Skip to main content

Author: Sarah Fernandes

New CIMMYT maize hybrid available from South Asian Tropical Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce a new, improved tropical maize hybrid that is now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across rainfed tropics of South Asia and similar agro-ecologies. NARS and seed companies are hereby invited to apply for licenses to pursue national release and /or scale-up seed production and deliver these maize hybrids to farming communities.

Product Code CIM19SADT-01
Target agroecology Tropical, rainfed lowlands of South Asia
Key traits Medium maturing, single-cross hybrid; yellow, semi-dent kernels; high yielding; drought-tolerant; and resistant to TLB, FSR, and BLSB
Performance data Download the CIMMYT Asia Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 26 Aug 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrid, CIM19SADT-01, was identified through rigorous trialing and a stage-gate advancement process which started in 2019 and culminated in the 2020 and 2021 South Asia Regional On-Farm Trials for our South Asian Drought Tolerance (SADT) and Drought + Waterlogging Tolerance (SAWLDT) maize breeding pipelines. The product was found to meet the stringent performance criteria for CIMMYT’s SADT pipeline. While there is variation between different products coming from the same pipeline, the SADT pipeline is designed around the product concept described below:

Product Profile Basic traits Nice-to-have / Emerging traits Target agroecologies
SADT (South Asian Drought Tolerance) Medium maturing, yellow, high yielding, drought tolerant, and resistant to TLB and FSR FER, BLSB, FAW Semi-arid, rainfed, lowland tropics of South Asia, and similar agroecologies
FER: Fusarium Ear Rot; BLSB: Banded Leaf and Sheath Blight; FAW: Fall Armyworm; TLB: Turcicum Leaf Blight; FSR: Fusarium Stalk Rot

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

More than machines

Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)

It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.

Over the past seven years, the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.

Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.

Training the trainers

As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.

The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.

The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.

Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)

What will scale up in Ethiopia?

In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.

To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.

The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.

Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.

An unexpected outcome

What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.

About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.

The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.

This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.

The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.

Scaling up the future

Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.

And there’s more to come from the Scaling Scan as well.

Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.

How bad will we let the food crises get?

As the Russia-Ukraine war continues to degrade global food security, the Australian who leads the global effort on improving wheat production has set out the concrete actions needed by governments and investors to mitigate the food crisis, stabilise supply and transition to greater agrifood system resilience.

Alison Bentley leads the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), the renowned research organisation from which more than 90 per cent of the wheat varieties grown in Australia can be traced. She will be addressing the Crawford Fund’s international conference Celebrating Agriculture for Development – Outcomes, Impacts and the Way Ahead this week in Parliament House, Canberra. The conference will also be addressed by the Minister for Agriculture, Fisheries and Forestry, Senator The Hon, Murray Watt.

“The broad food security impacts of the Russia-Ukraine war highlight the fragility of the global food supply, but the war is only one of a multitude of problems that we’ll be facing for many years to come. Few will remain unaffected,” said Alison Bentley, who was the lead author in a recently published related article in Nature Food.

“More than 2.5 billion people worldwide consume wheat-based foods. We need to move beyond defining the problem to implementing practical actions to ensure stable food supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system, and we will all benefit,” she said.

“The first priority is to mitigate the immediate crisis by boosting wheat production by bundling existing agronomic and breeding improvements and sustainable farming practices, just as Australia and other wealthy countries are doing. This will reduce dependence on imported grain and fertilizer in poorer countries.”

“We have learned since the Green Revolution that this must be done within agro-ecological boundaries, with high-yielding disease-resistant wheat and by mainstreaming capacity for pest and disease monitoring. Importantly, we also need to address climate change, gender disparities, nutrition insufficiency and increase investment in agricultural research,” she concluded.

The Fund’s annual conference will bring together international and Australian specialists to look at the mutual benefit and impacts of investment in global food security and poverty alleviation, and consider the effects of emerging threats including climate change and changing geo-political conditions on agricultural production, food chains and the environment.

Other speakers include international affairs specialist Allan Gyngell, climate change and security specialist Robert Glasser and renowned international economist Phil Pardey.

Contact for enquiries
Cathy Reade – Director of Outreach
+61 413 575 934                                                                                                                              crawford@crawfordfund.org
www.crawfordfund.org

All the powerpoints can be found on the website – you’ll find them linked to each speaker’s presentation title on the program page. 

Addressing the Global Food Crisis: CIMMYT Experts Weigh In

The confluence of climate change, COVID-19, and the war in Ukraine have placed enormous stress on food systems across the globe. Food insecurity spiked in 2020 and has stayed high, and the number of undernourished people is on the rise.

As we respond to this emergency, there is an opportunity—and a need—to strengthen the kind of strategic investments that will make our agrifood systems resilient to tomorrow’s shocks. “We cannot be running crisis to crisis,” says Bram Govaerts, Director General of the International Maize and Wheat Improvement Center, or CIMMYT, in this week’s New Security Broadcast. “We need to look at the underlying elements that are provoking these ripple effects.”

On the episode, ECSP Director Lauren Risi and ECSP Advisor Sharon Burke speak with Govaerts and his colleague Kai Sonder, head of CIMMYT’s Geographic Information System Unit, about how to address the unfolding food crisis as we simultaneously build food system resilience in the medium and long term. Drawing from their newly-published article in Nature Food, Govaerts and Sonder share approaches that governments, civil society, and private actors can take to tackle today’s wheat supply disruptions and food insecurity. They also share past success stories and lay out key challenges moving forward.

Beyond the immediate humanitarian aid needed to boost food security, Govaerts identifies intensified wheat production and greater investments in local cereals as essential short-term priorities. Medium-term investments should focus on agricultural production that is agroecologically suitable, policies that support the adoption of improved crop varieties, and data analysis to target the vulnerabilities of smallholder farmers. And with long term goals in mind, Govaerts says that we need to ask “how can we enhance our ecosystem diversity, resolve the gender disparity [in the agricultural sector] and invest in agrifood transformation from efficiency to resilience?”

Both experts emphasize that these approaches aren’t meant to be taken incrementally. “We’re really saying we need to start today, taking actions with an impact on the short, medium, and long term. It would be a mistake to only focus on the short-term actions that need to be taken,” says Govaerts.

Sonder acknowledges that transforming agricultural systems takes time—and isn’t easy. “You need to invest in breeding systems. You need to build capacity and identify areas where that is easily possible,” he explains. “Bringing out a new variety of wheat or maize or other crop takes up to ten years.”

Introducing new farming technologies can also come with challenges, since it requires making sure those technologies can actually be maintained. “You have to ensure that there are mechanics who can fix [them] quickly, that there’s a supply chain for spare parts,” observes Sonder. And securing sustained large-scale investment for research or program activities can prove difficult, as was the case for a study CIMMYT did on the potential for wheat in Africa. “The ministers were very interested,” Sonder says. “But other crisis come along, and then the funds go somewhere else.”

Despite the hurdles, there are plenty of examples of agrifood interventions with positive impact. For instance, one of CIMMYT’s current areas of work is in developing risk assessment and disease warning systems to allow people to act quickly before a crisis occurs. Sonder describes how his colleagues in Ethiopia had a recent success in identifying a risk of rust epidemic in collaboration with the government and stakeholders on the ground by using weather models.  The joint effort allowed the government “to procure and to spread fungicides and to be prepared for that crisis,” he says.

Addressing the challenges that underlie world hunger will take both this kind of strategic medium-term action as well as longer-term transformations—Even as we respond to the current hunger crisis with much-needed short-term efforts, we can also be reshaping our global agricultural systems for a more biodiverse, equitable, and resilient future.

This piece by , was originally posted on New Security Beat

Nepal Government endorses new site-specific fertilizer recommendations for rice

Farmer applying urea with a spreader in a rice field. Photo Uttam Kunwar/ CIMMYT

After four decades, new site-specific fertilizer recommendations for rice have been introduced in Nepal that will help farmers increase the crop’s productivity by 10-30%, compared to their current practices.

The Ministry of Agriculture and Livestock Development (MoALD) endorsed the new fertilizer recommendations for rice crop at a consultative workshop in July 2022 held in Kathmandu. Developed by the International Maize and Wheat Improvement Center (CIMMYT), in close collaboration with the Nepal Agriculture Research Council’s (NARC) National Soil Science Research Center (NSSRC) and International Fertilizer Development Center (IFDC), the new regime replaces the existing blanket approach of recommendations to help increase crop yields and fertilizer use efficiency.

The blanket approach assumed the whole country as one domain despite the heterogeneity in soils, other biophysical conditions and agronomic management practices, including crop varieties. As a result, fertilizers were under-utilized in low fertile soils or overused in farms with high soil fertility status, thereby farmers were not able to obtain the achievable yield.

Unlike the generic recommendations, the site-specific fertilizer management will help farmers to determine the crop’s fertilizer requirements based on soil fertility status of a particular farm, attainable yield target of the selected crop variety, crop’s yield response to fertilizers and agronomic management practices, such as irrigation, cropping systems etc. In other words, this new regime allows farmers to produce more with less fertilizers through a balanced application of fertilizers based on available soil properties.

Old is not always gold

Generally, soil fertility status changes every 3-5 years when there is continuous nutrient removal from soils due to an intensive cropping system with the adoption of high nutrient demanding improved and hybrid varieties. Thus, soil fertility management recommendations should be updated periodically but the existing recommendations were not updated since 1976.

Realizing the limitations, CIMMYT through the Nepal Seed and Fertilizer (NSAF) project, supported by USAID, worked with NSSRC and IFDC to formulate fertilizer recommendations for major cereal crops and vegetables for specific domains of the country.

Under NSSRC’s leadership, a ‘Fertilizer Recommendation Committee’ comprising of a dedicated team of soil scientists within NSSRC and NSAF experts was formed to develop site-specific fertilizer recommendations using the Soil-SMART framework for delivering balanced fertilizers to farmers. Based on soil fertility status, agro-climate, irrigation regimes and geography, the country was divided into six soil fertility domains — four in the Terai region (Eastern, Central, Western and Far-western), one in inner Terai and one in the hills. Under each domain, recommendations were based on the attainable yield, crop variety, and irrigation regime.

This approach was first tested for rice crop.

Formulating new recommendations for rice

Three fundamental steps were used to develop site-specific fertilizer recommendations, which included: i) selection of yield goal, ii) estimation of crop nutrient requirement, and iii) estimation of indigenous nutrient supplies. To collect this information, NSAF and the committee designed field trials on nutrient omission and nutrient rates to determine the yield limiting nutrients and their optimum rate, respectively. Data from fertilizer trials conducted by different research institutes and universities, including trials from the project sites were collected and analyzed by the team to see the crop’s yield response to fertilizers. A modeling approach called Quantitative Evaluation of fertility of the tropical soils (QUEFTS) was also used to estimate the indigenous nutrient supply and attainable yield target of rice for different soil fertility domains. This model was applied as an alternate to extrapolate recommendations in areas where field data were not available, considering large financial and human resources required otherwise to conduct numerous field trials across different soil types and agro ecological zones. The model was validated with field trial data before making extrapolation of the recommendations. The QUEFTS model used soil properties from Nepal’s first digital soil map to identify nutrient status and deficiency.

In addition to agronomic optimum rate, an economic analysis was also conducted to see economic variability of the recommendations.

The newly developed recommendations provide guidance for balanced fertilization as it includes micronutrients zinc and boron, and organic inputs in addition to three major nutrients —Nitrogen, Potassium and Phosphorous (NPK). Results from field trials suggested that the new recommendation could increase rice productivity by 10-30% compared to existing farmers’ practice.

Infographic on developing domain specific fertilizer recommendations.

Advocating for endorsement

A three-day workshop was organized by CIMMYT and NSSRC to primarily share and approve the recommended fertilizer dose for rice crop as well as its relevance to achieve potential yield at farm level. Rajendra Mishra, joint secretary of MoALD inaugurated the event that was chaired by the Director of NARC’s Crop and Horticulture Research. Workshop attendees included MoALD, NARC, Department of Agriculture, USAID Nepal, secretaries from the Province Ministry of Land Management, soil scientists, university professors, agronomists and other high-level government officials.

During the workshop, NSAF explained the application of QUEFTS model with reference to the case of rice based on the field trial data for domain specific fertilizer recommendations. Shree Prasad Vista, soil scientist at NSSRC, summarized the results for rice as the approach and facilitated its approval from MoALD. The participants also discussed on strategies to link with the extension system to reach a large number of farmers through the three-tier governments. Fourteen research papers on nutrient management for major cereal crops were also reviewed at the event.

“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years. Now, we are moving towards sustainable soil fertility management by adopting site-specific fertilizer recommendations,” said MoALD Secretary Govinda Prasad Sharma.

Although the recommendation for rice was a significant output of the workshop, fertilizer recommendations for other major crops will be carried out following a similar process.

NARC’s Executive Director Deepak Bhandari commented, “It is our pleasure to move from a blanket approach to site-specific approach. This is a milestone for agricultural research in the country and I would like to thank all the scientists, NSAF project and USAID’s support for this notable achievement.”

Similarly, speaking at the event, Jason Seuc, Director of Economic Growth Office at USAID Nepal, emphasized the importance of soil fertility management for achieving food security targets set by the Government of Nepal. Seuc remarked that a sustainable soil fertility management is critical not only for food security but also for reducing the environmental pollution.

Worsening food insecurity calls for stress-tolerant seeds

From chemical fertiliser shortages to lack of irrigation, farmers in Nepal have been facing a multitude of human-induced problems every year. The most urgent concern is the climate crisis.

Erratic weather patterns, untimely and uneven rainfall and rapidly rising temperatures have got farmers by the scruff of their necks.

For the farmers, such dramatic climate change manifests in the form of floods, droughts and landslides, directly hitting their agriculture-dependent livelihoods. For the nation as a whole, the climate crisis worsens food insecurity.

The tales of the climate crisis are petrifying. However, not all hope is lost.

Interventions such as climate resilient seeds that are tolerant to extreme climatic stresses like drought, flooding or submersion have been discovered and implemented in phases, according to scientists, to help sustain agricultural productivity.

“Due to the increasing climate change impacts, farmers are facing challenges to produce traditional seeds used during normal situations,” says AbduRahman Beshir Issa, seed systems lead at the International Maize and Wheat Improvement Centre, South Asia Office.

“In Nepal, farmers are witnessing both drought stress and excess moisture during the summer cropping season. In the spring season, high temperatures, coupled with drought stress, make it difficult for normal seeds or varieties to grow.”

With an increasing number of mouths to feed, and more pronounced effects of climate change yet to present themselves, climate-resilient seeds can help sustain Nepal’s agricultural productivity, according to crop development experts.

“Climate resilient seeds are crucial for food security. In addition, these crops are nutritionally important,” said Prakash Acharya, a senior crop development officer at the Seed Quality Control Centre. “With changing climate, not all crops and seeds can endure even two-three days of drought or submergence or extreme heat.”

Approximately 3 million hectares of land is cultivated in Nepal, which is 21 percent of the total land area. Rice, maize and wheat constitute more than 80 percent of cereal acreage and production.

The overall cereal yield in Nepal is 2.6 tonnes per hectare, which is far lower than the regional and global average of 4.1 tonnes per hectare, indicating an overall low productivity.

Paddy constitutes the highest production, commanding a 20.8 percent share in the agriculture gross domestic product (AGDP).

Nepal’s economic wellbeing is intimately linked with the monsoon. Water from the skies is the lifeblood of Nepal’s Rs4.85 trillion economy which is farm-dependent, as nearly two-thirds of the farmlands are rain-fed.

A large part of the country gets nearly 80 percent of its annual rainfall during the four months—June to September.

The production of food grains, mainly rice, depends on the amount and distribution of monsoon rainfall over the country. The monsoon rains also replenish ground water and reservoirs critical for drinking and power generation.

Analysing data from the past 33 years of minimum and maximum temperatures and rainfall, scientists predict drought to be the most important limiting factor for crop production, including paddy.

As paddy is sensitive to drought due to its high water requirement, scientists say there is a need for promoting “climate change-ready rice” that can tolerate drought for up to months.

For instance, research in Nawalparasi in the central Tarai found that the existing paddy varieties would not sustain the yield potential of the present level after 2020.

In October 2021, unusual weather patterns led to a torrential downpour lasting three days, causing massive loss of agricultural harvests and physical infrastructure across many parts of Nepal.

In 2020, in East Rukum, continuous rainfall from January to September decreased maize yield. The drought that followed then destroyed the wheat crop. Right after, the heavy rains also wiped out potatoes and maize.

Climate projections further suggest changes in precipitation during the monsoon period (with variations from 14 percent to 40 percent), as well as the increased likelihood of heavy precipitation events.

Experts are concerned that such unpredictable changes in weather patterns will lead to a decline in agricultural productivity, further worsening food insecurity in the region.

“We aren’t food secure right now as well. And with climate change, it is only getting worse. In the long run, the condition of food security in Nepal will be alarming,” says Yamuna Ghale, agriculture and food security policy analyst who is also research director at the Nepal Centre for Contemporary Research.

Around 65 percent of Nepal’s population depends on agriculture for its livelihood, which accounts for 25 percent of the GDP.

With the increasing population and declining agricultural productivity, experts say that Nepal could sooner or later face food insecurity.

“Everyone has the right to food. But the current situation indicates that a food shortage is looming,” said Ghale, who is also an expert at the Food Security Coordination Committee under the Ministry of Agriculture and Livestock Development. “We have to focus on climate-smart alternatives now, beginning with climate-resilient seeds.”

Climate-resilient seeds can withstand extreme conditions brought about by climate change. For example, drought-tolerant seeds can sustain periods of dry conditions, and submergence-tolerant seeds can withstand flood stress.

For example, improved varieties like Sukkhaa Dhan 4, Sukkhaa Dhan 5 and Sukkhaa Dhan 6 have an average yield of 4-4.5 tonnes per hectare, and under good irrigation conditions, the output can go up to 5.5 tonnes per hectare on an average.

Sukkhaa 6 has the ability to re-grow even two weeks after submergence.

Swarna Sub-1, Sambha Mansuli Sub-1, Cherang Sub-1, Gangasagar-1, and Gangasagar-2 are submergence-tolerant paddy varieties.

Rice varieties like Bahuguni-1 and Bahuguni-2 are both drought and submergence tolerant.

Similarly, maize varieties that are drought tolerant, such as Deuti, Manakamana-5 and Manakamana-6 are also available. Rampur hybrid-10 and Rampur hybrid-12 are heat-tolerant varieties.

Seto Kaguno is a promising variety of foxtail millet that is drought-tolerant and extremely climate-resilient.

Paddy varieties which possess the “Sub1A” gene remain dormant during submergence, and conserve energy until the floodwaters recede. Paddy plants with the “Sub1A” gene can survive more than two weeks of complete submergence. The plant recovers well from drought by growing new shoots.

“A character is incorporated into existing rice varieties to make them stress-tolerant or climate-resilient. This makes them fare better than traditional crops,” said Acharya.

“In very recent years, because of climate change, we have begun researching drought- and submergence-tolerant seeds,” said Acharya.

These climate-smart varieties, which can survive under stress and retain desirable grain qualities, can create positive impacts on the lives of farmers, scientists say.

Since 1966, Nepal has released and registered 144 varieties of paddy seeds, according to the Agriculture Ministry.

Scientists say that a majority of these stress-tolerant varieties do not demand excess fertilisers or tillage methods.

The Nepal Agriculture Research Council (NARC) is spearheading various projects for producing and popularising drought- and submergence-tolerant seeds.

“Under USAID’s support, Nepal Seed and Fertiliser Project, paddy seeds which are drought and submergence tolerant are being produced and marketed in Nepal in partnership with the government and the private seed companies,” Issa said in an email.

The National Maize Research Programme of NARC has released heat stress-tolerant maize hybrids that can survive at high temperatures compared to traditional varieties.

Likewise, under the National Grain Legumes Research Programme of NARC, field testing of waterlogging-tolerant lentil varieties is being done to come up with varieties that can withstand excess moisture from unusual winter rains during the lentil growing season, according to Issa.

Despite the availability of stress-tolerant seeds, farmers are not much aware of the new varieties and are hesitant to adopt such seeds easily.

Due to lack of awareness, farmers hardly adopt new varieties and they prefer traditional varieties. Local governments too have failed to create awareness.

According to experts, Sukhaa Dhan 3, Samba Mansuli Sub-1 and Cherang Sub-1 are popular among farmers in the Tarai and mid-hills.

However, varieties like Bahuguni-2 have been rejected by farmers because “Nepali consumers prefer non-sticky, fluffy rice as opposed to sticky varieties,” experts say.

Despite being both drought and submergence tolerant, such varieties are not adopted by farmers.

“Farmers are enthusiastic about using new ways and techniques of farming, but local governments have completely ignored investing in agriculture,” said Ujjal Acharya, freelance researcher on climate change and environment economics.

“They have been more focused on building infrastructure, roads, bridges, temples and so on. Food security, climate resilient agriculture, organic farming—all do not fall within the priorities of local governments,” he said.

However, scientists acknowledge that climate resilient crop varieties are only a part of the solution of the bigger climate-resilient agricultural system.

“It is extremely important to develop climate-resilient crop varieties that can withstand extreme weather conditions, but seeds are just one part among the various solutions,” says Issa.

This piece by Aakriti Ghimire, was originally posted on The Kathmandu Post.

Earlier wheat planting will boost yields in eastern India

“For several years, we’ve been building dense data sets with colleagues from the Indian Agricultural Research Council, which have allowed us to unravel complex farm realities through big data analytics, and to determine what agricultural management practices really matter in smallholder systems,” said Andrew McDonald ’94, M.S. ’98, Ph.D. ’03, associate professor of soil and crop sciences in the College of Agriculture and Life Sciences. “This process has confirmed that planting dates are the foundation for climate resilience and productivity outcomes in the dominant rice-wheat cropping systems in the eastern sector in India.”

McDonald is first author of “Time Management Governs Climate Resilience and Productivity in the Coupled Rice-Wheat Cropping Systems of Eastern India,” published July 21 in Nature Food with a consortium of national and international partners, including scientists from the International Maize and Wheat Improvement Center (CIMMYT).

The research was conducted through the  Cereal Systems Initiative for South Asia (CSISA). CSISA, which is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute as research partners, was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

Researchers found that farmers in eastern India could increase yield by planting wheat earlier – avoiding heat stress as the crop matures – and quantified the potential gains in yields and farm revenues for the region. They also found that the intervention would not negatively impact rice productivity, a key consideration for farmers. Rice alternates with wheat on the cropping calendar, with many farmers growing rice in the wet season and wheat in the dry season.

The study also provides new recommendations for rice sowing dates and types of cultivars, to accommodate the earlier sowing of wheat.

“Farmers are not just managing single crops. They are managing a sequence of decisions,” said McDonald, who has a joint appointment in the Department of Global Development. “Taking a cropping systems approach and understanding how things cascade and interlink informs our research approach and is reflected in the recommendations that emerged from this analysis. Climate resilient wheat starts with rice.”

The research is the result of years of collaboration with international groups and government agencies in India, which have identified the Eastern Ganges Plain as the area with the most potential growth in production. The region will become essential, McDonald said, as the demand for wheat grows, and climate change makes production more difficult and unpredictable; just this year, record heat waves in March and April and food shortages caused by the war in Ukraine – both of which prompted India’s government to instate a ban on wheat exports – have highlighted the need for increased yields and more sustainable farming practices.

“In the bigger sense, this research is timely because the hazards of climate change aren’t just a hypothetical,” McDonald said. “Many of these areas are stress-prone environments, and extreme weather already constrains productivity. Identifying pragmatic strategies that help farmers navigate current extremes will establish a sound foundation for adapting to progressive climate change.”

Poverty is endemic in the Eastern Ganges Plain, and the region is dominated by small landholders, with varying practices and access to resources. The breadth and specificity of the data collected and analyzed in the study – including field and household survey data, satellite data, and dynamic crop simulations – allowed researchers to understand regional small farms’ challenges and the barriers to change.

“At the end of the day, none of this matters unless farmers opt in,” McDonald said. “There’s a spatial dimension and a household dimension to opportunity.  If we can  target approaches accordingly, then we hope to position farmers to make management changes that will benefit the entire food system.”

The study was co-authored with researchers from the Australian Department of Primary Industries and Regional Development, the International Rice Research Institute, the International Maize and Wheat Improvement Center, the International Food Policy Research Institute, the Indian Council of Agricultural Research and Bihar Agricultural University. The research was supported by the Bill and Melinda Gates Foundation and the U.S. Agency for International Development through grants to the Cereal Systems Initiative for South Asia, which is led by the International Maize and Wheat Improvement Center.

This piece by Caitlin Hayes, was originally posted on the Cornell Chronicle website.

Novel technology to reduce the complexity of maize seed production and increase maize hybrid yields in farmer’s fields

A recently published study in Nature Communications Biology journal demonstrates the potential of a novel seed production technology to transform Africa’s seed production system, conferring important benefits to smallholder maize farmers and seed companies in sub-Saharan Africa.

The Seed Production Technology for Africa (SPTA) process enables production of non-pollen-producing inbred seed that can be used in a two-step multiplication process to produce commercial seed of hybrid varieties containing equal parts pollen producing and non-pollen producing plants.  The pollen producing plants provide pollen for the entire field, while the non-pollen producing plants deliver additional grain since they save energy by not producing pollen. Hybrids in which fifty percent of the plants are non-pollen producing have a significant grain yield advantage compared with hybrids in which all plants produce pollen.

Farmers and researchers evaluated the performance of fifty percent non-pollen producing (FNP) hybrids  in side-by-side comparisons across diverse farm sites in Kenya, South Africa, and Zimbabwe between 2016 and 2019. The results demonstrate that FNP hybrids deliver an average yield increase of 200 kg per hectare, representing a 10-20% increase at current sub-Saharan Africa yield levels where farmers face frequent drought and sub-optimal soil fertility. The FNP yield advantage was consistent in both low yielding and higher yielding conditions.  Additionally, in extensive farmer surveys, farmers rated the FNP hybrids higher than the pollen producing counterparts, recognizing the grain yield advantage. Favorable rating of FNP hybrids suggests that farmers are likely to adopt them once available.

Although consistent and steady improvement is being made for grain yield potential through plant breeding, the yield benefit of FNP hybrids is the equivalent of approximately six years of breeding progress under stressful conditions.  The FNP trait provided a consistent yield advantage in several genetically unique hybrids evaluated, indicating that the yield advantage from FNP will be complementary to and additive with progress from maize breeding efforts.

In sub-Saharan Africa, the challenge of delivering genetically pure, high-quality seed is substantial. Seed companies in the region contend with a complex and costly system to produce commercial seed. In addition to delivering higher grain yield to farmers through the FNP trait, the SPTA process will reduce the complexity of seed production, enabling seed producers to deliver higher purity improved hybrid seeds in sufficient quantities for smallholder farmers.

Hybrid seed production requires that one of the parents of the hybrid is prevented from producing pollen, ensuring that the seed harvested has been cross-fertilized by the pollen parent. Most hybrid seed production in sub-Saharan Africa involves physical removal of the tassels of the seed parent prior to the release of pollen, a process known as detasseling. Detasseling is important in commercial seed production to prevent self-fertilization of the seed parent plants. Nearly all detasseling in sub-Saharan Africa is done by hand, which is a labor-intensive and time-sensitive process. Poorly executed or ill-timed detasseling results in unwanted self-fertilization of the seed parent, leading to rejection of seed and incurring losses to the seed producer. Furthermore, timely detasseling typically involves removal of one or more leaves together with the tassel, reducing the photosynthetic capacity of the plant, and lowering the seed yield.

Use of the SPTA process ensures that the seed parent of the hybrid will not produce pollen, thereby eliminating the need for detasseling. This means seed producers can ensure higher integrity of hybrid seed while reducing costs and increasing seed yield. The technology is well suited for the three-way hybrid production commonly used in sub-Saharan Africa. Economic advantages to seed companies of using seed from the SPTA process is also expected to provide incentive to replace older, lower yielding varieties with more recently developed hybrids. Providing improved quality seed of better hybrids while delivering the yield advantage of the FNP trait can benefit smallholder maize farmers throughout the region. Saving costs can help the seed sector remain strong and competitive, which leads to increasingly better options for farmers in the future.

Read the full study: Incorporating male sterility increases hybrid maize yield in low input African farming systems

The research was conducted by scientists from the Seed Production Technology for Africa project, a collaborative initiative of the Agricultural Research Council of South Africa (ARC), International Maize and Wheat Improvement Center (CIMMYT), CortevaTM Agriscience, Kenya Agricultural and Livestock Research Organization (KALRO), and QualiBasic Seed Company (QBS).

Cover photo: A woman with a baby on her back evaluating maize plants farmer’s plots hosting FNP trials in Embu, Kenya. Photo: Hugo DeGroote/CIMMYT

How to shockproof staples in a looming global food crisis

Empty shelfs in a Swiss grocery store. Photo Boris Dunand/Unsplash

The conflict in Ukraine has had a deeply destabilizing effect on the global wheat trade, causing unprecedented price volatility and uncertainty. As my colleagues and I have previously highlighted, the unintended consequences are likely to have outsized impacts on livelihoods in the Global South.

As the G7 group of nations recently acknowledged in a joint statement, the conflict is leading to steep price rises and increasing global food insecurity for millions, especially those most vulnerable, such as women and children.

In a new paper published in Nature Food, scientists and partners of the International Maize and Wheat Improvement Center (CIMMYT) present a package of applied solutions to respond to the crisis and ensure future wheat stability.

To stem the potential food crisis, food is needed in more places, and faster.

Recently announced talks between Russia, Turkey, Ukraine and the United Nations, among other negotiations, are already underway as part of this international effort to develop short-term solutions.

However, at present we are seeing the brakes applied in several places. For example, in India century-high temperature extremes have recently reduced official wheat production estimates by 6 percent, leading to reduced export potential. This shows the compounding effect of climatic instability on global wheat markets, an impact that is expected to worsen over time.

In our solutions agenda, we propose a package of short-, medium- and longer-term actions and urge immediate and sustained support for shockproofing major food security staple crops, including wheat.

  1. In the short term, the priority is mitigation of food security shocks through boosting production in existing high- and low-productivity areas, ensuring access to grain, and making use of flour substitution.
  2. In the medium term, we must increase the local, regional, and global resilience of wheat supply through targeted expansion (within agro-ecological boundaries), support for self-sufficiency, comprehensive technical support in production systems, and mainstreamed crop monitoring capacity.
  3. In the longer term, the transition to agri-food system resilience will need to encompass agroecosystem diversity, address gender disparities in agriculture and rural communities, and sustain an increased investment in a holistic, agri-food transition.

Conflict is being waged on wheat on multiple fronts: on battlefields, in the political arena and by our changing climate. Together these factors interact and amplify the threat to staple wheat production. To address this complexity, we now need to move beyond defining the problem to implementing practical action to ensure stable supply.

Former director general Timothy Reeves included in Queen’s Birthday Honours List

Timothy Reeves. (Photo: Courtesy of Tim Reeves/University of Melbourne)
Timothy Reeves. (Photo: Courtesy of Tim Reeves/University of Melbourne)

Timothy Reeves, who served as director general of the International Maize and Wheat Improvement Center (CIMMYT) from 1995 to 2002, has been included in Queen Elizabeth II’s Birthday Honours List. He has been appointed a Member (AM) of the Order of Australia, for his significant service to sustainable agriculture research and production.

“I’m overwhelmed. I feel so honored and wish to also recognize the wonderful people that I have worked with — both farmers and scientists — here in Australia, and around the world. I also acknowledge my beautiful family without whom it would have not been possible,” he said.

Reeves was a pioneer of direct drilling and conservation agriculture in Australia in the 1960s and 70s. This method of planting crops which requires no cultivation of the land, is now the direct-drilling method used by 90% of farmers across Australian cropping regions. He and colleagues in the Victorian Department of Agriculture also worked at that time on the introduction of new crops into farming systems, including lupins, canola and faba beans.

Timothy Reeves (center) with C. Renard (left) and Norman Borlaug. (Photo: CIMMYT)
Timothy Reeves (center) with C. Renard (left) and Norman Borlaug. (Photo: CIMMYT)

He was appointed to the role of director general of CIMMYT in 1995, based in Mexico for seven years, helping developing countries with food and nutritional security. He is the only Australian to have held this position.

Reeves is currently an Honorary Professorial Fellow at the Faculty of Veterinary and Agricultural Sciences, University of Melbourne. He is heavily involved with passing on his knowledge to his academic colleagues and to both undergraduate and postgraduate students. Reeves’s academic writings include publishing more than 180 papers, book chapters and articles. He is also a Chair of the Agriculture Forum of the Australian Academy of Technological Sciences and Engineering.

This post was originally published by the University of Melbourne.

Cereal seed value chains in Nepal

Cereals cover around 80% of Nepal’s cultivated land area, with a low level of productivity. The country’s commercial cereal seed sector development has been rather slow as more than 83% of seed comes from the informal system. The formal sector cannot produce adequate seeds to meet the farmers’ needs. Moreover, the formal market is largely driven by public seed varieties. To catalyze the sector’s development and enhance productivity, building a well-performing seed system that produces and timely supplies quality seeds at affordable rates to farmers is integral.

The adoption of a federal system of governance since 2018, creating new structures within the system, along with the after-effects of COVID-19 has impacted the public sector seed production and distribution with implications on private seed business. A recent assessment conducted by the International Maize and Wheat Improvement Center (CIMMYT) examines the current functions in the cereal value chain in Nepal and identifies upgrading strategies to bring efficiency and competitiveness in the cereal seed market systems, specifically for rice and maize.

An agrovet owner sells improved varieties of maize and rice locally produced by GATE Nepal Seed Company, a partner of CIMMYT in Banke, Nepal (Photo: Bandana Pradhan/CIMMYT)

The study provides a detailed analysis of the market size and trends for the various hybrid and open-pollinated varieties of rice and maize seeds as well as their production, distribution and margins in seed business.

A majority of rice and maize seeds, especially high-yielding hybrids, sold to farmers are brought in by importers and wholesalers who directly sells them to farmers or indirectly through agro-dealers. Nepali hybrid varieties are lagging because farmers, grain producers and millers have low awareness and information on new and improved varieties produced by local seed companies and cooperatives. A significant supply gap of rice and maize seeds was found in all the seven provinces of Nepal.

The study reviews the nature of inter-business relations in the seed value chain and provision of services by the government, NGOs and others for the development of the cereal seed value chain. In the context of federalism, the study assesses the seed policies and actions under the Revised Seed Act (2020) to establish provincial seed systems. Considering migration-induced feminization of agriculture in Nepal, the study identifies approaches to promote inclusive seed systems and youth engagement in seed value chains. Strategic measures to build a resilient seed system that can respond to abrupt market and mobility disruptions, as caused by the COVID-19 pandemic, is also taken into account. However, it also details out the various challenges and risks encountered by the value chain actors that hinders seed business and the sector’s growth overall.

CIMMYT designed seed packets of maize and rice to enhance branding and marketing of local products displayed in an agrovet in Banke district, Nepal (Photo: Bandana Pradhan/CIMMYT)

Some of the strategies to address these bottlenecks include strengthening value chain functions in research and development, hybrid seed production, seed processing and innovative approaches for market promotion and sales. Creating an enabling environment for seed companies in areas of variety testing and release, quality assurance in seed production and commercialization, financial and business management services, seed extension services and promotion of new domestic varieties are also fundamental propositions to achieve Nepal’s National Seed Vision (2013-2025) targets.

Soil scientists and stakeholders reflect on progress and impacts of CIMMYT-Rwanda partnership for soil health

Participants at the mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project. Photo CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) and the Rwanda Agriculture and Animal Resources Development Board (RAB) recently held a mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project.

The meeting aimed to track the progress made in the first year of the project’s implementation, identify challenges, document lessons learned, and develop an action plan for the following year, based on identified gaps and priorities.

In his welcoming remarks, RAB Director General Patrick Karangwa highlighted the close partnership between the two institutions.

“The workshop is not only about reviewing the progress but also about creating a strong partnership and interaction with each other to form a lasting togetherness that can later be useful for supporting each other in running the program’s activities of GAIA in the region,” he said.

Karangwa also noted the dynamism and enthusiasm of the GAIA team and partners, who made “remarkable successes” during a challenging period due to the COVID-19 pandemic.

Along with plant nutrition and improved land management, healthier soils contribute to more productive and profitable smallholder enterprises. The GAIA project uses scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.

The workshop brought together about 49 participant including regional program implementing partners, key stakeholders, and scientists from Ethiopia, Kenya, Rwanda, Tanzania, and Zimbabwe to  participate in more than 20 face-to-face and virtual presentations,  breakout sessions, and team-building exercises.

“The key to project success is a strong partnership and collaboration with national and regional partners, particularly with private and public sectors ‘’ said  Sieglinde Snapp, the director of the Sustainable Agrifood Systems (SAS) program at CIMMYT.

The participants addressed the work undertaken around eight work packages: spatial ex-ante analysis, adoption research on lime value chains, agronomy research for lime recommendations, support to the lime sector, policy support, coordination and advocacy, data use and management, and communication.

“We are encouraged by the progress made so far and expect to have a measurable impact in the next years. Let us feel comfortable to identify new area of research, based on the work conducted so far and national priorities” said Frédéric Baudron, GAIA project lead at CIMMYT.

GAIA is funded by the Bill and Melinda Gates Foundation and implemented by CIMMYT in partnership with the Centre for Agriculture and Bioscience International; Dalberg; national agricultural research systems in Ethiopia, Kenya, Rwanda, and Tanzania; the Southern Agricultural Growth Corridor of Tanzania; Wageningen University; and the University of California – Davis. The project aims to provide data-driven and spatially explicit recommendations to increase returns on investment for farmers, the private sector, and governments in Africa.

Wheat improvement: Food security in a changing climate

This open-access textbook provides a comprehensive, up-to-date guide for students and practitioners wishing to access the key disciplines and principles of wheat breeding. Edited by Matthew Paul Reynolds, head of Wheat Physiology at CIMMYT, and Hans-Joachim Braun, former Director of CIMMYT’s Global Wheat Program, it covers all aspects of wheat improvement, from utilizing genetic resources to breeding and selection methods, data analysis, biotic and abiotic stress tolerance, yield potential, genomics, quality nutrition and processing, physiological pre-breeding, and seed production.

It will give readers a balanced perspective on proven breeding methods and emerging technologies. The content is rich in didactic material that considers the background to wheat improvement, current mainstream breeding approaches, translational research, and avant-garde technologies that enable breakthroughs in science to impact productivity, facilitating learning.

While the volume provides an overview for professionals interested in wheat, many of the ideas and methods presented are equally relevant to small grain cereals and crop improvement in general.

All chapter authors are world-class researchers and breeders whose expertise spans cutting-edge academic science to impacts in farmers’ fields.

Given the challenges currently faced by academia, industry, and national wheat programs to produce higher crop yields, often with fewer inputs and under increasingly harsher climates, this volume is a timely addition to their toolkit.

It is time to invest in the future of Afghanistan’s wheat system

A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

The UN High Commissioner Michelle Bachelet recently said of Afghanistan, “In the wake of years of conflict, and since the takeover by the Taliban in August last year, the country has been plunged into a deep economic, social, humanitarian and human rights crisis” (UN News 2022a). International humanitarian agencies and NGOs have persisted in supporting the population, half of whom are suffering food insecurity, and some of whom are facing unprecedented and catastrophic levels of hunger (UN News 2022b). The conflict in Ukraine is exacerbating the crises in poor import-dependent countries and humanitarian programmes, and Afghanistan will be among the most affected (Bentley and Donovan 2022).

The rural sector underlies Afghanistan’s economic potential, with agriculture as the foundation of the economy. Wheat, both irrigated and rainfed, is the principal agricultural crop, and bread is the major component of the Afghan diet. For decades the country has relied for food security on neighbors such as Kazakhstan and Pakistan and import dependence appears to be a permanent feature of the agricultural economy (Sharma and Nang 2018).

In a recent paper published in Plants, People, Planet, CIMMYT scientists and partners from SOAS University of London, Afghanistan Research and Evaluation Unit, FAO-Afghanistan, The HALO Trust, Afghanaid and the Agricultural Research Institute of Afghanistan call for renewed investment in Afghanistan’s wheat and agricultural sector.

Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

Improved CIMMYT wheat germplasm has supported agricultural development

CIMMYT’s activities in Afghanistan have focused primarily on supporting the national agricultural research system through the provision of elite, widely adapted germplasm with strong disease resistance. Recent estimates of genetic gains over 14 years (2002-2003 to 2015-2016) of testing of CIMMYT’s Elite Spring Wheat Yield Trial material across 11 locations in Afghanistan documents significant grain yield progress of 115 kg/year. Average yields across 11 testing locations ranged from 3.58 to 5.97 t/ha (Sharma et al., 2021). This indicates that yield potential can be increased through introduction and testing of internationally improved germplasm.

But such investment in research has come to a halt. Local public- and private-sector wheat breeding activities have been largely absent in Afghanistan for over a decade. Hence, wheat productivity remains low due to the limited availability of improved varieties, inadequate quality seed production and distribution. Although in the short term, humanitarian interventions are likely to be the major determinant of food security, we propose that strategic rebuilding of the wheat system will lay the foundation for restoring Afghanistan’s agricultural production, food supplies, nutrition and health. Here we signal opportunities for future improvement.

Opportunities to build climate resilience and enhance seed systems

The need for climate-resilient varieties that meet farmers’ varied requirements and consumer preferences is paramount. Afghan farmers need varieties with improved traits such as heat and drought resilience, incorporating functional variation from existing landrace collections. In addition, agronomic interventions such as conservation agriculture will offer substantial benefits in buffering environmental stresses.

The technological pathways for seed (re-)distribution are a critical part of the innovation pathway from plant breeding to production and productivity. Given the particularities of markets in Afghanistan, both the public sector and the private sector often fail to reach farming geographies that are remote, diverse, and unserved by physical and institutional infrastructure. For many years, basic public services and agricultural interventions have been provided by the NGO sector, and this form of delivery continues. Hence, local ‘informal’ systems for seed and inputs are important to smallholder farmers.

Investment to support both irrigated and rain-fed wheat production

Rehabilitation of ancient irrigation practices and infrastructure could once again serve local farming in a way that supports stable production, restores Afghan heritage, and rebuilds social cohesion. However, there are no easy solutions to the challenges of increasing irrigation to boost agriculture. Although yields are lower, there is potential to optimize breeding specifically for rain-fed production. We expect rain-fed agriculture to continue given the limitations of water and infrastructure access.

Wheat improvement must be embedded in the wider agricultural environment. There is a renewed need for a deep understanding of social, political, and cultural systems and how they vary between villages, and from districts, provinces, and regions to people groups. We need to re-envision the roles of men and women in agriculture, and investment in skills and capacity building to provide a stable foundation for the eradication of poverty and food insecurity.

A new wheat program for Afghanistan

We highlight the urgent need for:

  • Resumption of breeding of nutritious and climate-resilient varieties.
  • Development of a knowledge base on current wheat production systems, gendered agricultural roles, farmer needs for varietal change and consumer preferences for tasty and nutritious wheat-based products.
  • Development of seed information systems using new technologies to enhance farmer engagement in research.
  • Expansion of appropriate irrigation systems and development of nature-based solutions to protect soil and to preserve and conserve water.
  • Investment in capacity building among private, non-governmental, university and public stakeholders in seed systems and delivery of agricultural services.

These foundations will support the wider regeneration of Afghanistan’s agricultural sector and enhance food security, nutrition and health of some of the world’s most vulnerable populations.

Full paper

Poole, N., Sharma, R., Nemat, O.A., Trenchard, R., Scanlon, A., Davy, C., Ataei, N., Donovan, J. and Bentley, A.R. (in production). Sowing the wheat seeds of Afghanistan’s future. Plants, People, Planet DOI: https://doi.org/10.1002/ppp3.10277

References

Bentley, A. and Donovan, J. (2022). What price wheat? Crisis in Ukraine underscores the need for long-term solutions for global food security. Retrieved 16 June 2022, from https://staging.cimmyt.org/blogs/what-price-wheat/.

Sharma, R.K. and Nang, M. (2018). Afghanistan wheat seed scenario: Status and imperatives. International Journal of Agricultural Policy and Research 6(5): 71-75 DOI: https://doi.org/10.15739/IJAPR.18.008

UN News (2022a). Afghanistan facing ‘the darkest moments’ in a generation. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/06/1120492.

UN News (2022b). Afghanistan: Nearly 20 million going hungry. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/05/1117812.

New CIMMYT maize hybrid available from the Latin America Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is proud to announce a new improved subtropical maize hybrid that is now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across mid-altitudes of Mexico and similar agro-ecologies. National agricultural research systems (NARS) and seed companies are invited to apply for a license to commercialize this new hybrid to bring the benefits of the improved seed to farming communities.

The deadline to submit applications is 15 August 2022. Applications received after that date will be considered during the following round of product allocations.

The newly available CIMMYT maize hybrid, CIM20LAPP2B-2, was identified through rigorous trialing and a stage-gate advancement process that culminated in the 2020 Stage 5 trials for CIMMYT’s Latin American tropical mid-altitude maize breeding pipeline (LA-PP2B). While individual products will vary, the LA-PP2B pipeline aims to develop maize hybrids fitting the product profile described in the following table:

Product Profile Basic traits Nice-to-have / Emerging traits
Latin America Product Profile 2B (LA-PP2B) Intermediate-maturing, yellow kernel, high-yielding, drought tolerant, resistant to FSR, GLS, and ear rots TSC, TLB

 

Information about the newly available CIMMYT maize hybrid from the Latin America breeding program, application instructions, and other relevant material is available in the CIMMYT Maize Product Catalog and the links provided below.

Use the following link to access the full CIMMYT Stage 4 and Stage 5 Trials in Mexico: Results of the 2019 and 2020 Trials and Product Announcement, including the trial performance summary data and trial location data.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE