo: Rural farmers associated with JEEViKa-Bihar attend a public wheat harvest activity organized by the Cereal Systems in South Asia (CSISA) project in Nagwa village, India, to encourage conservation agriculture practices in the region. (Photo: Nima Chodon/CIMMYT)

Drought and heat tolerance in bread wheat landraces

Climate change is predicted to cause losses of more than 20% in agricultural production by 2050. With a growing global population, crops adapted to the effects of climate change, such as drought and heat, are necessary for the maintenance of productivity levels to meet the demand for food.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with scientists from the Universidad Autónoma Agraria Antonio Narro, set out to analyze bread wheat landrace traits against seven climactic variables: mean temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean temperature, heat index of maximum temperature, and drought index. The method used genome-environment associations (GEA) and environmental genome-wide association scans (EnvGWAS), which have traditionally been poorly applied in this type of research.

Based on a sample of 990 bread wheat landraces from the CIMMYT genebank, the study discovered proteins associated with tolerance to drought and heat. With these results, new genotypes with resistant alleles can be selected for breeding programs to produce resistant varieties adapted to extreme environments and the effects of climate change.

Read the study: Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.)

This work was implemented by CIMMYT as part of the Seeds of Discovery (SeeD) Initiative in collaboration with Universidad Autónoma Agraria Antonio Narro (UAAAN), made possible by the generous support of the MasAgro project funded by the Government of Mexico’s Secretariat of Agriculture and Rural Development (SADER). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of SADER.

Cover photo: Field hand collecting wheat in Ciudad Obregon, Mexico. (Photo: Peter Lowe/CIMMYT)

Partnerships crucial for protecting plant health

Prasanna Boddupalli presents at the International Plant Health Conference, September 2022. (Photo: International Plant Health Conference)

CGIAR research centers involved in the One CGIAR Plant Health Initiative joined forces at the International Plant Health Conference in London on September 21-23, 2022 to highlight the importance of global partnerships in effectively preventing and managing devastating pest and disease outbreaks in the Global South.

In an interactive side event on Plant Health Management in the Global South through Partnerships on September 21, the Plant Health Initiative team presented on and discussed: global diagnostic and surveillance systems against plant pests and diseases; risk assessment and preparedness for proactive response; integrated pest and disease management; mycotoxin mitigation strategy; and gender and social inclusion.

The CGIAR Plant Health Initiative, launched in January 2022, aims to protect agriculture-based economies of low and middle-income countries in Africa, Asia and Latin America from pest and disease outbreaks in major crops by leveraging and building viable networks across an array of national, regional, and international institutions.

Building on a track record of more than 50 years of impactful research, the Plant Health Initiative aims to develop and deploy solutions through partnerships, and to achieve impacts that contribute towards several Sustainable Development Goals (SDGs).

Healthy crops for a healthy planet

Showing the strength of partnerships in action, researchers from the International Maize and Wheat Improvement Center (CIMMYT), Alliance Bioversity-CIAT (ABC), the International Institute of Tropical Agriculture (IITA), the International Potato Center (CIP), and the International Food Policy Research Institute (IFPRI) highlighted the Initiative’s activities and sought feedback from the plant health experts participating in the session.

Martin Kropff, CGIAR Science Director of Resilient Agrifood Systems, welcomed the participants to the session. Prasanna Boddupalli, CGIAR Plant Health Initiative Lead & Director of CIMMYT’s Global Maize Program, introduced the Initiative and its scope, emphasizing the inclusive partnerships. This was followed by presentations from Monica Carvajal (ABC), Lava Kumar (IITA), Alejandro Ortega-Beltran (IITA), Nozomi Kawarazuka (CIP), and Yanyan Liu (IFPRI).

Time was dedicated to engaging participants through Mentimeter polling on specific questions related to plant health management. Participants also shared their views on plant health research coordination, capacity strengthening, and knowledge exchange between the Global North and Global South, with a focus on improving food security and livelihoods of smallholders.

The event was successful not only in generating greater understanding of the Initiative amongst the participants, but also in developing significant interest from the participants to contribute to the Initiative’s goals with collective actions, all for the benefit of smallholders in the low- and middle-income countries of Africa, Asia, and Latin America.

Establishing wider networks for plant health

The Plant Health Initiative team, together with Kropff, also had a productive discussion on September 22 with Osama El-Lissy, International Plant Protection Convention (IPPC) Secretary, on opportunities for joint actions on plant health management in the Global South by IPPC and the CGIAR Plant Health Initiative, together with national partners.

Boddupalli also participated in a workshop on September 20 organized by Euphresco, a network of organizations that fund research projects and coordinate national research in the phytosanitary area, at the Department of Environment, Food & Rural Affairs (DEFRA) in the United Kingdom, on shaping global plant health research coordination. The workshop participants discussed and endorsed several actions for advancing global plant health research coordination.

Participants of a workshop by Euphresco endorsed actions to advance research coordination for global plant health. (Photo: Euphresco)

Gender-informed policies fundamental for climate change adaptation

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) are working to understand the gender gap in climate change adaptations and the causes behind this disparity.

Using data from 2,279 farm households in Ethiopia, the results show a significant gap due to the observable and unobservable different characteristics of households headed by men and women. For example, women are less likely to adopt climate change adaptation measures due to their workload in household chores. However, evidence suggests that when the gender gap shrinks, climate change adaptation can be improved in female-headed households by almost 19%.

The study determined that policies must tackle unobservable characteristics in order to address the gender gap. Short-term projects and long-term gender-informed policies are essential in creating equitable opportunities for all.

This crucial work will support developing countries to achieve targets set by the United Nations Sustainable Development Goals (SDGs) and farming households’ susceptibility to the risks of climate change.

Read the study: Gender and climate change adaptation: A case of Ethiopian farmers

Cover photo: Female farmer harvests green maize in Ethiopia. Women are essential to the agricultural sector, but the gender gap prevents them from embracing climate change adaptation measures. (Photo: Peter Lowe/CIMMYT)

Developing climate change resistant wheat

The International Maize and Wheat Improvement Center (CIMMYT) are at the forefront of dealing with the impact of climate change by developing wheat varieties with tolerance to heat and drought.

Wheat constitutes as much as 60% of daily calorie intake in developing countries. However, rising temperatures caused by climate change is reducing farmers’ yields.

Matthew Reynolds, Wheat Physiologist, and Maria Itria Ibba, Cereal Chemist, share how their work contributes towards securing food security and nutrition by breeding new wheat varieties.

Read the original article: Develoing climate change-resistant wheat

Advice for food systems in crisis featured in GAP Report

Farm worker Charles Gitero checks wheat Robin for traces of disease at Ndabibi Farm, Naivasha, Kenya. (Photo: Peter Lowe/CIMMYT)

Expertise from CIMMYT on transforming food systems in a crisis-stricken world features in the yearly Global Agricultural Productivity (GAP) Report 2022, released October 4.

As a partner to the GAP Initiative, CIMMYT’s submission to the report is part of the Stories of partnership and productivity growth section. It explores the interdependency and vulnerability of food systems to market shocks and the long-term impacts of these shocks on vulnerable communities, particularly in the Global South.

To build agricultural resilience that can overcome threats of food insecurity and malnutrition, CIMMYT recommends targeted expansion of agricultural production and high levels of investment in research and capacity development.

Tek Sapkota, Agricultural Scientist and System/Climate Change Specialist with CIMMYT’s Sustainable Agrifood Systems (SAS) program, was a speaker at the launch event, which explored the outlook for agricultural productivity growth in the face of conflicts, COVID-19 and climate change. Presenters also examined where agricultural productivity is stagnating or falling and its repercussions for food security and the environment, and how to accelerate sustainable productivity growth at all scales of production.

Read or download the report: 2022 GAP Report

About the Global Agricultural Productivity Report:

The Global Agricultural Productivity (GAP) Report is a source for productivity data, analysis, and policy recommendations that inspire action. In collaboration with partners in the private sector, NGOs, conservation organizations, universities, and global research institutions, the annual report and year-round engagement provides a roadmap toward progress.

In Burkina Faso, a business model for mechanization is providing hope

Ouattara Ali grows rice and maize on a small parcel of land in a village on the outskirts of Bobo Dioulasso, Burkina Faso’s second-largest city.

In the eight years since he began farming, he has faced significant challenges because he depends on traditional practices. Other smallholders in the community are in a similar situation, which limits their ability to realize greater prosperity.

A steady trickle of young adults is leaving the area to find work in the city as an alternative to the difficulty of trying to make ends meet on limited hectarage, coping with erratic harvests and with no guarantee of long-term financial stability.

This story is not unique to Ali and his community – it is familiar across Burkina Faso and other nations where the problems of food security, reliable employment, and dependable income limit economic development in rural areas.

Mechanization as a business

To help communities tackle these challenges, in 2014 Germany’s Federal Ministry for Economic Cooperation and Development (BMZ) created the special initiative One World No Hunger, which launched Green Innovation Centers for the Agriculture and Food Sector (GIC) in 14 countries in Africa and two in Asia. In Burkina Faso, the GIC focuses primarily on the sesame and rice value chains in the Hauts-Bassins, Cascades, Boucle du Mouhoun, and Sud-Ouest regions.

These initiatives include the introduction of mechanized agricultural practices that can increase yields of maize, rice, and other crops. In connection with GIC, farmers like Ali have used machines across the full agricultural value chain – from seed development to post-harvest – to improve their own crop yields. Mechanization has also enabled them to offer their services for hire to other farmers in the area.

Mechanization is a significant economic driver for boosting development of farm areas, but to achieve sustainable success and maximize the ability to bring transformative change to communities, business model development must be a critical focus area.

One of Ouattra Ali’s two-wheel tractors that he uses to provide machinery hire services to nearby farmers. (Credit: Rabe Yahaya/GIZ)

In August, the International Maize and Wheat Improvement Center (CIMMYT) and Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GmbH, collaborated with the United Nations Food and Agriculture Organization (FAO) and Germany’s University of Hohenheim to host a webinar on business models for agricultural mechanization projects. Joining the conversation were 48 participants from countries including Burkina Faso, Nigeria, Benin, and Vietnam.

During the webinar, FAO Senior Consultant Karim Houmy presented research on business models from two case studies of agricultural mechanization hire services in sub-Saharan Africa. Houmy found five basic types of business model, each with its own structure, complexity, and requirements, but he also outlined common features that characterize all successful models.

Many models, a few key principles

The basic business model for agricultural mechanization involves a farmer who uses machinery on their own crops, and then subsequently provides the same services to neighboring farmers. This model is probably the simplest and least expensive. Any smallholder who can procure the necessary machinery, parts, and training can launch this small business, generate additional income, and help neighbors increase their yield. This model also has limits, however, as it restricts farmers to a relatively small footprint of clients whose farms are located near the service provider.

At the other end of the scale is an enterprise model where an entrepreneur does not own any farm machinery but uses mobile phones and geographic information system (GIS) technology to connect farmers with service providers. This model provides a much greater geographical scope as well as greater opportunities for growth and innovation. It also adds layers of complexity that require a network of intermediaries – from machinery dealers and mechanics to booking agents – and bank financing.

The more diverse in operational offerings a business model is, the more promise it holds for generating economic growth and food security. This occurs by spreading activity across a wider geographic region, providing yield-increasing services for more farmers, employing more workers, and generating increased demand up and down the supply chain.

In addition to laying out the range of business models in operation today, Houmy identified success factors important for all, including long-term access to financing and local infrastructure, both of which are structural issues that entrepreneurs have less immediate control over. GIC works to address this shortcoming by involving a broad range of stakeholders, including government actors, in addressing issues of sustainability.

Houmy encouraged entrepreneurs to focus on areas like cultivating a skilled staff, building close links with processors and aggregators, and diversifying the services they offer. This sort of business model training can translate into significant improvements on the ground.

Building a business

Life began to change dramatically for Ali when his local agricultural bureau connected him to the GIC in his area.

Through his relationship with GIC, Ali gained access to some basic mechanized farming equipment, including disc plows, harrows, and planters, which revolutionized his work. He now prepares his rice and maize fields more quickly and evenly. He plants them more efficiently and spends less time harvesting while producing equal and sometimes higher yields. To support this transition, GIC provided training in agricultural mechanization, seed production, and financial management.

Initially, Ali sustained an injury while using a harrow and trailer. Thankfully, this did not slow him down for long, he said. He learned how to regularly tighten components of the machine to avoid further injuries and other safety problems.

Soon, Ali began using his machines to provide services to his neighboring farmers as well, helping them with land preparation, transportation, and planting.

Today, 22 local farmers use Ali’s services, and his community is experiencing the benefits. Less time is spent on planting and harvesting while agricultural yields are increasing. Mechanization marked a sharp decline in the drudgery associated with farming tasks, especially for the area’s youth and women.

Ali is thinking about the future by expanding and diversifying. He plans to buy a seeder and a thresher if he can get financing, and he is interested in additional training. He is developing a business plan for a larger enterprise that would be “the farmers’ one-stop shop” for mechanization services in his area. With the profits so far, he has built a house for his wife and two children and bought a small car.

GIC has supported 26 service providers like Ali in Burkina Faso as well as others in Benin, Mali, and Kenya. Over time, the proliferation of sustainable agricultural operations like Ali’s, as well as their growth into more complex and more profitable business networks, holds enormous promise for rural areas where food security, sustainable employment and a baseline of prosperity have been elusive for far too long.

Cover photo: Workers on Ouattra Ali’s farm outside of Bobo Dioulasso, Burkina Faso. (Credit: Rabe Yahaya/GIZ)

The right time for the right place

Wheat is a strategically important crop for Afghanistan because as a major source of nutrition — accounting for up to 60% of a family’s daily caloric intake — it is linked directly to national food security. However, despite occupying over 2.5 million hectares of arable land across the country, Afghanistan does not currently produce enough wheat to meet the needs of a growing population. On average, annual production is estimated at around 5 million metric tons — 2 million metric tons less than needed — and as a result Afghanistan makes up this significant shortfall by importing wheat flour from neighboring countries where wheat productivity is significantly higher.

There is tremendous potential to increase national wheat productivity by introducing improved agronomic practices and making use of suitable farming technologies. However, given Afghanistan’s vast agro-ecological diversity, it is essential that best practices are recommended based on local conditions, as these vary greatly across the country.

Take seeding, for instance. Sowing wheat seed at the optimum time has been shown to help maximize yields and significant research has been undertaken to determine the optimal sowing dates for winter and spring wheat in different areas. These times are governed not only by environmental requirements and growing cycles, but also by the need to avoid certain diseases and insect pests, which may be more prevalent at specific times of year.

But these can vary widely even within a season. For example, research shows that the best time to sow irrigated winter wheat in Afghanistan’s hot and arid western provinces is from the second week of October up until the end of the month. However, the optimum window falls one month later in the more mountainous and forested provinces of the East, and even later for rain-fed wheat.

The same distinctions apply to seeding and fertilizer application rates, which can vary subtly between similar regions. Consider that the optimum seed rate for irrigated wheat sown using the broadcast method is the same in both the Northern and Central zones, 25-30 kilograms per jerib (approx. half an acre). One might expect the optimum rates for row cultivation to match, but in fact they differ by two kilograms. This might not seem like much, but given how significantly seed density and spacing influence crop yield and quality, these figures are vital knowledge for farmers looking to maximize their yield potential.

To help disseminate these research-based recommendations to farmers and local agricultural extension staff, researchers at the International Maize and Wheat Improvement Center (CIMMYT) have partnered with Afghanistan’s Ministry of Agriculture, Irrigation and Livestock, Michigan State University’s Global Center for Food Systems Innovation and the USAID to compile four new booklets featuring zone-specific advice for irrigated and rain-fed systems in each of Afghanistan’s main agro-ecological zones.

Covering between four and ten provinces each, these guides include localized recommendations for the best sowing dates, nutrient management, weed management, and best practices in irrigation, arming wheat farmers with the key information they need to effectively increase production in their area and support the country’s wider food security needs.

More information is available in the booklets below:

Zone-Specific Recommendations for: Northern Region

Zone-Specific Recommendations for: Central Region

Zone-Specific Recommendations for: Eastern Region

Zone-Specific Recommendations for: Western Region

Cover photo: The optimal time for wheat sowing in Afghanistan varies by region according to the country’s vast agro-ecological diversity. CIMMYT recommends a localized approach. (Photo: Rajiv Sharma/CIMMYT)

Special issue on gender research in agriculture highlights CIMMYT’s work on gender inclusivity

A new special issue on gender research in agriculture highlights nine influential papers published in the past three years on gender research on crop systems including maize.

