Skip to main content

Author: Sarah McLaughlin

Shifting to quality protein maize diet can provide cost-benefit for the poultry feed industry in Nepal

The demand for maize for poultry feed in Nepal has increased dramatically over the years. It constitutes about 60% of the poultry feed and is considered as the principal energy source used in poultry diets. About 70% of the total crop required by the feed industry is imported and such dependence on import could jeopardize its sustainability if any political, natural or health related crisis disrupts the supply chain. In addition to maize, the industry also imports synthetic amino acid to meet the requirements of poultry production since the regular maize grain used by the feed industry is deficient in essential amino acids that helps form proteins.

A recent assessment conducted by the International Maize and Wheat Improvement Center (CIMMYT) in Nepal highlights the prospects of using Quality Protein Maize (QPM) to mitigate protein deficiency found in regular maize. The authors suggest that the poultry feed industry can minimize the average feed cost by 1.5% by substituting regular maize with QPM. This would translate to a daily cost-saving of about US$26,000 for the industry. If this cost saving is shared across the value chain actors including farmers for domestic production of QPM and other biofortified maize vis a vis regular maize, then the dependency on imported maize can be significantly reduced.

The article published in the journal of International Food and Agribusiness Marketing, estimated least cost diet formulations for broilers and layers of different age groups, and the potential gains to be garnered by the maize seed and grain value chain actors in Nepal.

According to the study, a ton of feed produced using QPM reduces feed cost by at least US$7.1 for the broilers and by US$4.71 for layers. As a result, Nepal’s poultry feed industry can pay a maximum of 4% price premium with the cost saving for QPM.

“Considering the cost reduction potential QPM brings over regular maize, it can be a win-win situation for the poultry feed sector and maize value chain actors if they are strongly linked and operated in an integrated fashion,” explain the authors.

“By building awareness on the cost benefits, the feed industry exhibited a positive perception during the study period to use QPM for feed. Linking the seed companies with the feed mills is essential to leverage the benefits of the product.”

To promote and expand QPM production in Nepal, the authors also recommend provision of seed and fertilizer subsidies by the Government of Nepal to feed producers and cooperatives ensuring a continuous supply of the product to meet the demand.

The GoN has released two varieties of QPM maize but due to lack of effective seed production, extension and marketing programs, the potential of QPM maize remains unutilized. However, the authors firmly believe that appropriate policy focus on QPM seed production and grain marketing including premium price for QPM growers, can change the scenario where the demand for maize for feed industry can be gradually managed with domestic production.

Read the full study: Cost advantage of biofortified maize for the poultry feed industry and its implications for value chain actors in Nepal

Cover photo: Scientists have discovered that Quality Protein Maize (QPM) can mitigate the protein deficiency found in regular maize. (Credit: CIMMYT)

Cereals research for sustainable health and well-being

The current focus in nutritional circles on micronutrient malnutrition and unhealthy eating habits has raised questions about continuing to invest in research on energy-rich cereal crops and related farming systems.

In this new paper in the International Journal of Agricultural Sustainability, development scientists make the case that cereal foods are an important vehicle for enhanced nutrition – with additional improvement possible through plant breeding and interventions in processing, manufacturing and distribution. It also explains cereals are a rich source of both dietary fiber and a range of bioactive food components that are essential for good health and well-being.

The authors suggest a balanced, integrated research approach to support the sustainable production of both nutrient-rich crops and the basic cereals used in humanity’s most widely consumed and popular foods.

Read the full article: Continuing cereals research for sustainable health and well-being

Cover photo: Raw wheat grains in a wooden bowl and in a scoop, close-up. (Photo: Marco Verch/Flickr)

Decomposing maize yield gaps to better inform policy and public investments

In sub-Saharan Africa, smallholder production is characterized by low agricultural productivity which is often cited as a major factor of  food insecurity in the region. Recent research from multiple countries in the region suggests that average maize yields of around 1.7 t/ha in 2010 must increase to 6.8 t/ha to meet estimated demand in 2050. To achieve this, per-hectare maize output must grow by about 3.5% per year. Although addressing this challenge seems daunting, estimates suggest that such high yields are technically feasible. However, a shared understanding of the investments and policies required remain elusive.

Under the Taking Maize Agronomy to Scale in Africa (TAMASA) project, scientists from Wageningen University and the International Maize and Wheat Improvement Center (CIMMYT) conducted research on this question, using uniquely detailed farm surveys which provide integrated information about smallholders’ agronomic practices and farm management, soil health and other biophysical characteristics, as well as socioeconomic and other characteristics of farm households.

Decomposing yield gaps

Yield gaps for rainfed crops are defined as the difference between the water-limited yield potential and the actual yield observed in farmers’ fields. One framework to explain yield gaps decomposes the yield gap into efficiency, resource and technology components (Figure 1).

The study disaggregated maize yield gaps in Ethiopia based on field level and farming systems information (Figure 2), which helps to consider the variation in biophysical and socio-economic conditions observed in the country.

Major drivers of yield (and yield gap) outcomes in Ethiopia

The study showed that income from non-farm sources, value of productive assets, education and shorter plot distance from home reduced the efficiency yield gap. The resource yield gap was attributed to sub-optimal input use, specifically of pesticide and nitrogen. The technology yield gap comprised the largest share of the total yield gap, mostly due to limited use of fertilizer and improved varieties and not using the right type and placement of fertilizers and of improved seeds

The investigation further showed that crop residue and weeding frequency affected maize yield only when nitrogen was applied. In a related study, the authors also showed that maize yield reponse to fertilizer application was dependent on other inputs, specifically type of maize variety, manure application and high rainfall implying the need to integrate agricultural technologies in order to improve and sustain the maize productivity. The authors conclude that targeted but integrated policy design and implementation is required to narrow the overall maize yield gap and improve food security.

“Disaggregating and explaining maize yield gaps is essential to identify potential pathways that can narrow the yield gaps,” said Banchayehu Assefa from CIMMYT.  “This can help guide policy and investments to be more effective at raising smallholder productivity.”

How to improve fertilizer profitability

Modern maize varieties and mineral fertilizers use have been increasing over time and are believed to be among the factors behind the maize yield improvements observed in Ethiopia. However, maize yield response to fertilizer depends on other inputs and management factors and higher fertilizer application rates may not always lead to higher profitability. Using the details of management decisions and biophysical and marketing context, the authors estimated a maize yield response function and evaluated fertilizer yield responses and economic profitability of fertilizer investments by smallholder maize producers. They found that maize yield response to fertilizer was variable with an average value of 7.3 kg maize/ kg N, and it varied from -9 to 18 kg maize /kg. The degree of response was positively affected by phosphorus input and type of maize variety, and negatively by manure input and high rainfall. The key pathways identified to increase the profitability of nitrogen fertilizer use by smallholder maize producers are: improving yield responses with better management (e.g. use of improved maize varieties, complementary use of phosphorus where appropriate); addressing risk aversion (e.g. via crop insurance) in order to strengthen economic incentives for fertilizer investments; enabling the delay of crop sales to take advantage of higher output prices (possibly through expanded access to storage facilities and/or post-harvest loans to alleviate liquidity needs); and improving farm gate price ratios through improved access to markets.

Implications and further research

Even though maize yields have improved recently, under existing management practices smallholders’ maize yield still falls far below the water-limited potential yield. This urges revising the maize sector in terms of input provision, extension services and output markets.  Fertilizer use was highly variable and maize response to fertilizer use depended on other management choices. The study suggests that integrated management practices that work for specific conditions need to be identified, instead of sticking to blanket policy and management recommendations.

This work further points at the importance of additional detailed empirical research on the role of agronomic management practices, to decrease yield gaps. Studying the constraining factors that hinder timely input provision to the farmers might also help to improve input use and hence productivity. In addition, maize prices are too low to advance maize commercialization. Investigating potentials and constraints along the maize value chain might help to improve market participation.

Cover photo: Harvesting maize in East Shoa, Oromia, Ethiopia. (Photo: Banchayehu Assefa/CIMMYT)

CIMMYT Joins the International Wheat Genome Sequencing Consortium

A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)
A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)

The International Wheat Genome Sequencing Consortium (IWGSC) is pleased to announce that the International Maize and Wheat Improvement Center (CIMMYT), has joined the organization as a sponsoring partner.

The IWGSC is an international, collaborative consortium of wheat growers, plant scientists, and public and private breeders dedicated to the development of genomic resources for wheat scientists and breeders to facilitate the production of wheat varieties better adapted to today’s challenges – climate change, food security and biodiversity preservation. In 2018, the IWGSC published the first genome reference sequence of the bread wheat, an essential tool to identify more rapidly genes and regulatory elements underlying complex agronomic traits such as yield, grain quality, resistance to diseases, and tolerance to stress such as drought or salinity.

The International Maize and Wheat Improvement Center, known by its Spanish acronym, CIMMYT, is a non-profit international agricultural research and training organization focusing on two of the world’s most important cereal grains: maize and wheat, and related cropping systems and livelihoods. CIMMYT’s maize and wheat research addresses challenges encountered by low-income farmers in the developing world including food and nutritional insecurity, environmental degradation, economic development, population growth and climate change.

CIMMYT’s Global Wheat Program is one of the most important public sources of high yielding, nutritious, disease- and climate-resilient wheat varieties for Africa, Asia, and Latin America. CIMMYT breeding lines can be found in varieties sown on more than 60 million hectares worldwide.

“I am truly pleased that CIMMYT has re-joined the IWGSC. The current reference sequences have been absolutely essential, enabling us to design new trait-based markers for use in CIMMYT wheat breeding pipelines. There remains much to explore in characterizing wheat at the whole genome level,” said CIMMYT wheat molecular breeding laboratory lead, Susanne Dreisigacker.

Sponsors are an essential part of the IWGSC. They participate in IWGSC-led projects and, as members of the Coordinating Committee, they help shape the IWGSC priorities, strategic plans, and activities. Susanne Dreisigacker will represent CIMMYT in the IWGSC Coordinating Committee.

“CIMMYT is a leading force in developing wheat varieties for southern countries,” said Kellye Eversole, Executive Director of the IWGSC. “We are thrilled that they are joining forces with the IWGSC to build the genomic tools and resources that will ensure growers around the world have access to resilient and highly productive wheat varieties.”

After release of the wheat genome reference sequence in 2018, the IWGSC entered Phase II with activities focused on developing tools to accelerate the development of improved varieties and to empower all aspects of basic and applied wheat science. The organization recently released versions 2.1 of the reference sequence assembly and annotation, and is continuing to work with the wheat community to improve the reference sequence by gap filling and integration of manual and functional annotation. The IWGSC also is focused on securing funding for a project that will ensure that “platinum-quality” sequences, representing the worldwide wheat diversity of landraces and elite varieties, are available publicly for breeders.

About the International Wheat Genome Sequencing Consortium

The IWGSC, with 3,300 members in 71 countries, is an international, collaborative consortium, established in 2005 by a group of wheat growers, plant scientists, and public and private breeders. The goal of the IWGSC is to make a high-quality genome sequence of bread wheat publicly available, in order to lay a foundation for basic research that will enable breeders to develop improved varieties. The IWGSC is a U.S. 501(c)(3) non-profit organization. To learn more, visit www.wheatgenome.org and follow us on Twitter, Facebook, LinkedIn and YouTube.

Climate-smart strategy for weed management proves to be extremely effective

Rice-wheat cropping rotations are the major agri-food system of the Indo-Gangetic Plains of South Asia, occupying the region known as the “food basket” of India. The continuous rice-wheat farming system is deceptively productive, however, under conventional management practices.

Over-exploitation of resources leaves little doubt that this system is unsustainable, evidenced by the rapid decline in soil and water resources, and environmental quality. Furthermore, continuous cultivation of the same two crops over the last five decades has allowed certain weed species to adapt and proliferate. This adversely affects resource-use efficiency and crop productivity, and has proven to negatively influence wheat production in the Western Indo-Gangetic Plains under conventional wheat management systems.

Studies suggest weed infestations could reduce wheat yields by 50-100% across the South Asian Indo-Gangetic Plains. Globally, yield losses from weeds reach 40%, which is more than the effects of diseases, insects, and pests combined.

Herbicides are not just expensive and environmentally hazardous, but this method of chemical control is becoming less reliable as some weeds become resistant to an increasing number common herbicides. Considering the food security implications of weed overgrowth, weed management is becoming increasingly important in future cropping systems.

How can weeds be managed sustainably?

Climate-smart agriculture-based management practices are becoming a viable and sustainable alternative to conventional rice-wheat cropping systems across South Asia, leading to better resource conservation and yield stability. In addition to zero-tillage and crop residue retention, crop diversification, precise water and nutrient management, and timing of interventions are all important indicators of climate-smart agriculture.

In a recently published 8-year study, scientists observed weed density and diversity under six different management scenarios with varying conditions. Conditions ranged from conventional, tillage-based rice-wheat system with flood irrigation (scenario one), to zero-tillage-based maize-wheat-mung bean systems with subsurface drip irrigation (scenario 6). Each scenario increased in their climate-smart agriculture characteristics all the way to fully climate-smart systems.

At the end of 8 years, scenario six had the lowest weed density, saw the most abundant species decrease dramatically, and seven weed species vanish entirely.  Scenario one, with conventional rice-wheat systems with tillage and flooding, experienced the highest weed density and infestation. This study highlights the potential of climate-smart agriculture as a promising solution for weed suppression in northwestern India.

Read the full study: Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

Cover image: Farmer weeding in a maize field in India. (Photo: M. Defreese/CIMMYT)

Experts point ways to better crops and farmer incomes

A farmer assesses soil on his plot in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
A farmer assesses soil on his plot in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

The first One Earth Root and Soil Health Forum took place on March 1, 2021. Over 800 people attended to discuss how to unlock the potential of better soil and root health to help transform food systems. The Forum brought together experts from farming, international organizations, NGOs, academia and the public and private sectors. Together they called for collective action in science and technology targeting the early stages of plant growth.

The main emphasis this year was on Africa, which has around 60% of the world’s uncultivated arable land. However, parallel workshops focusing on Turkey, the Middle East, Sub-Saharan Africa and South Africa enabled tailored discussions in regional languages. Plenary keynote speakers were Erik Fyrwald (Syngenta Group CEO and Chairman of the Syngenta Foundation for Sustainable Agriculture) and Dr Ismahane Elouafi (Chief Scientist at the UN Food and Agriculture Organization).

Erik Fyrwald underlined that “everything starts with soil. It is the foundation of productive farming practices – with healthy soil, you can have healthy plants, healthy people and a healthy planet. By acting on soil health through regenerative agriculture practices, we are acting on climate change, biodiversity loss and food security, as well as improving farmer livelihoods. The One Earth Soil and Root Health Forum helps an international community shift towards achieving this – together.”

Dr Ismahane Elouafi noted that “healthy soils are the foundation for agriculture, as they provide 95% of our food. Soils also provide fuel, fiber and medical products, and play a key role in the carbon cycle, storing and filtering water, and improving resilience to floods and droughts.”

Speaking on the opening panel, Michael Misiko, Africa Agriculture Director of The Nature Conservancy, noted that “climate change is inseparable from the life and health of our soils and the roots that must thrive within them.”

CIMMYT senior scientist and country representative for Turkey, Abdelfattah Dababat, underlining the importance of awareness raising action. “Growers basically do not recognize soil/root health to be a problem. Most of them are not aware of the root rot diseases and soil health issues in their fields, affecting their yield. This is why the term “hidden enemy” applies perfectly. Root and soil health management is therefore, not practiced and those yield losses are simply accepted.”

Speakers also underlined the link between soil and root health and the long-term economic productivity and the welfare of societies. Other points raised included technologies measuring soil health and their role in enabling informed decision-making by farmers and scientists. The importance of empowering smallholders and enabling access to modern technologies was also underlined as was the importance of public-private sector collaboration in achieving this.

The different parallel sessions covered i) solutions for soil borne diseases in protecting and enhancing root health, ii) supporting smallholder farmers to improve the health and fertility of their soils and the opportunities for public and private sectors to engage, iii) no tillage technologies and seed treatment for soil and root health and iv) the state of nematode soil pest pressures. The negative impact of conventional tillage systems include soil erosion and carbon emissions. The importance therefore of no tillage technologies was analyzed.

Health underfoot: why roots and soil are important

Around 95% of the food we eat grows in the earth. However, more than one-third of the world’s soils are degraded; without rapid action, this figure could rise to 90% by 2050. Soil erosion decreases the water, nutrients and root-space available to plants.  Healthy roots enable better use of nutrients and water. They help produce more shoots and leaves from each seed, enabling farmers to produce more food and soil to capture more carbon. Healthy roots also help tackle soil erosion. Soil and root health help mitigate climate change. More carbon already resides in soil than in the atmosphere and all plant life combined. Studies show that there are 2,500 billion tons of carbon in soil, compared with 800 billion tons in the atmosphere and 560 billion tons in plant and animal life. Healthier soil can store even more. Healthy plants with good roots capture further carbon from the atmosphere.

Read the original: Experts point ways to better crops and farmer incomes

Capacitating farmers and development agents through radio

Representing CIMMYT, Kinde Tesfaye (on the left) took part in the live radio programs. (Photo: CIMMYT)

The continuing increase in the number of farming families has led to a growing emphasis on approaches on how to reach more people at a time. Among others, individual, group and mass-media approaches to agricultural extension and advisory services have been used concurrently.

This year, the global COVID-19 pandemic presented yet another challenge to the agriculture sector due to travel restrictions and limited face-to-face interactions. This has obstructed capacity building for farmers as well as development agents to deliver seasonal and intra-seasonal agroclimate advisories for farmers to support farm decisions.

Realizing the importance of mass media in extension, the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Ministry of Agriculture, the Ethiopian Institute of Agricultural Research (EIAR) and Climate Change, Agriculture and Food Security (CCAFS)-EA used live show radio program on Sunday mornings to provide climate advisories on the 2020 Kiremt (main cropping) season to farmers and extension workers on a two-weekly basis between June and November. The live show also allows listeners to call in and ask questions and provide feedback. Besides the climate agro-advisories, COVID-19 alerts and precautionary measures were provided to the radio audience.

Extremely low climate induced risk perception

CIMMYT-CASCAID II project baseline assessment indicates that the rural communities in the project intervention areas have an extremely low climate induced risk perception and are also quite resistant to change. The areas are also highly prone to recurring droughts. Erratic rainfall distribution and dry spells are common. Large areas of barren and uncultivable land, water shortage, poor soil quality, soil erosion due to high run off rate are adversely affecting the farming systems. Research shows that simple adaptation actions such as watershed management, changing planting dates and crop varieties could greatly reduce the climate variability and change impacts. However, communities being poorly linked to scientists and policy makers lack information about climate change adaptation options and government schemes related to the same. There are also challenges of communicating scientific research in simplified ways that are appropriate to local stakeholder needs.

In recent years, the use of improved technologies has been increasing due to the progressive national agricultural development policy and strategy that is in place coupled with advisories provided to help farmers to make timely and appropriate farm level decisions and practices.

Agroclimate advisory – the fourth production factor

The provision of agroclimate advisory is considered as the fourth production factor after labor, land, and capital and critical to the agricultural sector as climate and its associated adverse effects can negatively affect agricultural activities and productivities. Thus, ensuring the accessibility of relevant time sensitive forecast based advisory information to farming communities helps improve productivity and yields higher returns.

The advice will also assist smallholder farmers to manage climate risks through informed decisions such as identifying optimum planting time/sowing windows, planting density at the start of the rainy season, while at the same time managing fertilizer application. Moreover, it also benefits farmer decisions and practices on soil water, weeds, diseases, and pest management throughout the growing season. By monitoring weather and crop growth during the season, the same forecast information can assist in predicting crop yields well in advance of crop maturity and to allow farmers to decide whether to sell the product immediately after harvest or store it until it commands better prices later in the year.

Radio for disseminating agroclimate information

In Ethiopia, the use of ICT for the accumulation and dissemination of agroclimate information and other agricultural updates is still low. Radio transmission covers a large percentage of the country with most of the households own a radio. This makes the use of radio programs one of the most cost-effective channels for conveying weather forecast information and agricultural knowledge to rural communities which ultimately facilitate informed decision-making and adoption of new technologies and practices.

In collaboration with its partners, the CIMMYT-CASCADE II project through Fana FM radio implemented a six-month (June-November 2020) live radio program providing seasonal advisories at the start of the main season in June using seasonal forecast from the National Meteorology Agency which was downscaled to Woreda/Kebele level by EIAR, CCAFS-EA and CIMMYT. This was followed by a biweekly or monthly Wereda specific agro-climate advisories which focus on fertilizer application, weeding, crop protection, soil and water management and climate extremes such as flood and droughts.

The program also included experts from the Ministry of Agriculture, EIAR, and CGIAR Centers to provide professional explanations and updates from the perspective of in situational readiness to support issues coming from the radio audience. The program created an opportunity for the federal government to prepare in time on some activities like importing agricultural inputs such as pesticides and fungicides to control the outbreak of pests and diseases (e.g., desert locust infestation and wheat rust outbreak). The platform also provided an opportunity to reach to millions of farmers to convey COVID-19 prevention messages such as physical distancing, use of masks, handwashing and other precautions that need to be taken while working in groups.

CIMMYT-supported researcher earns doctorate for work on gender, maize value chains and food security

Gebre received his doctorate in Agricultural and Resource Economics from Kyushu University, Japan.

On September 25, with financial and academic support from the International Maize and Wheat Improvement Center (CIMMYT), Girma Gezimu Gebre upgraded his honorific from mister to doctor. Born in Dawuro zone, in southern Ethiopia, Gebre received his doctorate in Agricultural and Resource Economics from Kyushu University, Japan.

His dissertation—Gender Dimensions of the Maize Value Chain and Food Security: The Case of Dawuro Zone in Southern Ethiopia—was supported by CIMMYT through the Stress Tolerant Maize for Africa (STMA) project. Dil Rahut, global program manager of the socioeconomics and sustainable intensification programs at CIMMYT, served on his committee.

Asked about Gebre’s achievement, Rahut alluded to his hard work and dedication. “Desire is the starting point of all achievements while hard work and commitment are the end points of all the high achievements,” he said.

Gebre’s research explores how and to what degree gender plays a role in the adoption of improved maize varieties, maize productivity, maize market participation, and marketing channel choices, as well as food security among smallholder households across the maize value chain. Gebre already boasts published articles on the impact of gender on various dimensions of agriculture and agricultural development as well as various other topics— from the development of sustainable banana value chains in Ethiopia to barriers to farmers’ innovativeness.

At Kyushu University Gebre was awarded the 2020 Graduate School of Bioresources and Bioenvironmental Science “Outstanding Student Prize.” He was also awarded the 2020 Department of Agricultural and Resource Economics Prize in recognition of his excellent academic achievements and quality as a role model for other students.

Before pursuing a Ph.D., Gebre received a Master’s degree in Economics (Development Policy Analysis) from Mekelle University, Ethiopia, and a Master’s degree in Agricultural Production Chain Management—Horticulture Chain from Van Hall Larenstein University of Applied Sciences in the Netherlands. He has served as the coordinator of the postgraduate program in Agribusiness and Value Chain Management and as the head of the Department of Agricultural Economics at Aksum University, Ethiopia.

Researchers urged to use common gender keywords to improve data impact

A common approach toward data structuring is needed to improve access to gender research across agriculture data repositories, a recent report by the CGIAR Platform on Big Data in Agriculture suggests.

Simply adding the keyword ‘gender’ in database descriptions will improve the findability of gender agricultural research, which currently is hard to find due to the inconsistent use of keywords and tagging, said the report’s author Marcelo Tyszler, a (gender) data expert with the Royal Tropical Institute (KIT) in the Netherlands.

“The data is there. We just can’t find it all! A lack of consistent keywords when tagging research is leading to holes in searches for gender research across CGIAR, the world’s largest network of agricultural researchers,” he says.

“A more systematic and sharper use of keywords when describing datasets will improve findability in searches,” Tyszler states.

As part of the Findability of Gender Datasets report, researchers used a range of keywords, including ‘gender’, ‘women’ and ‘female,’ to search repositories for gender-based data across CGIAR agricultural research centers and compared the search results with a reference list of gender datasets provided by scientists. The results showed that a number of the datasets in the reference list were not found using these search terms.

The results uncovered important inconsistencies in the description of gender research, especially in terms of how data is structured and the detail of documentation provided in CGIAR repositories, says co-author Ewen Le Borgne, a KIT gender researcher.

“Poor data management limits the impact of research to be found, read and incorporated into new research projects,” Le Borgne says, invoking the age old saying, “If a tree falls in a forest and no one is around to hear it, does it make a sound?”

Ibu Rosalina arranging a Kacang Panjang bush. (Credit: Icaro Cooke Vieira/CIFOR)

The researchers used the findings to promote a standardized approach to tagging and describing their research.

“To improve findability and the impact of data, the gender community should develop a list of commonly agreed keywords that can be used to consistently describe gender research data sets,” Le Borgne explains.

Any dataset containing ‘sex-disaggregated’ data should indicate so in the keywords, said Tyszler.  This is also important for non-gender researchers, to broaden the scope of their impact.

“By facilitating the tagging, findability and accessibility of quantitative and qualitative gender data we hope to facilitate mixed methods research by providing opportunities for both qualitative and quantitative researchers to exchange insights and create a stronger dialogue,” he explains.

Moreover, across the CGIAR there is a wealth of gender specific qualitative data collected through focus groups, interviews and other participatory research. As CGIAR continues to advance gender research efforts, big data is unearthing exciting opportunities for understanding and acting on the relationships among gender, agriculture, and rapidly digitizing economies and societies. However, varied approaches to data management is restricting access, thus limiting the impact data can have when other researchers aim to reuse results to gain deeper insights.

Moving beyond the ‘gender’ tag

Lubuk Beringin villagers cut off palm nut fruits at Lubuk Beringin village, Bungo district, Jambi province, Indonesia. (Credit: Tri Saputro/CIFOR)

Not surprisingly, ‘gender’ was the most common keyword used to describe data found in the study. Although it is essential for researchers to add the ‘gender’ keyword to research descriptions they must also go further in describing what the dataset represents, the researchers indicated.

“‘Gender’ is not precise enough a keyword to find all relevant gender-focused datasets. However, our search shows very few details as to what, about gender, is studied in each project,” says Tyszler.

Studies in other fields, for example nutrition, seem to have much more granularity in the description, with keywords including, nutrient intake, nutrition policy, micronutrient deficiencies, etc. We need a movement like this in gender research, he explained.

Better keywords should be a minimum, but it is also possible to consider the identification of a set of smart ‘gender metadata fields’. These would be input elements that need to be filled in that could ensure all CGIAR datasets properly assess gender dimensions, which would boost the visibility of gender research.

Working as part of the CGIAR Socio-Economic Data Community of Practice, the gender researchers support the exchange of gender-focused data collection tools, with standardized focus groups and interview questions, to improve the potential for comparing different datasets.

Since 2018, the CGIAR Platform for Big Data in Agriculture and CGIAR Collaborative Platform for Gender Research have been collaborating out of mutual interest, to identify ways to unlock the big data potential of gender research.

Together they aim to take a much more active role in shaping up how gender data can be better analysed and reveal new insights, said Gideon Kruseman, the lead of the CGIAR Socio-Economic Data Community of Practice.

“We are promoting a standardized approach by bringing together gender data experts with other socio-economic and even biophysical scientists that may not know how to best engage with gender research and data,” Kruseman explains.

Access the full Findability of Gender Datasets report, which was funded through a 2018 grant to KIT Royal Tropical Institute, by the Community of Practice on Socio-Economic Data with co-funding by the CGIAR Gender Platform.

Cover photo: A woman helps to install a drip irrigation pipe on a farm in Gujarat, India. (Credit: Hamish John Appleby, IWMI)

Highlighting innovation in Latin American maize agri-food systems

CIMMYT colleagues pose for a photo at the 23rd Latin American Maize Reunion. (Photo: Carlos Alfonso Cortes Arredondo/CIMMYT.)

Latin America is the birthplace of maize and home to much of its genetic diversity. Maize is a main staple food across the continent and plays an important role in local culture and gastronomy. However, maize faces many challenges, from climate change related stresses such as drought and heat to emerging pests and diseases. Maize experts, as well as scientists from other key crops, from around the world came together to discuss these challenges and how to solve them at the 23rd Latin American Maize Reunion and 4th Seed Congress, held October 7-10 in Monteria, Colombia.

The reunion began with a welcome address from Luis Narro, a senior maize scientist with the International Maize and Wheat Improvement Center (CIMMYT). Narro thanked participants for coming from throughout the region and discussed the history of the event. “Why are we here today? Because maize is one of the most important crops of this century. This should be both a challenge and incentive for us to continue our work with maize, as it is a crop with huge demand,” he said.

In the inaugural session, Deyanira Barrero, general manager of the Colombian Agricultural Institute (ICA) and Jorge E. Bedoya, president of the Society of Colombian Farmers, highlighted the importance of seeds and strategies to ensure the quality and future of Colombia and Latin America’s agri-food systems.

The event was organized by the Colombian Corporation for Agricultural Research (Agrosavia), the Colombian Seed and Biotechnology Association (Acosemillas), the National Federation of Cereal and Legume Growers (Fenalce), the Latin American maize network, and the International Maize and Wheat Improvement Center (CIMMYT). Four CIMMYT scientists presented at the reunion, sharing their experience with and perspectives on agronomy, seed systems, native maize and strategies to increase resilience to climate change.

Nele Verhulst, senior scientist at CIMMYT, presented on the development of management practices for conservation agriculture as well as post-harvest technologies in Latin America, particularly Mexico and Central America. She emphasized the importance of crop management in maize so that improved seeds can reach their maximum potential in terms of yield and profitability. The seed systems lead for Africa and Latin America with CIMMYT’s Global Maize Program, Arturo Silva, shared his experience in these regions strengthening maize seed systems and working to accelerate variety replacement with newer, better seeds. Terry Molnar, maize breeder at the Center, studies native maize varieties to identify characteristics such as disease resistance that can be used to develop improved maize varieties for smallholder farmers. Kai Sonder, head of CIMMYT’s Geographic Information System (GIS) unit, presented on the potential impact of climate change on global and regional maize production.

The reunion closed with the award session for the winners of the MAIZE Youth Innovators Awards 2019 – Latin America. The awards, an initiative of the CGIAR Research Program on Maize (MAIZE), seek to recognize the contributions of young women and men who are implementing innovations in Latin American maize-based agri-food systems.

Winners of the MAIZE Youth Innovators Awards 2019 – Latin America pose for a photo with their awards. (Photo: Carlos Alfonso Cortes Arredondo/CIMMYT.)

Eduardo Cruz Rojo, Mexico, won in the “Farmer” category for his work using biological control agents to protect maize from fall armyworm. Carlos Barragán and José Esteban Sotelo Mariche, both from Mexico, won in the category of “Change Agent” for their work helping farmers increase their maize yields through inter-cropping and for helping farmers better commercialize their native maize, respectively. In the “Researcher” category, Yésica Chazarreta, from Argentina, won for her research on the effect of maize planting dates on grain filling and drying. Omar Garcilazo Rahme of Mexico was recognized for his work helping farmers grow high-value edible maize fungus in traditional maize production systems. Viviana López Ramírez of Colombia won for her work on bacteriosis in maize, and Lucio Reinoso of Argentina for his contribution to the development of a maize seeder that helps farmers adopt conservation agriculture techniques. In a video message, B.M. Prasanna, director of the CIMMYT global maize program and the CGIAR Research Program on Maize (MAIZE), congratulated the young winners and expressed his hopes that they would inspire other young people to get involved in maize based systems. This was the first time the awards were held in Latin America, following Asia in 2018 and Africa in spring of 2019.

Two additional awards were given at the close of the reunion, one to Alberto Chassiagne, maize seeds systems specialist for Latin America at CIMMYT, who received first place in the scientific poster competition at the reunion for his work “Proposed model to generate seed production technology for maize hybrids”. Another award went to Luis Narro for his contributions to maize in Latin America throughout his career.

The conference was followed by a field day held October 10 at the Agrosavia Turipaná Research Center in Cereté, Colombia. The field day began with a speech by Colombia’s Minister of Agriculture and Rural Development, Andrés Valencia, who discussed the importance of agriculture to his country’s economy as well as plans to increase maize production to decrease reliance on imports. This announcement follows the launch of Maize for Colombia, a strategic plan to help improve maize production in the country while increasing sustainability.

Digitalizing African agriculture: paving the way to Africa’s progress through transforming the agriculture sector

This year’s African Green Revolution Forum (AGRF), which took place from September 3-6, 2019 in Accra, Ghana, focused on the potential of digital agriculture to transform African agriculture through innovations such as precision agriculture solutions for smallholder farmers, access to mobile financial services, data-driven agriculture, and ICT-enabled extension.

Committed to a digital transformation of African agricultural that benefits many, not a few.

The CGIAR has become a new partner of the AGRF and was presenting during the forum its five global challenges: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth.

Despite its importance of the continental economy and untapped resources, African farming sector is still dominated by ageing smallholders cultivating few acres of cropland, using not much inputs and lagging far behind productivity world standards.

Many experts believe digital agriculture could help African agriculture leapfrog to overcome its geographical, social and economic bottlenecks, bringing successful technologies to scale faster, and market opportunities even for remote smallholders. Some countries like Ghana or Kenya are becoming digital hubs for agritech-savvy young entrepreneurs along the food value chains, from drone for Ag, linking farmers to the marketplace, or offering mobile mechanization or financial services.

Large initiatives were announced to foster this growth potential, in particular towards the youth in agriculture, like the Mastercard Foundation’s commitment to invest $500 million to support for young agripreneurs within its Young Africa Works initiative, and the World Bank’s One Million Farmer platform in Kenya.

In force at the AGRF 2019, agricultural research organizations such as the International Maize and Wheat Improvement Center (CIMMYT) have a strong role to play in this digital transformation, both as innovator creating for instance new digital maize phenotyping tool for faster yield assessment, and user of tech innovations to improve research targeting and impact.

Improving smallholders’ resilience through digital innovations

The millions of African rainfed farmers are in a risky business, from rising climate shocks to emerging pests and diseases like the invasive fall armyworm or the maize lethal necrosis. CIMMYT Director General Martin Kropff highlighted the importance of digital tools to predict these risks through smart, scalable early warning systems like the award-winning diagnostic tool Marple that helps map wheat rust outbreaks. Researchers can also better predict the farms’ responses to these risks through accurate modelling. They can for instance better assess the potential yield benefits of drought and heat tolerance under different climate change scenarios.

CIMMYT crop breeders use tablet-based disease scoring applications and test new imagery and high-tech sensors for more accurate and cost-effective data collection. Kropff underlined the key role digital tools play to speed up science breakthroughs and impact delivery at the farm level.

Tailored advice for farmers and policy-makers to enable sustainable intensification

“The future is no longer where it used to be. Farmers’ reality has become even more unpredictable,” said Enock Chikava, deputy director, agricultural development at the Bill & Melinda Gates foundation during a vivid debate on how to reshape the future agronomic research so it delivers more site-specific and responsive advice.

Much of the agronomy work within the region remains fragmented across research institutes, commodities and projects, and struggles to go beyond blanket recommendations that are most of the time not adapted to local farming conditions.

However, there is a fast-growing wealth of georeferenced data that can describe the diverse farming landscapes and socio-economic context of each African smallholder farmer. The starting point to exploit these data and get the right solutions for each farmer is to ask the right questions.

Moderated by Samuel Gameda, CIMMYT soil scientist, who shared the lessons from the Taking Maize Agronomy to Scale (TAMASA) project, this session on Agronomy at Scale discussed what public information goods like crop yield prediction maps or extension apps, such as the maize variety selector, would be the most useful for farmers and large-scale agronomic initiatives to trigger this much needed sustainable intensification of millions of African smallholdings. What investments would make a difference to scale the use of these new decision-support tools?

“Agronomic research must be carried out from a broader perspective of large-scale relevance and application. It is also more and more a joint effort and responsibility between smallholder farmers, the research community and public and private sectors, with each component playing specific and interacting roles. The current era of powerful and accessible ICT tools and big data analytics make this much more feasible and should be incorporated to enable precision agronomy for all, this is my take home message,” said Gameda.

“This data revolution will only work if we invest in research data quality and data management,” stressed Bram Govaerts, CIMMYT’s Integrated Development Program director. “That will generate better evidence for decision-makers to guide impact investment plans, deciding on which technology e.g. a new drought-tolerant crop variety and put the money in the right leveraging point,” Govaerts concluded.

The largest forum on African agriculture, AGRF 2019 gathered more than 2,200 delegates and high-level dignitaries, from heads of State and government officials to leaders of global and regional development institutions; top agri-food businesses and local entrepreneurs; financial institutions; mobile network operators and tech leaders, as well as lead representatives of farmer organizations.

Cover photo: Delegation from the International Maize and Wheat Improvement Center (CIMMYT) at the African Green Revolution Forum (AGRF) 2019.