Distinguished Scientist and Head of Wheat Physiology at CIMMYT, Matthew Reynolds, received the Research.com Plant Science and Agronomy in Mexico Leader Award 2024 for placing 53rd in the world and 1st in Mexico in the Research.com ranking of Best Plant Science and Agronomy Scientists 2023.
“Being recognized with this award highlights the far-reaching influence of the wheat science taking place in Mexico and its impact on the development of agronomy around the world,” said Reynolds. “Sharing outputs as international public goods with scientists globally has positive benefits for smallholder farmers and their communities. Widening genetic diversity for key traits helps to improve yield and climate resilience -including resistance to biotic and abiotic stresses, providing reliable harvests and food security.”
Specializing in technologies to increase the productivity of wheat cropping systems around the world, Reynolds has helped to create a new generation of advanced lines at CIMMYT through physiological breeding approaches that widen the genepool, increasing understanding of yield potential and adapting wheat to drought and heat, developing high throughput phenotyping methodologies, and training other researchers.
Reynolds developed and led the Heat and Drought Wheat Improvement Consortium (https://hedwic.org/) and initiated a global academic network that led to the International Wheat Yield Partnership (https://iwyp.org/), where he champions collaboration that brings together plant science expertise from around the globe to boost yield and climate resilience.
Other CIMMYT scientists in the top 100 world rankings include Distinguished Scientist and former Head of Global Bread Wheat Improvement Ravi P. Singh in 57th place globally and 2nd in Mexico, and Distinguished Scientist in the Biometrics and Statistics Unit, José Crossa, who ranked 59th globally and 3rd in Mexico.
This is the third edition of Research.com positioning scholars based on their research output in plant science and agronomy. Rankings are allocated based on a detailed study of 166,880 scientists in bibliometric data sources, with up to 10,700 people analyzed for this field of work.
Efforts to improve gender equality and social inclusion are under the spotlight in many workplaces around the world. At CIMMYT, where values of Excellence, Integrity, and Teamwork guide the organization through its 2030 Strategy, commitment to shaping a more inclusive workplace is changing the face of scientific research.
“This is the start of a journey to harness and empower talent from across CIMMYT’s employee base,” said Director General, Bram Govaerts. “Starting with the actions outlined below, CIMMYT aims to become a leader in promoting gender equality and social inclusion in agricultural research and development.”
Empowering women
At CIMMYT, our commitment to gender equality is reflected in our global workforce. During the first half of 2023, women represented one in every three staff members. Across all roles, the current hiring rate for women is 43% in 2023 compared to 21% in 2020, with a particularly positive trend in regional offices, where the percentage has increased from 24% in 2021 to 43% in 2023. Annual improvements are also visible in the number of internationally recruited female staff, as 46% of these roles are filled by women in 2023, compared to 19% in 2022.
In our headquarters in Mexico, there is no major gender gap above 10%, even at the highest level, and 35-40% of employees are women. 50% of the members of the senior leadership team are women, with a significant number of women from diverse backgrounds forming part of our broader management structure. Progress is also visible in our regional offices. In Kenya and Türkiye, 43% and 40% of team members are women respectively, with both countries reaching the CGIAR target of 40/40/20 parity. For the first time, women represented at least 20% of employees in Bangladesh and Nepal in 2023.
However, we recognize there are still areas where CIMMYT must improve gender parity. While the overall gender balance continues to improve, the proportion of women working at CIMMYT globally rests at 32.5%, which is a statistic that can be increased. Gender gaps exceeding 10% can be observed in India and Nepal, where efforts are bridging gaps and forming environments where talent knows no gender.
Advancing equality by region
The impressive diversity of our workforce is one of our greatest strengths, and CIMMYT always seeks new ways to champion its people. As a global organization with presence in 88 countries, benefits are tailored to each region to target the specific needs of employees in each locality.
The creation of a Gratuity and Provident Trust Fund in Bangladesh, fostering gender equality by providing equal opportunities for financial stability and growth.
Standardized benefits in India, such as a uniform transport allowance and upgraded housing allowance that ensures fair financial benefits for all employees regardless of job grade.
Enhanced food coupons and savings funds for employees in Mexico, as well as an after-school program for the children of colleagues working at the headquarters.
Responding to economic challenges in Pakistan with a 20% general salary increase, a bonus of US $400, and the introduction of a gender-neutral transport allowance.
An increased allowance for children’s education in Zimbabwe.
In addition, Flexible Work Arrangements (FWA), parental leave, disability access improvements, and translation services showcase CIMMYT’s dedication to equality and inclusion.
Fulfilling careers for all
Investing in our people means ensuring that learning opportunities are equally accessible to all, empowering employees to reach their maximum capabilities. “We actively work to foster a culture and environment where all staff feel confident sharing their perspectives, their contributions are highly valued, and they see a path for growth within the organization,” said Deputy Director of Human Resources, Jean-Flavien Le Besque.
In 2023, 1,189 staff members participated in 431 training courses, with the number of participants increasing by nearly 23% in the same year. Additional e-learning opportunities available in both English and Spanish provide opportunities for professional development in health and safety, communications, personal efficiency, and critical thinking, all which aid staff with the development of valuable skills. These online courses supplement regular training on teamwork, hostile environment awareness, and diversity, equity, and inclusion.
The CIMMYT Academy also plays a significant role in training staff to be future leaders. In 2022, 52 students enrolled into the Academy; 52% of these students are women, underscoring CIMMYT’s commitment to developing everyone’s talent. Staff can also access a Tuition Grant scheme to pursue a higher-level degree.
Next steps
While these initiatives have strengthened gender equality and social inclusion at CIMMYT, further efforts are required to achieve true equity in all corners of the organization. These projects so far are just a glimpse into ongoing work to achieve the CGIAR GDI aims and will be built upon using employee feedback and specialist expertise.
“These successes are just the start of our pledge to ensure CIMMYT is inclusive and safe for all,” said Associate Scientist and Cropping Systems Agronomist, Mazvita Chiduwa. “We want to be an organization that is renowned not just for scientific excellence, but also for the way we champion all groups to reach the best of their ability, thrive in the workplace, and enjoy a positive work-life balance.”
As the world searches for effective solutions to mitigate and adapt to climate change while navigating the cost-of-living crisis, delivering food security goals alongside robust economic value is more imperative than ever in agricultural research.
CGIAR plays a vital role in this mission, aiming to transform food, land, and water systems in collaboration with its 15 Research Centers, such as CIMMYT. Now, a new study published in World Development comprehensively analyzes CGIAR’s fiscal impact on global agricultural over nearly 60 years.
Additionally, investment in productivity gains for staple crops in developing countries has aided entire populations by securing lower food prices and generating large local growth multipliers, thus achieving a greater impact on poverty reduction when compared to productivity growth in other sectors.
CIMMYT contributes 40% of total CGIAR varietal impact
At least 221 million hectares in at least 92 countries were occupied by CGIAR crop technologies in 2020. Between 2016 and 2020, CIMMYT maize varieties accounted for 24.5 million hectares (11%) of this figure, while CIMMYT wheat varieties made up almost 74 million hectares (33%).
An example of how these CIMMYT varieties impact farmers can be seen in sub-Saharan Africa, where using improved maize seed led to an overall average increase of 38.9% in yields to 1,104 kilograms per hectare (kg/ha), equal to an increase of 429 kg/ha. With increased yields come increased profits and employment security for farmers and their families.
The frequency with which technologies are upgraded also signifies the impact of agricultural research and development (R&D) on crop productivity and the economy. On the 221 million ha planting area, many farmers utilize second or third generation technologies. For example, average varietal generation in maize is estimated to be 1.1, meaning that 10% of farmers use a second-generation variety, and most wheat farmers were also using second or third generation modern varieties. This highlights that ongoing crop research continued to impact productivity, even when the size of the adoption area remained constant.
Expanding the impact
As CGIAR’s reach and capacity have grown, economic benefits are now apparent in an increased number of global regions compared to when its work began. Initially, most economic benefits came from wheat and rice farming in Asia; however, 30% of CGIAR crop technologies now occupy sub-Saharan Africa, generating a significant share of its impact. This region remains heavily reliant upon CGIAR-related varieties, so continued investment is encouraged to maintain and build on the positive outcomes achieved to date.
“Considering the urgent need to attain nutrition security, CIMMYT always seeks ways to assure global food systems,” said Bram Govaerts, director general of CIMMYT. “This thorough analysis is a strong validation of CIMMYT’s work and its significance not just for farmers and their immediate families, but for communities and generations into the future. Our collaborative partnerships with CGIAR Research Centers and National Agricultural Research Systems (NARS) are integral in delivering successful projects that enable smallholder farmers to maximize the potential of their land.”
While similar studies have been undertaken in the past, this work takes a unique approach by drawing on a wider range of evidence built on country- and crop-specific data, such as the adoption of crop improvement technologies and productivity impacts per hectare, thereby providing a more granular assessment of CGIAR’s economic inputs.
Tang Renjian, former governor of Gansu province, China, and current Minister of Agriculture and Rural Affairs and CIMMYT Director General, Bram Govaerts. (Photo: CIMMYT)
The Minister of Agriculture and Rural Affairs for China, Tang Renjian, visited CIMMYT headquarters on Thursday, 11 January, along with dignitaries from the Ministry of Agriculture and Rural Affairs (MARA) and the Embassy of China. Tang, the former governor of Gansu province in China, attended the site with the aim of building on collaborative scientific work between his country and CIMMYT through the Joint Laboratory for Maize and Wheat Improvement in China.
CIMMYT was delighted to host Tang to showcase the benefits of the CIMMYT-China relationship for wheat and maize, and to identify opportunities for sustained collaboration. The highly regarded minister was able to hear about work including genetic analysis service for agriculture and methods to close the gap between farmers and research, as well as to observe CIMMYT’s facilities and field experiments. The meeting laid the foundations for potential future CIMMYT-China projects in areas such as germplasm exchange, molecular breeding, climate-resilient technology, and training.
Bram Govaerts, director general of CIMMYT, said, “Showcasing our science to Tang is an exciting chance for CIMMYT and China to grow what is already a fruitful partnership, impacting millions of people globally.”
Exemplifying impactful global partnerships
Since 1974, the CIMMYT-China relationship has improved the lives of millions of people via numerous evidence-based scientific projects, with support from the Chinese Academy for Agricultural Sciences (CAAS). Through five decades of partnership, the collaboration has resulted in up to 10.7 million additional tons of wheat for China’s national output with a value of US $3.4 million.
CIMMYT’s contribution to China’s wheat and maize is significant. In terms of wheat, 26% of wheat grown in China has been derived from CIMMYT germplasm since the year 2000, with Chinese scientists adding more than 1,000 accessions to the CIMMYT gene bank. CIMMYT maize varieties have been planted on more than 1 million hectares in China, with the partnership responsible for the release of 13 commercial varieties.
Renjian and Chinese dignitaries tour CIMMYT’s museum. (Photo: CIMMYT)
More recently, scientists have played an important role in the free exchange of germplasm between China and countries in Africa, which will help to mitigate against any gene pool loss caused by climate-induced extreme weather events and enable the development of more resilient crop varieties.
Tang said, “Witnessing first-hand the work of CIMMYT’s scientists in Mexico is inspiring. We look forward to exploring further how we can build on the excellent relationship between China and CIMMYT to address global agricultural challenges.”
Govaerts said, “We hope that this partnership continues in order to address the need for nutritious crops and to develop innovative solutions for smallholder farmers.”
Like other crops, wheat – which makes up 20 percent of the human diet – is affected by threats to the global food system from persistent population growth and economic and climate pressures. These challenges are further exacerbated by the fallout from the COVID-19 pandemic and the war in Ukraine. There is an urgent need to prioritize climate resilient wheat varieties to protect this food staple.
Some five years after HeDWIC was launched in 2014 to incorporate the most advanced research technologies into improving heat and drought tolerance of wheat, the Intergovernmental Panel on Climate Change reported that climate change was having an impact on food security through increasing temperatures, changing precipitation patterns and greater frequency of extreme weather events in its Special Report on Climate Change and Land.
“While some areas are becoming more conducive to wheat growing, crop yields are suffering in other regions around the world traditionally known as bread baskets,” said wheat physiologist Matthew Reynolds, who leads HeDWIC at the International Maize and Wheat Improvement Center (CIMMYT).
“Wheat is one of our fundamental crops, and we must spare no effort in protecting it from current and future challenges,” said Saharah Moon Chapotin, FFAR executive director. “Global collaborations are necessary to address global concerns, and these grants are bringing together international teams to share and build the science and research that will ensure the stability of this crop.”
To boost new ideas in “climate-proofing” crops, HeDWIC conducts virtual meetings that include all awarded research teams to take advantage of the collective global expertise in heat and drought resilience, leading to cross-pollination of ideas and further leverage of resources and capabilities.
In March, Reynolds led in-person discussions with some of the collaborating researchers at CIMMYT’s experimental research station on the outskirts of Ciudad Obregon, a city in Mexico’s Sonoran Desert, during CIMMYT’s annual Visitors’ Week.
Projects awarded in 2022
Exploring the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat (FluoSense4Wheat)
“The HeDWIC mini proposal allows us to explore the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat. The controlled irrigation conditions for wheat grown in Obregon give us the opportunity to quantify photosynthesis by fluorescence while drought develops. Detecting a drought-specific fluorescence response and/or the interaction between active and passive fluorescence is relevant for breeding selecting purposes as well as large spatial scale detection of drought by monitoring the plant.” – Onno Muller, Forschungszentrum Jülich, Institute of Bio- and Geosciences, Germany
Physiological basis of amelioration of heat stress through nitrogen management in wheat
“Heat stress during grain filling can restrict the availability of carbohydrates needed for grain development. India has been experiencing sudden spikes in both minimum and maximum temperatures by 3 to 5 degrees above normal from late-February onwards, which is an important time for wheat grain-filling and has resulted in declining wheat productivity. Our team is examining the ability of pre-flowering nitrogen applications to support biomass accumulation and overcome the grain-filling source (carbohydrate) limitation during heat spikes. If successful, the results could have broad-reaching benefits given that farmers are familiar with and well-skilled in using nitrogen applications regimes in crop management.” – Renu Pandey, Division of Plant Physiology, Indian Agricultural Research Institute
Can reproductive development be protected from heat stress by the trehalose 6-phosphate pathway?
“The HeDWIC funding provides a unique opportunity to test how the regulatory sugar, trehalose 6-phosphate (T6P) can protect wheat yields against increasingly common chronic and acute heat stress events. We have already shown that T6P spray increases wheat yields significantly in field conditions under a range of rainfall in wet and dry years. With increasing likelihood of heat stress events in the years ahead, in unique facilities at CIMMYT, we will test the potential of T6P to protect reproductive development from catastrophic yield loss due to chronic and acute heat.” – Matthew Paul, Rothamsted Research, UK
Investigating tolerance of heat resilient wheat germplasm to drought
“Over the last decade, we have developed heat tolerant wheat germplasm at the University of Sydney that maintains yield under terminal heat stress. In our new HeDWIC project, this material will be tested under combined drought and heat stress under field conditions. This will provide plant breeders with highly valuable information on field tested germplasm for use in accelerated breeding programs targeting combined heat and drought tolerance. The work is critical for future food security considering the inextricable link between temperature and plant water demand, and the increased frequency and intensity of heat and drought events under projected climate change.” – William Salter, University of Sydney, Australia
Novel wheat architecture alleles to optimize biomass under drought
“Wheat Rht-1 dwarfing genes were an essential component that led to spectacular increases in grain yields during the Green Revolution. Although Rht1 and Rht2 are still used widely in wheat breeding 50 years after they were introduced, they are suboptimal under drought conditions and are often associated with a yield penalty. Using a more extensive range of Rht-1 dwarfing alleles that were developed at Rothamsted, we will introduce them into CIMMYT germplasm to optimize biomass and ultimately increase grain yields under drought stress.” – Steve Thomas, Rothamsted Research, UK
Additional comments from 2021 awardees
“This opportunity has enabled the collection of significant amounts of data that will contribute to the advancement of knowledge in crop physiology and root biology. It has also provided early career researchers with opportunities to gain hands-on experience, develop important skills, and grow their networks. Additionally, this initiative has stimulated further ideas and collaborations among researchers, fostering a culture of innovation and cooperation that is essential for progress.” – Hannah Schneider, Wageningen University & Research, Netherlands
“The project is a unique opportunity for research groups from around the world to coordinate efforts on identifying ways to improve heat tolerance of wheat.” – Owen Atkin, Australian National University, Australia
“It is important to understand how high temperature limits crop growth and yield and to identify genetic variation that can be used for breeding climate resilient crops. This project has already begun to develop new methods for rapidly screening growth and physiological processes in genetically diverse panels which we hope will be invaluable to researchers and breeders.” – Erik Murchie, University of Nottingham, UK
“This project will provide novel phenotyping screens and germplasm to breeders and lay the groundwork for genetic analysis and marker development.” – John Foulkes, University of Nottingham, UK
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
Techno-Nejat owner Usman Abdella, operations manager Ali Mussa, and GIZ project manager Ralf Barthelmes with a recently completed seed cleaner at Techno-Nejat workshop in Adama, Ethiopia. (Photo: Adane Firde)
In many sub-Saharan countries, including Ethiopia, smallholder farmers of legume, wheat, and maize struggle to maintain their own food security, produce higher incomes, and promote economic growth and jobs in agricultural communities.
As farmers, fabricators, and aid workers collaborate to move forward on this problem, innovative solutions are moving out into the field – and generating new ideas across the continent.
Where are machines for small farmers?
Machines tailored to local needs and conditions can often make a big difference–but most agricultural technology is designed and produced to meet the requirements of massive, commercial farms. To help close this gap, Green Innovations Centers (GIC) work to connect smallholding farmers with locally produced technology that can transform their business, their family lives, and their local economies.
Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD No Hunger, the GIC collaborate with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.
Technician at Techno-Nejat workshop, Adama, Ethiopia. (Photo: Adane Firde)
The need for seed
Informal seed systems, in which farmers save and reuse seed, and exchange low quality seed with other farmers, are prevalent among Ethiopian smallholder farmers. Seed cleaning plays an important role in helping farmers build high-yielding seed development systems by removing seed pods and other chaff, eliminating seeds that are too small or infected, and refining the seeds to a high-quality remainder.
After GIC staff in Ethiopia identified seed cleaning as a critical need for smallholding farmers in the country, researchers set out to develop a solution that was affordable, sustainable, and adaptable to local demands.
Local machines for local farmers
In 2022, GIC Ethiopia partnered with Techno-Nejat Industries in Adama, Ethiopia, to design and produce a first run of mobile seed cleaners for use by smallholding farmers across the country. Techno-Nejat has an established track record in agricultural fabrication and was eager to take on the new collaboration.
In early March, the company completed the initial delivery of eight seed cleaners. The machines process chickpea, soy, wheat, and barley seed with a maximum capacity of 1.5 tons per hour. With wheels and a compact, efficient design, they are also easy to move from one farmer’s property to another. At a cost of US $7,500 and a production time of 55 days, the machines have potential both for expansion within Ethiopia and scaling up for export.
Mr. Zogo, owner of Techno Agro Industrie in Benin, with Ali Mussa, Adama, Ethiopia. (Photo: Adane Firde)
Seeding future collaboration
Smallholding farmer cooperatives will take delivery of the first eight seed cleaners in the coming weeks. And while Ethiopian farmers are ready to experience the immediate benefits for their operations, this innovation is also showing promise for additional collaboration.
“Through existing GIC networks, we have connected with Techno Agro Industrie, a company manufacturing seed cleaners in Benin,” said Techno-Nejat’s owner Usman Abdella. “We welcome partnership opportunities, and we extend the red carpet,” Usman said.
As funding for GIC’s mechanization effort winds down, this organic, private Ethiopia-Benin partnership holds promise to generate continued benefits of innovation after the project has concluded, fostering South-South collaboration within Africa.
The WIT awards are a premier recognition of talent and dedication of early-career women scientists and those who have excelled at mentoring women working in wheat and its nearest cereal relatives. This year’s winners are innovative wheat researchers from Malawi, Morocco, New Zealand, Spain, Tunisia and the United States.
“It is an honor to recognize these incredible scientists for their drive and vision in support of food security,” said Jeanie Borlaug Laube, chair of the BGRI and daughter of Nobel Prize Peace-winner Norman E. Borlaug. “My father believed that generations of hunger fighters would be needed to rid the world of food insecurity, and I’m proud to recognize these 2023 awardees for continuing to carry that mission forward.”
The WIT Early-Career Award provides women working in wheat with the opportunity for additional training, mentorship and leadership opportunities. The WIT Mentor Award recognizes the efforts of men and women who have played a significant role in shaping the careers of women working in wheat and demonstrated a commitment to increasing gender parity in agriculture.
“The WIT Awards have proven to be influential in shifting gender dynamics towards more equity in wheat science. WIT awardees are taking on leadership roles in scientific settings all over the world, and these newest awardees have the potential to continue that trend towards a more inclusive future,” said Maricelis Acevedo, director for science for the BGRI and research professor of global development in Cornell University’s College of Agriculture and Life Sciences.
Since founding the WIT awards in 2010, the BGRI has now recognized 71 early-career award winners from 31 countries and 13 mentors from 9 countries.
From Malawi, Veronica is a Ph.D student, University of Nottingham (UoN)-Rothamsted Research (RRes) in the United Kingdom, and Lilongwe University of Agriculture and Natural Resources (LUANAR) in Malawi. She focuses on exploiting the wider genetic variation among wheat and wild relatives to identify novel sources for increased grain zinc and iron concentration, and transfer these to African varieties.
From Morocco, Hafssa is genomic selection expert for the durum wheat breeding program at International Center for Agricultural Research in the Dry Areas (ICARDA) in Morocco. Her work is aimed at implementing genomic selection and speed breeding tools to deliver superior cultivars to national partners from Central and West Asia, North Africa, and West Africa.
From Spain, Marina is a fourth-year Ph.D. student at the John Innes Centre where she studies the post-anthesis development of the unpollinated wheat carpel under the supervision of Cristóbal Uauy and Scott Boden and in collaboration with KWS and Syngenta. Marina is applying a combination of approaches, including field trials, microscopy work, machine learning, and transcriptomics to better understand the genetic processes regulating different aspects of female fertility in bread wheat.
From New Zealand, Megan is a CERC Postdoctoral Research Fellow at the Commonwealth Scientific and Industrial Research Organisation (CSIRO). She focuses on developing molecular understanding of the interactions between rust fungi and wheat through structural biology and protein biochemistry, and recently adopted new artificial intelligence technologies in her work to facilitate structural analysis on a genome-wide scale for the purpose of exploiting structural conservation to engineer novel, durable genetic resistance in wheat and ensure effective utilization of current resistance.
From the United States, Amanda is a research geneticist at the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) at the Cereal Crops Research Unit in Fargo, North Dakota. Her current research program focuses on pre-breeding and germplasm improvement for both tetraploid and hexaploid wheat, focusing on the Great Plains region.
A dual citizen of Tunisia and the United States, Amor is vice president of the Borlaug Training Foundation. His work has spanned organizations on multiple continents, with positions at the University of Tunis, ICARDA, and CIMMYT. As Wheat Training Officer at CIMMYT from 2012-2018, he enhanced academic and hands-on training on wheat improvement for junior scientists from over 20 countries annually. There he developed a modular advanced wheat improvement course for mid-career scientists. In Tunisia he initiated the CRP-Wheat Septoria Precision Phenotyping Platform in Tunisia, where from 2015 to 2021 he fully involved graduate research as part of platform that led to women researchers earning seven Ph.D. and two MSc degrees in a six-year period.
Delegates with other officials in front of the seminar room. (Photo: Biswajit/BWMRI)
Representatives from Australian Centre for International Agricultural Research (ACIAR) and Bangladesh Agricultural Research Council (BARC) paid a visit to Bangladesh to see the valuable work of the Precision Phenotyping Platform (PPP).
PPP was established in response to the devastating wheat blast disease, which was first reported in the country in 2016.
Technical and financial support from the International Maize and Wheat Improvement Center (CIMMYT), the Australian Commission for International Agricultural Research and the Australian Centre for International Agricultural Research, along with other funders, has contributed to the effort to combat the disease.
This is achieved by generating precise data for wheat blast resistance in germplasm in Bangladesh, as well as other wheat growing countries. This PPP has been used to screen elite lines and genetic resources from various countries.
On February 16 and 17, 2023, two groups of national and international delegations visited the BWMRI-CIMMYT collaborative research platform PPP at the BWMRI regional station in Jashore, Bangladesh.
The first group was made up of representatives from both the Australian Commission for International Agricultural Research and the Australian Centre for International Agricultural Research. This included seven commissioners under the direction of Fiona Simson, along with ACIAR senior officials from Australia and India.
The other group was from BARC, which was led by Executive Chairman Shaikh Mohammad Bokhtiar, along with Golam Faruq, Director General of BWMRI, and Andrew Sharpe, Bangabandhu Research Chair, Global Institute of Food Security (GIFS), University of Saskatchewan in Canada.
Both delegations were welcomed by Muhammad Rezaul Kabir, the Senior Wheat Breeder at BWMRI. Kabir gave a brief presentation about the platform and other wheat blast collaborative research programs in the seminar room.
The delegations then went to the PPP field, where BWMRI researchers Kabir and Robiul Islam, as well as CIMMYT researcher Md. Harun-Or-Rashid, explained further information about the BWMRI-CIMMYT collaborative research. Both commissioners and delegates appreciated seeing the work being conducted in person by the national and international collaborations of BWMRI and CIMMYT on wheat blast research.
Visitors observing blast disease symptoms in wheat leaves. (Photo: Muhammad Rezaul Kabir/BWMRI)
“It is important, innovative work, that is affecting not only Bangladesh but many countries around the world that are now starting to be concerned about the impacts of wheat blast,” commissioner Simson said. “This study is very important for Australia and we are pleased to be contributing to it.”
Lindsay Falvey, another commissioner, added, “This is a wonderful experiment, using high-level science and technologies to combat wheat blast in Bangladesh. The experiment is well-planned. Overall, it is an excellent platform.”
ACIAR delegate Eric Huttner added to the praise for the project. “The platform is performing extremely well for the purpose of evaluating lines, resistance to the disease and that’s very useful for Bangladesh and rest of the world,” he said. “This is a gift that Bangladesh is giving to the neighboring countries to protect wheat.”
The delegates pledged to share their expert advice with the Minister of Foreign Affairs in Bangladesh in order to increase investments and improve facilities for agricultural research programs in the country.
Golam Faruq, Director General of BWMRI discussing the PPP with Shaikh Mohammad Bokhtiar, Executive Chairman of BARC (Photo: Md. Harun-Or-Rashid/CIMMYT)
“This is an excellent work,” Executive Chairman of BARC, Bokhtiar said. “We can get more information from screening activities by using bioinformatics tools and training people through the BARC-GIFS program.”
Pawan Kumar Singh, Head of Wheat Pathology at CIMMYT-Mexico and Project Leader, coordinated the visits virtually and expressed his thanks to the delegations for their visit to the platform. This PPP, within a short span of few years, has been highly impactful, characterizing more than 15,000 entries and releasing several resistant varieties in countries vulnerable to wheat blast.
Although the technologies exist, many farmers have little information on how to implement them.
Seed companies and senior officials from the Ministry of Agriculture could play a key role in disseminating information, as could mobile phone technology and emerging digital innovation platforms.
On March 2, the China-Pakistan Joint Wheat Molecular Breeding International Lab (“Joint Lab”) was launched, funded by the Science and Technology Partnership Program, Ministry of Science and Technology of China, with the joint support from China‘s Ministry of Agriculture and Rural Affairs, National Agriculture Research Center of Pakistan and the International Maize and Wheat Improvement Center (CIMMYT).
The joint lab aims to develop new varieties with high yield and resistance to disease, enhancing breeding capacity and wheat production in Pakistan, where wheat is the largest food crop.
To mark International Women’s Day 2023, Nele Verhulst, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), shares progress from the Women in Crop Science group and how their work tries to contribute to gender equality in agriculture and science.
Growing up in the nineties in Belgium, I was interested in feminism, but I also assumed that the fight for equal rights for women and men had been fought and won. Studying bioscience engineering in the 2000s, more than half of the students were women, so this demonstrated to me that we were all set (although the large majority of professors were men, it seemed to be just a matter of time for that to be resolved). I have now been working in Latin America as an agronomist and researcher for more than 15 years and have come to realize that there is still a lot of work to do to achieve equal opportunities for female farmers, farm advisors, scientists, and other professionals in agriculture.
At CIMMYT, between 20 and 25 percent of staff in the science career track – careers involving field, lab, data, and socioeconomic work – are female. Because of that, Alison Bentley and I started a group of women in crop science at CIMMYT about one year ago on the International Day of Women and Girls in Science in 2022. In our first meeting, we aimed to connect, discussed how to build a network (we did not even have a list of all women in science at CIMMYT, so it was hard to know who to invite), and decided whether we wanted to commit to additional actions to achieve a more inclusive environment at CIMMYT.
Since that first meeting, we have organized coffee mornings and other events, and have split into smaller working groups to draft action plans on ten topics: gender in the workplace strategy development, advancement for locally recruited staff, mentorship, recruitment processes, microaggressions, harassment policies, work-life balance, family friendly work environment, raising external awareness about women in agriculture, and ensuring internal visibility.
I have enjoyed being able to make some first small changes – who knew sanitary facilities would turn out to be a recurring topic! – but most of all I have loved the opportunities over the past year to connect with women with a shared passion for crop science in all its aspects. That passion and the opportunities it creates to improve the lives of farmers and rural communities is the most important thing we are celebrating today.
Cover photo: Women participate in a public harvest event for timely sown wheat organized by the Cereal Systems Initiative for South Asia (CSISA) project with Krishi Vigyan Kendra (KVK) in in Nagwa village near Patna in Bihar, India. (Photo: Madhulika Singh/CIMMYT)
The CGIAR Initiative on Market Intelligence represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach. (Photo: Susan Otieno/CIMMYT)
What is ‘Market Intelligence’?
Strategies for breeding and seed systems to deliver greater impact will benefit from reliable and comparable evidence on the needs and requirements of farmers, processors and consumers. This includes anticipating how farmers may respond to emerging threats and opportunities in light of seed-sector and product-market evolution and the changing environment. Experts generally agree that ‘demand-led breeding’ will be essential to achieve more impact from investments in crop breeding. But the continued interest in a demand-led approach to the design of varieties and the prioritization of breeding pipelines requires reliable, comparable and timely market intelligence. It also requires new mechanisms for how market intelligence is collected, shared and discussed with those engaged in the design and funding of breeding pipelines and seed systems.
Over the past 25 years, social science researchers from CGIAR, NARES and universities have generated important insights on the traits and varieties farmers prefer. These farmer preferences for traits and varieties have been explored through household surveys, participatory rural appraisals and participatory varietal selection. More recently, economists have employed tools such as choice experiments, experimental auctions and gamification of farmer priority traits. Overall, a large body of work has emerged, but variations in research questions, methodologies and interventions have contributed to disparate research findings and limited the opportunities for consolidation and comparative analyses.
Looking ahead, a strategic opportunity to guide more impactful investments in crop breeding and seed systems development lies in:
designing a consistent approach for generating and disseminating market intelligence
coordinating research across CGIAR and NARES to deliver timely market intelligence;
establishing processes for coordination across social science teams and among social science, crop modelers, CGIAR-NARES networks and the private sector.
The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach.
Within this initiative, the International Maize and Wheat Improvement Center (CIMMYT) leads Work Package 1, ‘Market Intelligence’, which is responsible for the design of innovative methods and tools to collect market intelligence and the application of these tools across different regions and crops relevant for CGIAR breeding. The Work Package engages either other CGIAR centers and external partners, such as CIRAD and the World Vegetable Center. An early, but critical, challenge facing the Work Package team was how to disseminate in an accessible and timely manner market intelligence to breeding teams, funders, and the private sector.
Market Intelligence Briefs
Traditionally, researchers from CGIAR, NARES and universities who have sought to inform crop breeding and seed systems programming have done so by publishing their work in reputable international peer-reviewed journals. However, the process can be slow, potentially requiring multiple revisions over years. The practical nature of market intelligence research can limit its relevance for journal editors who are looking to push theoretical debates forward. Thus, for Market Intelligence to deliver on its promise, new ways of communicating will be essential. In looking to address these limitations, work package 1 has led the design and implementation of a new publication series called Market Intelligence Briefs (MIB). Each brief is reviewed by peers, is concise (less than 4000 words), avoids technical jargon, and attempts to present conclusions in a clear and decisive manner. In 2022 the first two editions of the MIB series were published, both led by CIMMYT researchers and available online.
This brief defines several important concepts that, when taken together, form the basic framework used by the Initiative to generate comparable and useful market intelligence. Some of the definitions are inspired by previous work on demand-led breeding, while others build on work by CGIAR’s Excellence in Breeding (EiB) platform. A confusing set of terms and definitions has emerged around market intelligence—a field rooted in commercial product innovation—with different terms and definitions for similar concepts. In the interest of clear communication and understanding among those engaged in crop breeding, seed systems and social science, this brief presents key concepts and definitions that have been discussed extensively during the initial months of implementation of Market Intelligence. We conclude the brief with reflections on the way forward for implementation.
The second brief zooms into the maize market segments in East Africa and proposes a new methodology for gathering insights from farmers about their varietal preferences to inform future market segmentation. This brief explains the conceptual and methodological underpinnings of Video-based Product Concept Testing (VPCT) and presents an application of the tool in hybrid maize. Seven new product concepts (representing potential future market segments) were identified based on discussions with breeders, seed companies and farmers, which we labelled: home use, intercropping, drought avoidance, nutritious, feed (yellow), green maize and food and fodder. These future concepts, together with the resilient benchmark product concept (the current breeding target), were evaluated through triadic comparisons with 2400 farmers in Kenya and Uganda. The results showed that concepts focused on agronomic performance were preferred over concepts focused on end use characteristics, but that diversity in farming practices can lead to different seed preferences.
Looking ahead
In 2023, several briefs will be published from scientists working in the market intelligence initiative and various partners of Market Intelligence from outside the CGIAR. An on-line repository for these briefs is being designed now. Future briefs will cover a variety of topics, from competition in maize seed markets in Kenya (based on a two year study that tracked seed sales at the retail level), methods for assessing the demand for future step-change innovations in genetic innovations, and preferences for future groundnut seed products in Tanzania, considering the needs of farmers and processors. We believe that these briefs will become a valuable communication tool to support informed decision making by crop breeders, seed system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector and non-governmental organizations (NGOs).
This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by the Bill & Melinda Gates Foundation, the UK’s Foreign, Commonwealth & Development Office (FCDO), the Foundation for Food & Agricultural Research (FFAR) and the United States Agency for International Development (USAID).
Participants of the crop modeling simulation workshop in Harare, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)
Anticipating appropriate and timely responses to climate variability and change from an agricultural perspective requires forecasting and predictive capabilities. In Africa, climate-related risks and hazards continue to threaten food and nutrition security.
Crop simulation models are tools developed to assist farmers, agronomists and agro-meteorologists with insights on impacts to possible management decisions. Such tools are enablers for taking an appropriate course of action where complexity exists relating to both crop and livestock production. For example, a new variety can be introduced to Zimbabwe, but its performance will differ depending on the agroecological zones of the country and the respective treatments a farmer may apply. Applying modeling tools to assess its performance can predict yield differences and facilitate the generation of recommendations for which region is most suited to the variety, water use efficiency, and crop combinations.
Earlier this month, the International Maize and Wheat Improvement Center (CIMMYT) hosted a crop modeling simulation workshop with delegates from various African countries in Harare, Zimbabwe.
“The CGIAR Initiatives of Excellence in Agronomy (EiA) and Sustainable Intensification of Mixed Farming Systems (SI-MFS) have recognized the need to enhance modeling capacity in Africa to allow African scientists to lead in solving challenges within agricultural systems,” said CIMMYT crop scientist and coordinator of the workshop, Vimbayi Grace Petrova Chimonyo.
The workshop was facilitated by renowned global crop modeling experts to provide critical coaching support to upcoming modelers. These experts included Sue Walker, a professor at the University of the Free State, Tafadzwa Mabhaudhi, a professor at the International Water Management Institute (IWMI), KPC Rao, a lead scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Dirk Raes (KU Leuven), Diego Peqeuno (CIMMYT) and Siyabusa Mukuhlani from the International Institute of Tropical Agriculture (IITA).
Crop models are scientific presentations of statistical knowledge about how a crop will grow in interaction with its environment. They use mathematical equations representing processes within a predefined plant system and the interactions between crops and the environment. The discipline is based on the premise that agricultural system environments are complex and not homogenous. Crop models enable decision-makers to make data-driven decisions by simulating possible outcomes to changes in a system and the configuration of production systems.
“It is quite apparent that modeling skills are scarce on the African continent. This workshop is a step toward consolidating existing capacities on the continent. If we are going to be able to close the already existing food deficit gap on the continent and meet the food requirements needed by 2050, with an estimated global population of nine billion, then we need to take modeling seriously,” said Chimonyo in her opening address at the workshop.
Due to the lack of crop modeling expertise in African states, there is a gap in capacity to build relevant crop advisory tools for farmers at a local level. This leads to poor policy formulation as decisions are based on a high degree of generalizations.
“In this modern era, we need advisories that are context specific. For example, just because a maize variety achieved a certain yield in one context doesn’t mean the same variety will achieve the same yields even if the rainfall patterns are the same. Other factors come into play, such as the soil type, temperature and other related aspects affecting the yield. Crop modeling affords advisory managers some specifications necessary to achieve high yields in different environments,” said Walker.
Vimbayi Chimonyo from CIMMYT making opening remarks at the workshop. (Photo: Tawanda Hove/CIMMYT)
Speakers at the workshop focused on three models, APSIM, AquaCrop and DSSAT, and participants had the opportunity to take part in activities and ask questions face-to-face. The workshop also covered key modeling aspects such as the minimum data requirements needed to run a model, calibration and validation of models, confidence testing of results, the science involved in simulating phenological development and growth processes, water and nitrogen cycles, and the use of multi-modeling approaches.
The workshop was particularly useful for young scientists, according to Rao, allowing more experienced modelers to share their expertise. “With such an interactive platform, experienced modelers like me can demonstrate multi-modeling approaches.”
Rao presented on two main approaches. The first involved the application of different simulation models to simulate one component of a system such as crops. The second simulated the complete system by integrating various models, such as crops, livestock, and economic models, providing an opportunity to understand the synergies and trade-offs between different components of the whole farm.
Participants at the workshop expressed their satisfaction with the training provided and left with practical knowledge that they could apply in their work both in the field and in the lab.
“When I first arrived, I knew very little about modeling, but as the workshop progressed, my confidence in applying models increased. I intend to immediately apply this knowledge for the forthcoming season such that we can start making impactful contributions to the country’s food and nutrition security status,” said Birhan Abdulkadir Indris, a research officer at CIMMYT.
“I am leaving this workshop with the confidence that I will advise farmers in my circle of influence with services tailored to their needs. I have learned that crop modeling can be used for many purposes and that different models address different issues,” said Connie Madembo, a research technician at CIMMYT. “I intend to teach other fellow PhD students at the University of Zimbabwe the same things I have learnt here. As a country, we need to be at the forefront of using these models, considering Zimbabwe’s high weather variability.”
As a way forward, the trained scientists were encouraged to apply the modeling skills they had gained to address short-term problems such as yield gaps and water use efficiency and long-term challenges such as the local impacts of climate change.
“While more capacity training is required, starting somewhere is better than never starting,” said Mabhaudi.
Ethiopia is the second largest wheat grower in Africa and has high levels of demand for the crop. Shortages of grains, cereals and agricultural inputs such as fertilizer caused by the Russia-Ukraine conflict are leading the Ethiopian government to focus heavily on increasing the country’s productivity to rely less on imports.
Prime Minister Abiy Ahmed recently launched national exports of wheat/ “We have made Ethiopia’s wheat export dream a reality,” he said.
Yahaya highlighted the role of CIMMYT in improving Ethiopia’s wheat production; around 70 percent of varieties grown in the country come from the organization’s germplasm. He also praised Ethiopia’s tax free imports on agricultural machineries and strong extension system, saying that other countries could learn from the success of these initiatives.
The interview took place at a working group on mechanization organized by the Green Innovation Centers (GIC) and CIMMYT to promote the use of machinery in agriculture.
Samantha Power, Administrator for USAID, in an interaction with colleagues from SSSC and CIMMYT in Nepal. (Photo: Kaji Ram Bhatta/CIMMYT)
On February 7, Samantha Power, Administrator for the United States Agency for International Development (USAID), visited SEAN Seed Service Centre (SSSC) in Thankot, Nepal. Her time at the seed company — which is supported by the Nepal Seed and Fertilizer (NSAF) project — provided an opportunity to learn more about how private sector support for agribusiness can help accelerate Nepal’s agricultural transformation.
The event began with a tour of the company’s facilities and seed lab, where Power met with breeders and employees responsible for sorting and grading seeds. Other stops on the visit included meetings with SSSC management and researchers from the International Maize and Wheat Improvement Center (CIMMYT), who explained the important role the private sector plays in the country’s seed sector, from the development of climate stress tolerant varieties to facilitating seed access and distribution.
The Administrator and USAID officials at a round table with private sector on transforming Nepalese agriculture. (Photo: Kaji Ram Bhatta/CIMMYT)
Later in the day, Power participated in a round table discussion with agribusiness entrepreneurs from seed and agricultural production companies, fertilizer manufacturers and distributors, and farmers cooperatives to better understand the key challenges and opportunities in fostering agricultural transformation in Nepal. The talks focused on the need for reforms on seed and fertilizer markets and elimination of market distorting policies such as unplanned subsidies, as well as the need to facilitate access to finance to boost investments and insurance to manage risks.
Key recommendations from participants included increased use of technologies — such as improved seeds, machineries, improved soil fertility management and digital tools — as well as the creation of a more enabling environment for attracting private sector investment and increasing agricultural participation among youth and disadvantaged communities in Nepal. The private sector plays a critical role in bolstering national food security, increasing economic growth, and creating transformative change in the country’s agricultural sector so it can be more commercial, competitive, and inclusive. Participants provided suggestions on how the Government of Nepal could further support the sector, allowing agribusinesses to develop and grow in order to cater to the needs of smallholder farmers and consumers.
CIMMYTs Nepal Seed and Fertilizer (NSAF) project is funded by the United States Agency for International Development (USAID). It aims to develop competitive and vibrant seed and integrated soil fertility management (IFSM) systems for inclusive and sustainable growth in agricultural productivity, business development, and income generation in Nepal.