The virtual special issue, published earlier this month in Outlook on Agriculture, features work by International Maize and Wheat Improvement Center (CIMMYT) scientists on gender inclusivity in maize systems in Africa and South Asia.

In the Global South, women contribute substantial labor to agriculture but continue to face barriers in accessing agricultural resources, tools and technologies and making decisions on farms.

Combatting gender inequality is crucial for increasing agricultural productivity and reducing global hunger and poverty and should be a goal in and of itself. Evidence suggests that if women in the Global South had access to the same productive resources as men, farm yields could rise by up to 30 percent, increasing total agricultural output by up to 4 percent and decreasing the number of hungry people around the world by up to 17 percent.

The latest virtual special issue includes a review of existing research by CIMMYT gender experts, exploring issues and options in supporting gender inclusivity through maize breeding and the current evidence of differences in male and female farmers’ preferences for maize traits and varieties. The team also identified key research priorities to encourage more gender-intentional maize breeding, including innovative methods to assess farmer preferences and increased focus in intrahousehold decision-making dynamics.

The issue also features a study by CIMMYT and Rothamsted Research researchers on differences in preferred maize traits and farming practices among female and male farmers in southern Africa. The team found that female plot managers and household heads were more likely to use different maize varieties and several different farming practices to male plot managers and household heads. Incorporating farming practices used by female farmers into selection by maize breeding teams would provide an immediate entry point for gender-intentionality.

Also included is a recent paper by CIMMYT gender researchers which outlines the evidence base for wheat trait preferences and uptake of new farming technologies among male and female smallholder farmers in Ethiopia and India. The team highlight the need for wheat improvement programs in Ethiopia and India to include more gender-sensitive technology development, evaluation and dissemination, covering gender differences in wheat trait preferences, technology adoption and associated decision-making and land-use changes, as well as economic and nutritional benefits.

In a study carried out in the Eastern Gangetic Plains of South Asia, CIMMYT scientists investigated how changes in weed management practices to zero tillage – a method which minimizes soil disturbance – affect gender roles. The team found that switching to zero tillage did not increase the burden of roles and responsibilities to women and saved households valuable time on the farm. The scientists also found that both women and men’s knowledge of weed management practices were balanced, showing that zero tillage has potential as a gender inclusive farming practice for agricultural development.

Also featured in the special issue is a study by CIMMYT experts investigating gender relations across the maize value chain in rural Mozambique. The team found that men were mostly responsible for marketing maize and making decisions at both the farm level and higher levels of the value chain. The researchers also found that cultural restrictions and gender differences in accessing transport excluded women from participating in markets.

Finally, the collection features a study authored by researchers from Tribhuvan University, Nepal and CIMMYT exploring the interaction between labour outmigration, changing gender roles and their effects on maize systems in rural Nepal. The scientists found that the remittance incomes sent home by migrants and raising farm animals increased maize yields. They further found that when women spent more time doing household chores, rearing farm animals and engaging in community activities, maize yields suffered, although any losses were offset by remittance incomes.

Read the study: Virtual Special Issue: Importance of a gender focus in agricultural research for development

Cover photo: Women make up a substantial part of the global agriculture workforce, but their role is often limited. (Credit: Apollo Habtamu/ILRI)

Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

A female farmer using digital agricultural tools. (Credit: C. De Bode/CGIAR)

Research shows that digital innovations can increase small-scale farmers’ incomes, boost the adoption of better practices, and increase resilience to climate shocks while reducing the gender gap and managing food system risks. However, these benefits are not universal. More than 600 million people and 40 percent of small farms are still not covered by mobile internet, especially in those countries most dependent on agricultural production. Across low- and middle-income countries, women are 7 percent less likely than men to own a mobile phone and 15 percent less likely to use mobile internet.

A new CGIAR Research Initiative, Digital Innovation, has been launched to research pathways to bridge this digital divide, improve the quality of information systems, and strengthen local capacities to realize the potential of digital technologies.

Read the original article: Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers