Skip to main content

Author: Rodrigo Ordóñez

Rodrigo Ordóñez was CIMMYT's Communications Manager. Since 2023 he is the Head of Communications & Knowledge Management at the International Water Management Institute (IWMI), also part of CGIAR. ℹ️ Rodrigo Ordonez on LinkedIn

Sanjaya Rajaram honored with India’s civilian service award

Jai Prakash Rajaram (left) receives the Padma Bhushan Award on behalf of his late father, Sanjaya Rajaram, from the President of India, Ram Nath Kovind. (Photo: Government of India)
Jai Prakash Rajaram (left) receives the Padma Bhushan Award on behalf of his late father, Sanjaya Rajaram, from the President of India, Ram Nath Kovind. (Photo: Government of India)

The President of India, Ram Nath Kovind, presented the prestigious Padma Bhushan Award for Science & Engineering (Posthumous) to the relatives of Sanjaya Rajaram. The award was received by Rajaram’s son and daughter, Jaiprakash Rajaram and Sheila Rajaram, at a ceremony in New Delhi, India, on March 28, 2022.

The Padma Awards, instituted in 1954, are one of India’s highest civilian honors. Announced annually on the eve of Republic Day, January 26, they are given in three categories: Padma Vipbhushan, for outstanding and distinguished service; Padma Bhushan, for distinguished service of the highest order; and Padma Shri, for distinguished service.

The award seeks to recognize achievement in all fields of activities and disciplines involving a public service item.

Padma Bhushan Award diploma and medal. (Photo: Courtesy of Jai Prakash Rajaram)
Padma Bhushan Award diploma and medal. (Photo: Courtesy of Jai Prakash Rajaram)

Sanjaya Rajaram, who passed away in 2021, was a 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).

Among his many accomplishments, he personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties. These varieties, which have been grown on at least 58 million hectares in over 50 countries, increased global wheat production by more than 200 million tons, benefiting hundreds of millions of resource-poor people who rely on wheat for their diets and livelihoods.

New CIMMYT maize hybrid available from Eastern Africa highland breeding program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is proud to announce a new, improved highland maize hybrid that is now available for uptake by public- and private-sector partners, especially those interested in marketing or disseminating hybrid maize seed across upper altitudes of Eastern Africa and similar agro-ecologies. National agricultural research system (NARS) and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

The deadline to submit applications to be considered during the first round of allocations is 8 April 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

The newly available CIMMYT maize hybrid, CIM20EAPP3-01-47, was identified through rigorous trialing and a stage-gate advancement process that culminated in the 2021 Eastern Africa Regional On-Farm Trials for CIMMYT’s eastern Africa highland maize breeding pipeline (EA-PP3). While individual products will vary, the EA-PP3 pipeline aims to develop maize hybrids fitting the product profile described in the following table:

Product profile Basic traits Nice-to-have / Emerging traits
Eastern Africa Product Profile 3 (EA-PP3) Late -maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and rust MLN, fall armyworm, cold tolerance

 

Application instructions, and other relevant material is available via the CIMMYT Maize Product Catalog and in the links provided below.

Download the full text and trial data summary:
CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Another food crisis?

Mature wheat spikes. (Photo: Alfonso Cortés/CIMMYT)
Mature wheat spikes. (Photo: Alfonso Cortés/CIMMYT)

The impacts of the Ukraine crisis are likely to reverberate over months, if not years, to come. If the reductions in wheat exports from Russia and Ukraine are as severe as anticipated, global supplies of wheat will be seriously constrained. If a major reduction in fertilizer exports comes to pass, the resulting drop in global productivity will tighten global markets for wheat, other grains and alternate food sources — leaving vulnerable people all over the world facing higher food prices, hunger and malnutrition.

These massive disruptions will erode modest progress made toward gender equality, biodiversity conservation and dietary diversification. The severe impact of this single shock shows the underlying fragility and complexity of our agri-food systems. Climate change will bring many more.

The world must take essential actions to mitigate food shocks, stabilize local wheat supplies and transition toward agri-food system resilience, from the current efficiency-driven model. We call for large and sustained agricultural research investments as a foundational element of any viable, food-secure future.

From chronic challenges to food crisis conditions

Global wheat production for export is geographically concentrated, placing inherent vulnerabilities on the global system. Dominance of the wheat export trade by a relatively small number of countries makes sense under an efficiency paradigm, but it opens the door to price spikes and food-related crises. At the same time, biophysical vulnerability of major global breadbaskets is on the rise as drought and other weather extremes increase volatility in cereal yields, exports and prices.

Russia and Ukraine produce 28% of the world’s total wheat exports and Russia is a globally important source of fuel and fertilizer. With over 2.5 billion people worldwide consuming wheat-based products and wheat futures at their highest levels since 2012, disrupted exports from Russia and Ukraine would usher in substantial new pressures on global wheat markets and tremendous risks for vulnerable populations around the world.

Dependence on wheat imports from Russia and Ukraine imperils food security in lower- and middle-income countries in North Africa and the Middle East (Algeria, Egypt, Libya, Morocco, Yemen), the Mediterranean (Azerbaijan, Turkey), sub-Saharan Africa (Nigeria, Sudan), Southern Asia (Bangladesh, Pakistan) and throughout Southeast Asia. Globally elevated food prices will hit hardest in those countries already struggling with food insecurity.

Layered onto the existing concentration of wheat-exporting countries and the climate-induced vulnerabilities in essential global breadbaskets, the crisis in Ukraine and trade sanctions on Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. We may well see a range of negative effects over the short, medium and long term, including:

  • Severe food insecurity and economic impacts due to reduced global wheat supplies and price increases affecting all wheat-importing countries and humanitarian agencies.
  • Diminished global grain productivity due to fertilizer supply limitations and price escalation, especially in low-income, fertilizer-import-dependent countries.
  • Higher food prices and expanded global hunger and malnutrition as a result of tighter fuel supplies driving up costs of agricultural production.
  • Pressure on household budgets negatively affecting nutrition, health, education and gender equity.
The employee of an Ethiopian seed association smiles as bags of wheat seed are ready to be distributed. (Photo: Gerardo Mejía/CIMMYT)
The employee of an Ethiopian seed association smiles as bags of wheat seed are ready to be distributed. (Photo: Gerardo Mejía/CIMMYT)

Stabilize while building resilience

With these multi-layered challenges in view, we propose essential actions to mitigate near-term food security crises, to stabilize wheat supply and to concurrently transition toward agri-food system resilience.

Without doubt, the world’s top priority must be to mitigate food security crises at our doorstep. This will involve boosting wheat production through expanded acreage (e.g. in high-performing systems in the Global North) and closing yield gaps (e.g. improved management and value chains of rainfed, wheat-based systems in the Global South) using policy incentives such as price guarantees and subsidized agricultural inputs. Short-term food insecurity can also be addressed through demand-side management (e.g. market controls to conserve grain stocks for human consumption; use of lower-cost flour blends) and de-risking alternative sourcing (e.g. trade agreements).

As these actions are taken, a range of strategies can simultaneously drive toward more resilient wheat supply at local to global scales. Well-functioning seed systems, demand-driven agronomic support and other elements of wheat self-reliance can be encouraged through shifts in local policy, regulatory and sectoral contexts. Enhanced monitoring capacity can track spatial patterns in wheat cropping, including expansion into areas where comparative advantage for wheat production (e.g. agro-ecological suitability; supporting infrastructure) has been identified in rural development frameworks and national plans (e.g. as a double crop in Ethiopian midlands). In addition to enabling yield forecasts, surveillance systems are critical to phytosanitary control of geographically restricted pathogens under altered wheat trade routes.

Yet, these steps to mitigate food shocks and stabilize local wheat supplies will not adequately protect the world from climate-related biophysical risks to food and nutritional security. In parallel, a transition toward agri-food system resilience requires transformative investments in agricultural diversification, sustainable natural resource management and low-greenhouse-gas agroecosystems, as well as meaningful actions toward achieving gender equality, nutritional sufficiency and livelihood security.

Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Sustained research & development for a food-secure future

None of the critical actions described above are guaranteed given the oscillating global investment in agricultural research. Enabled by decades of agricultural research, the world has managed to constrain the number and severity of food security crises through major gains in agricultural productivity.

The International Maize and Wheat Improvement Center (CIMMYT), the global international wheat research Center of the CGIAR, has been working tirelessly to maintain wheat harvests around the world in the face of mounting disease pressures and climate challenges. The estimated benefit-cost ratio for wheat improvement research ranges from 73:1 to 103:1. Yet, research funding only rises when food crises occur, revealing the globalized risks of our highly interconnected agri-food systems, and then tapers as memories fade.

With limited resources, scientists around the world are attacking the complex challenge of increasing agricultural yields and ensuring stable, equitable food supplies. Receiving only about 2% of international agricultural research funding over time, CIMMYT and the entire CGIAR have had limited ability to develop the long-term research capabilities that could mitigate or prevent short-term emergencies with medium- to long-term effects.

Responding to the mounting pressures on deeply complex agri-food systems requires integrative solutions that allow farmers and other agri-food stakeholders to mitigate and withstand shocks and to achieve viable livelihoods. Knowledge and technology needs are extensive across production systems (e.g. wheat-legume intercropping; cereals-focused agroecological interventions), value chains (e.g. context-appropriate seed systems; nutrition enhancement through flour blending), monitoring systems (e.g. genomics-based surveillance), and social dimensions (e.g. gender implications of new production and consumption strategies; policy interventions).

Generating such solutions depends on robust, multidisciplinary and transparent research capabilities that fuel the transition to agri-food system resilience. Robust international investment in resilient agricultural systems is an essential condition for national security, global peace and prosperity.

Read the full article (pre-print):
Another food crisis? The Ukraine conflict, global wheat supply and food security

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

Broken bread — avert global wheat crisis caused by invasion of Ukraine

In an analysis piece on Nature, the director of CIMMYT’s Global Wheat Program, Alison Bentley, highlights the expected income of the Russia-Ukraine war on food security.

In low-income nations, the ability of governments to continue to subsidize bread will be strained; the knock-on effects on overall government spending and provision of public services will reach far beyond wheat. The last time wheat prices increased sharply, in 2008, it precipitated food riots from Burkina Faso to Bangladesh.

An unprecedented level of international political and economic action is now required to safeguard the immediate food supply of those who are already vulnerable, including in the global south. At the same time, a range of agricultural interventions must be deployed to make the supply of wheat more resilient in the years ahead.

Read the full analysis:
Broken bread — avert global wheat crisis caused by invasion of Ukraine

 

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

New endeavor fast-tracks the power of crop diversity for climate resilience

Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT's global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)

A new $25.7 million project, led by the International Maize and Wheat Improvement Center (CIMMYT), a Research Center part of CGIAR, the world’s largest public sector agriculture research partnership, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

As climate change accelerates, agriculture will be increasingly affected by high temperatures, erratic rainfall, drought, flooding and sea-level rise. Looking to the trove of genetic material in genebanks, scientists believe they can enhance the resilience of food production by incorporating this diversity into new crop varieties — overcoming many of the barriers to fighting malnutrition and hunger around the world.

“Better crops can help small-scale farmers produce more food despite the challenges of climate change. Drought-resistant staple crops, such as maize and wheat, that ensure food amid water scarcity, and faster-growing, early-maturing varieties that produce good harvests in erratic growing seasons can make a world of difference for those who depend on agriculture. This is the potential for climate-adaptive breeding that lies untapped in CGIAR’s genebanks,” said Claudia Sadoff, Managing Director, Research Delivery and Impact, and Executive Management Team Convener, CGIAR.

Over five years, the project, supported by the Bill & Melinda Gates Foundation, aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Entitled Mining useful alleles for climate change adaptation from CGIAR genebanks, the project will enable breeders to more effectively and efficiently use genebank materials to develop climate-smart versions of important food crops, including cassava, maize, sorghum, cowpea and rice.

Wild rice. (Photo: IRRI)
Wild rice. (Photo: IRRI)

The project is a key component of a broader initiative focused on increasing the value and use of CGIAR genebanks for climate resilience. It is one of a series of Innovation Sprints coordinated by the Agriculture Innovation Mission for Climate (AIM4C) initiative, which is led by the United Arab Emirates and the United States.

“Breeding new resilient crop varieties quickly, economically and with greater precision will be critical to ensure small-scale farmers can adapt to climate change,” said Enock Chikava, interim Director of Agricultural Development at the Bill & Melinda Gates Foundation. “This initiative will contribute to a more promising and sustainable future for the hundreds of millions of Africans who depend on farming to support their families.”

Over the past 40 years, CGIAR Centers have built up the largest and most frequently accessed network of genebanks in the world. The network conserves and makes nearly three-quarters of a million crop accessions available to scientists and governments. CGIAR genebanks hold around 10% of the world’s plant germplasm in trust for humanity, but account for about 94% of the germplasm distributed under the International Treaty on Plant Genetic Resources for Food and Agriculture, which ensures crop breeders globally have access to the fundamental building blocks of new varieties.

“This research to develop climate-smart crop varieties, when scaled, is key to ensuring that those hardest hit by climate shocks have access to affordable staple foods,” said Jeffrey Rosichan, Director of the Crops of the Future Collaborative of the Foundation for Food & Agriculture Research (FFAR). “Further, this initiative benefits US and world agriculture by increasing genetic diversity and providing tools for growers to more rapidly adapt to climate change.”

“We will implement, for the first time, a scalable strategy to identify valuable variations hidden in our genebanks, and through breeding, deploy these to farmers who urgently need solutions to address the threat of climate change,” said Sarah Hearne, CIMMYT principal scientist and leader of the project.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors and the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), the project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods, to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

INTERVIEW OPPORTUNITIES:

Sarah Hearne – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

CRP Wheat Annual Report 2021

The newly released CGIAR Research Program on Wheat 2021 Technical Annual Report highlights joint achievements in making wheat more affordable, nutritious and available for consumers and producers worldwide.

Download the PDF

Over the course of ten years, WHEAT worked with hundreds of research and development partners worldwide to release high-yielding, disease-resistant, nutritious and climate-resilient wheat varieties, and efficient, sustainable wheat-based cropping systems.

This final report from 2021 shares important research on staple cereals’ role in global efforts towards food security, the number and distribution of wheat farms, the expected impact of climate change on wheat productivity, nitrogen-in-agriculture research, nutrition, and the most critical, immediate effects of COVID-19 on food systems, and more.

With its national partners, WHEAT released 70 new CGIAR-derived wheat varieties to farmers in 13 countries in 2021, and developed 18 innovations in the areas of genetics, biophysics, farm management, research and communication methods, or social sciences.

 

What price wheat?

Wheat fields in Ukraine. Photo: <a href="http://www.torange.biz">tOrange.biz</a> on <a href="https://flic.kr/p/k6WPqM">Flickr</a> (<a href="https://creativecommons.org/licenses/by/2.0/">CC BY 2.0</a>)
Wheat fields in Ukraine. Photo: tOrange.biz on Flickr (CC BY 2.0)

When wheat prices rise, so do global food prices, along with conflict, inequality and instability. Over the past two decades, the world has witnessed multiple crises erupt over the social and political instability caused by rising costs for staple cereals. The global food crisis that impacted many parts of the world in 2007–2008 was a response, in part, to the prices for wheat and rice which had increased 130% and 70%, respectively, compared to the year before. More recently, spikes in grain prices catalyzed the 2011 Arab Spring.

With the ongoing conflict in Ukraine and the resulting longer-term disruptions of the country’s rural economy, there is potential for another round of turmoil linked to prices for staple cereals.

Ukraine is a breadbasket for the world, with 57% of its land area arable for agriculture. Wheat production in the country increased roughly 10%, on average, between 2000 and 2020. In 2022, Ukraine ranked as the fifth largest wheat exporter globally, exporting $3.59 billion of wheat.

Today, global wheat prices are at their highest levels since 2012: $9 per bushel, based on data from the Chicago Board of Trade.

Wheat is a staple crop, essential to food security. It is consumed by over 2.5 billion people worldwide, including large proportions of the populations of many food-insecure regions in the world. Many of the wheat-consuming countries in these regions are far from wheat self-sufficient, relying on global imports to meet demand. This causes significant vulnerability in food supply and increases associated humanitarian risks. In 2019, important quantities of Ukrainian wheat were exported to low- and middle-income countries in North Africa and the Middle East. Although the impacts of current price increases are anticipated to be short-term, they are likely to be inequitably felt, as not all buyers are able to pay higher prices.

There are over 6 million hectares of wheat planted in farmers’ fields across Ukraine that will be due for harvest in June and July of 2022. The length and depth of the current crisis has potential implications for the fate of this in-field crop, and for its subsequent harvest and global distribution. Likewise, sanctions and trading restrictions on Russia, the world’s largest wheat exporter — exporting $7.92 billion of wheat in 2020 — are likely to place added pressure on international wheat markets. This comes at a time of rising costs in agriculture, including the soaring price of nitrogen fertilizer and increasing fuel and supply chain costs. The gap between supply and demand is also becoming wider with climatic instability — such as drought conditions — hitting both domestic production and export stocks in several countries.

Rising prices for staple cereals have historically led to instability, particularly in fragile regions where food security is low. The impacts of current high wheat prices are likely to be felt most significantly by populations in the Global South who rely on wheat imports.

The potential humanitarian crisis beyond the borders of the current conflict needs to be addressed to avoid deepening global divisions in equality of access to food. In the case of wheat, long-term solutions will require much higher levels of investment, coordination and cooperation between governments, development organizations and agro-industry. Without doubt, part of the solution lies in increasing wheat productivity and profitability in food-insecure regions where wheat has traditionally been grown, as well as supporting the expansion of wheat production into climatically suitable areas in countries which have traditionally relied on imports to meet local demand.

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

CIMMYT deeply regrets the passing of leading agriculture and forestry research expert Barbara H. Wells

Barbara Wells (Photo: CGIAR)
Barbara Wells (Photo: CGIAR)

The International Maize and Wheat Improvement Center (CIMMYT) mourns the passing of our much respected and admired colleague, agriculture, forestry and global development leader, Barbara H. Wells.

Wells held the positions of Global Director of Genetic Innovation of CGIAR and Director General of the International Potato Center (CIP). She had over 30 years of experience in multiple areas of research and management of innovations in the agriculture and forestry sectors. Barbara also served at several senior executive positions in the private sector throughout her outstanding career.

“We are deeply saddened by the news of Barbara’s passing and send our heartfelt condolences to her family, friends and colleagues at our sister center CIP,” said CIMMYT Director General Bram Govaerts.

CIP’s projects and activities flourished under her leadership, opening new collaboration opportunities with local partners and fellow CGIAR centers, particularly with those based in the Americas.

In their partnership, CIMMYT and CIP have successfully collaborated in several areas of research and capacity building for the benefit of smallholder farmers throughout the region; including:

  • Building resilience through poverty- and food security-based safety nets, including links to productive programs;
  • Rural financial inclusion, including different types of savings, loans, and credit instruments, management of risk, and remittances;
  • New financial arrangements and governance structures in value chains;
  • Public-policy institutional mechanisms for dialogue on policymaking;
  • Successful R&D and extension projects funded by local governments at both national and state levels;
  • A regional approach to agricultural policies and role of sub-national governments and intermediate cities; and
  • Delivery and monitoring instruments, including use of ICT technology.

“We want our colleagues and friends throughout the world to know that we will honor Barbara’s legacy by redoubling our efforts for those who really mattered to her, the farmers,” Govaerts said.

New CIMMYT maize hybrids available from Eastern Africa Breeding Program

How does CIMMYT's improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in eastern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is February 11, 2022. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits
Eastern Africa Product Profile 1A

(EA-PP1A)

CIM20EAPP1-01-38 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW
CIM20EAPP1-01-1
CIM20EAPP1-01-16

 

You can download the full text and trial data summary for the CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 to 2021 Seasons and Product Announcement.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Fruits and vegetables are essential, but there are three reasons why it takes cereals to feed the world

Fruits, vegetables and bread. Photo: Ella Olsson (CC BY 2.0)
Fruits, vegetables and bread. Photo: Ella Olsson (CC BY 2.0)

Like many development research and funding organizations, the Australian Centre for International Agricultural Research (ACIAR) is emphasizing a renewed commitment to a nutrition-sensitive approach to agricultural development projects.

As part of the International Year of Fruits and Vegetables, a recent blog proposed that one central issue of improved nutrition is consumption of more fruit and vegetables. We agree that a diverse diet including fruits and vegetables should be accessible to every person. Here we highlight the presence of a wider picture.

In the past decade, awareness has grown about the importance of diets that are rich in vitamins and minerals, and the need to combat micronutrient malnutrition which can lead to irreversible health outcomes impacting entire economies and perpetuating a tragic cycle of poverty and economic stagnation.

Lack of vitamins and minerals, often called “hidden hunger,” is not confined to lower-income food-insecure countries. In richer countries we clearly see a transition towards energy-rich, micronutrient-poor diets. In fact, populations throughout the world are eating more processed foods for reasons of convenience and price. To hit our global hunger and health targets we need to invest in nutrition-sensitive agricultural research and production as well as promoting affordable diets with varied and appealing nutrient-rich foods.

Alongside hunger, we have a pandemic of diet-related diseases that is partly caused by the over-consumption of energy-rich junk diets. This is because modern food formulations are often shaped towards addictive and unhealthy products. We see this in rising levels of obesity and diabetes, some cancers, heart diseases and chronic lung conditions.

Investing in agri-food research and improving nutrition will be much cheaper than treating these diet-related non-communicable diseases. Besides being healthier, many people will be much happier and able to live more productive lives.

Yet, the picture is bigger than micronutrient malnutrition. Even if new investments in research enable us to increase the production and delivery of fruits, vegetables and other nutrient-rich foods such as legumes and nuts, we will not have cracked the whole problem of food security, nutrition and health.

Besides “hidden hunger,” many hundreds of millions of people worldwide are hungry because they still lack the basic availability of food to live and work.

Women cook chapatis in Sani, Zanskar valley, India. Photo: SandeepaChetan's Travels (CC BY-NC-ND 2.0)
Women cook chapatis in Sani, Zanskar valley, India. Photo: SandeepaChetan’s Travels (CC BY-NC-ND 2.0)

Enter cereals. Wheat, maize and rice have been the major sources of dietary energy in the form of carbohydrates in virtually all societies and for thousands of years: recent research in the Middle East suggests that the original “paleo” diet was not just the result of hunting and gathering, but included cereals in bread and beer!

There are three reasons why cereals are essential to feeding the world:

  • First, nutritionists and medics tell us that cereals not only provide macronutrients — carbohydrates, proteins and fats — and micronutrients — vitamins and minerals. We now know that cereals are important sources of bioactive food components that are not usually classed as nutrients, but are essential to health all the same. These are compounds like carotenoids, flavonoids, phytosterols, glucosinolates and polyphenols, which are found naturally in various plant foods and have beneficial antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial properties, likely to be important in mitigating and/or combating disease.
  • Second, whole-grain foods, especially wheat, are also a major source of dietary fibre, which is essential for efficient digestion and metabolism. Fibre from cereals also nourishes the human gut flora whose products such as short-chain fatty acids have many health benefits including combatting some cancers. Eating such carbohydrates also helps us recognise that we have eaten sufficiently, so that we know when “enough is enough.”
  • Third, cereal foods are relatively cheap to produce and to buy, and also easy to transport and preserve. Hence, supplies are relatively stable, and good nutrition from cereals is likely to remain accessible to less affluent people.

But all is not well with cereals these days. Cereals are under siege from climate change-related heat and drought, and new and more virulent forms of plant diseases, which threaten our agriculture and natural resources. There remains much research to undertake in this era of rapidly changing climatic conditions, and of economic and political stresses.

Here are a few strategies for agri-food research and its supporters:

  • We can further increase the nutritional content of cereal foods through biofortification during plant breeding.
  • We can produce disease- and heat-resilient varieties of grains that are efficient in the use of water and fertilizer, and whose production is not labor-intensive.
  • By working with communities, we can adapt new production technologies to local conditions, especially where women are the farmers.
  • We can enhance the quality of cereal foods through nutrient fortification during milling, and by better processing methods and food formulation.
  • Experts in all agri-food disciplines can work together to inform and “nudge” consumers to make healthy food purchasing decisions.

Cereals matter, but in an age of misinformation, we still have to be cautious: Some people are susceptible to certain components of cereals such as gluten. People who are medically diagnosed with cereal intolerances must shape their diets accordingly and get their carbohydrates and bioactive food components from other sources.

So, we cannot live on bread alone: We should aim for diets which are rich in diverse foods.

Such diets include fruits and vegetables that must be accessible to people in different regions, particularly to the most vulnerable, and that provide different macronutrients, micronutrients and essential bioactive components. For most of us, the health-promoting content of cereals means that they must remain a major part of the global diet.


Nigel Poole is Emeritus Professor of International Development at SOAS University of London and Consultant at the International Maize and Wheat Improvement Center (CIMMYT).

Rajiv Sharma is Senior Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Alison Bentley is the Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).

Agricultural research fights global food shocks

In an op-ed on Newsweek, CIMMYT director general Bram Govaerts wrote argues the best protection is actually reducing food system risks by building food system resilience against shocks. He highlighted how previous investments in agricultural research and development generated evidence-based strategies that mitigate global food price crisis.

New grafting technique could combat the disease threatening Cavendish bananas

Grafting wheat shoot to oat root gives the plant tolerance to a disease called “Take-all,” caused by a pathogen in soil. The white arrow shows the graft junction. (Photo: Julian Hibberd)
Grafting wheat shoot to oat root gives the plant tolerance to a disease called “Take-all,” caused by a pathogen in soil. The white arrow shows the graft junction. (Photo: Julian Hibberd)

Grafting is the technique of joining the shoot of one plant with the root of another, so they continue to grow together as one. Until now it was thought impossible to graft grass-like plants in the group known as monocotyledons because they lack a specific tissue type, called the vascular cambium, in their stem.

Researchers at the University of Cambridge have discovered that root and shoot tissues taken from the seeds of monocotyledonous grasses — representing their earliest embryonic stages — fuse efficiently. Their results are published today in the journal Nature.

An estimated 60,000 plants are monocotyledons; many are crops that are cultivated at enormous scale, for example rice, wheat and barley.

The finding has implications for the control of serious soil-borne pathogens including Panama Disease, or Tropical Race 4, which has been destroying banana plantations for over 30 years. A recent acceleration in the spread of this disease has prompted fears of global banana shortages.

“We’ve achieved something that everyone said was impossible. Grafting embryonic tissue holds real potential across a range of grass-like species. We found that even distantly related species, separated by deep evolutionary time, are graft compatible,” said Julian Hibberd in the University of Cambridge’s Department of Plant Sciences, senior author of the report.

The technique allows monocotyledons of the same species, and of two different species, to be grafted effectively. Grafting genetically different root and shoot tissues can result in a plant with new traits — ranging from dwarf shoots, to pest and disease resistance.

Alison Bentley, CIMMYT Global Wheat Program Director and a contributor to the report, sees great potential for the grafting method to be applied to monocot crops grown by resource-poor farmers in the Global South. “From our major cereals, wheat and rice, to bananas and matoke, this technology could change the way we think about adapting food security crops to increasing disease pressures and changing climates.”

High magnification images show successful grafting of wheat in which a connective vein forms between root and shoot tissue after four months. White arrows show the graft junction. (Photo: Julian Hibberd)

High magnification images show successful grafting of wheat in which a connective vein forms between root and shoot tissue after four months. White arrows show the graft junction. (Photo: Julian Hibberd)Monocotyledons breakthrough

The scientists found that the technique was effective in a range of monocotyledonous crop plants including pineapple, banana, onion, tequila agave and date palm. This was confirmed through various tests, including the injection of fluorescent dye into the plant roots — from where it was seen to move up the plant and across the graft junction.

“I read back over decades of research papers on grafting and everybody said that it couldn’t be done in monocots. I was stubborn enough to keep going — for years — until I proved them wrong,” said Greg Reeves, a Gates Cambridge Scholar in the University of Cambridge Department of Plant Sciences, and first author of the paper.

“It’s an urgent challenge to make important food crops resistant to the diseases that are destroying them,” Reeves explained. “Our technique allows us to add disease resistance, or other beneficial properties like salt-tolerance, to grass-like plants without resorting to genetic modification or lengthy breeding programmes.”

The world’s banana industry is based on a single variety, called the Cavendish banana — a clone that can withstand long-distance transportation. With no genetic diversity between plants, the crop has little disease-resilience. And Cavendish bananas are sterile, so disease resistance cannot be bred into future generations of the plant. Research groups around the world are trying to find a way to stop Panama Disease before it becomes even more widespread.

Image of date palm two and a half years after grafting. Inset shows a magnified region at the base of the plant, with the arrowhead pointing to the graft junction. (Photo: Julian Hibberd)
Image of date palm two and a half years after grafting. Inset shows a magnified region at the base of the plant, with the arrowhead pointing to the graft junction. (Photo: Julian Hibberd)

Grafting has been used widely since antiquity in another plant group called the dicotyledons. Dicotyledonous orchard crops — including apples and cherries, and high-value annual crops including tomatoes and cucumbers — are routinely produced on grafted plants because the process confers beneficial properties, such as disease resistance or earlier flowering.

The researchers have filed a patent for their grafting technique through Cambridge Enterprise. They have also received funding from Ceres Agri-Tech, a knowledge exchange partnership between five leading universities in the United Kingdom and three renowned agricultural research institutes.

“Panama disease is a huge problem threatening bananas across the world. It’s fantastic that the University of Cambridge has the opportunity to play a role in saving such an important food crop,” said Louise Sutherland, Director of Ceres Agri-Tech.

Ceres Agri-Tech, led by the University of Cambridge, was created and managed by Cambridge Enterprise. It has provided translational funding as well as commercialisation expertise and support to the project, to scale up the technique and improve its efficiency.

This research was funded by the Gates Cambridge Scholarship programme.

Read the study:

Monocotyledonous plants graft at the embryonic root-shoot interface


 

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT.

Jacqueline Garget, Communications Manager, Office of External Affairs and Communications, University of Cambridge

ABOUT THE UNIVERSITY OF CAMBRIDGE:

www.cam.ac.uk

The University of Cambridge is one of the world’s top ten leading universities, with a rich history of radical thinking dating back to 1209. Its mission is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

The University comprises 31 autonomous Colleges and 150 departments, faculties and institutions. Its 24,450 student body includes more than 9,000 international students from 147 countries. In 2020, 70.6% of its new undergraduate students were from state schools and 21.6% from economically disadvantaged areas.

Cambridge research spans almost every discipline, from science, technology, engineering and medicine through to the arts, humanities and social sciences, with multi-disciplinary teams working to address major global challenges. Its researchers provide academic leadership, develop strategic partnerships and collaborate with colleagues worldwide.

The University sits at the heart of the ‘Cambridge cluster’, in which more than 5,300 knowledge-intensive firms employ more than 67,000 people and generate £18 billion in turnover. Cambridge has the highest number of patent applications per 100,000 residents in the UK.

ABOUT CIMMYT:

staging.cimmyt.org

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

Cover photo: A banana producer in Kenya. (Photo: N. Palmer/CIAT)

From diagnosis to action on social equity

A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)
A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)

As CGIAR develops 33 exciting new research Initiatives, it is essential for its new research portfolio to move beyond “diagnosing gender issues” and to supporting real change for greater social equity. Gender-transformative research and methodologies are needed, co-developed between scientists and a wide range of partners.

To advance this vision, gender scientists from ten CGIAR centers and key partner institutions came together from October 25 to 27, 2021, in a hybrid workshop. Some participants were in Amsterdam, hosted by KIT, and others joined online from Canada, the Philippines and everywhere in between.

The workshop emerged from gender scientists’ desire to create a supportive innovation space for CGIAR researchers to integrate gender-transformative research and methodologies into the new CGIAR Initiatives.

The organizing team calls this effort GENNOVATE 2, as it builds on GENNOVATE, the trailblazing gender research project which ran across the CGIAR between 2014 and 2018.

GENNOVATE 2 promises to help CGIAR Initiatives achieve progress in the Gender, Youth and Social Inclusion Impact Area. It will also advance change towards Sustainable Development Goals 5 and 10 on gender and other forms of inequality.

In the workshop, participants sought to:

  • Share and develop ideas, methods and approaches to operationalize gender-transformative research and methodologies. Working groups focused on an initial selection of CGIAR Initiatives, representing all the Action Areas of CGIAR:
    • ClimBeR: Building Systemic Resilience against Climate Variability and Extremes; (Systems Transformation)
    • Securing the Asian Mega-Deltas from Sea-level Rise, Flooding, Salinization and Water Insecurity (Resilient Agrifood Systems)
    • Sustainable Intensification of Mixed Farming Systems (Resilient Agrifood Systems)
    • Market Intelligence and Product Profiling (Genetic Innovation)
  • Build on the significant investments, methods, data, and results from the original GENNOVATE.
  • Conceive a community of practice for continued sharing, learning and collaboration, across and within Initiatives, to accelerate progress on gender and social equity.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

Joining a vibrant community

GENNOVATE 2 is envisioned to complement the CGIAR GENDER Platform and the proposed new CGIAR gender-focused research Initiative, HER+.

“We have several gender methodology assets in CGIAR, and GENNOVATE is one of them,” said Nicoline de Haan, Director of the CGIAR GENDER Platform, opening the workshop. “We want to make sure we cultivate and grow the efforts started during GENNOVATE and move forward important lessons and practices in the new CGIAR portfolio.”

The team of scientists behind GENNOVATE 2 wants to support a vibrant community of researchers who “work out loud.” They will document and share their research methodologies, experiences and insights, in order to accelerate learning on gender issues and scale out successes more quickly.

The ultimate objectives of GENNOVATE 2 are to:

  • Develop and deepen a set of methodologies expected to directly empower women, youth, and marginalized groups in the targeted agri-food systems
  • Contribute to normative change towards increased gender equality across different scales, ranging from households to countries.
  • Generate and build an evidence base on the relationship between empowering women, youth and marginalized people, and moving towards climate-resilient and sustainable agri-food systems — and vice versa.

“An example of the added value GENNOVATE 2 can bring to CGIAR Initiatives is understanding what maintains prevailing gender norms in research sites, and also at relevant institutional and political levels,” said Anne Rietveld, gender scientist at the Alliance of Bioversity International and CIAT, and co-organizer of the workshop. “This will enable CGIAR scientists, partners and policymakers to design locally relevant gender-transformative approaches and policies for more impact. We can do this by building on our GENNOVATE 1 evidence base, adapting methods from GENNOVATE 1 and co-developing new methods in GENNOVATE 2.”

Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

What’s next?

The workshop showed that many scientists from CGIAR and partner institutes are motivated to invest in the vision of GENNOVATE 2. Achieving impact in the Gender, Youth and Social Inclusion Impact Area will require concerted efforts and inputs from scientists on the ground.

“There is a groundswell of experience and enthusiasm that you, we, this group brings. We need answers and we can and should work together to make this a reality,” remarked Jon Hellin, Platform Leader – Sustainable Impact in Rice-based Systems at the International Rice Research Institute (IRRI), and co-lead of the ClimBeR Initiative.

The organizing team listed concrete actions to follow the workshop:

  • Developing processes and spaces for discussing methodological advancements among the gender scientists in these four Initiatives which other Initiatives can tap into, contribute to and become part of.
  • To develop these shared and integrated methodologies and approaches into a GENNOVATE 2 conceptual and methodological roadmap — to contribute to the CGIAR Gender, Youth, and Social Inclusion Impact Area and guide other Initiatives, as well as bilateral research
  • To develop a position paper articulating what can be achieved through concerted efforts to integrate gender and social equity more effectively into the Initiatives, to showcase gender-transformative research methods for further development and implementation. The aim of the position paper is to influence global science leaders and CGIAR leadership in how they include issues of social equity in the Initiatives.
  • To support these conversations, learnings and harmonization processes through setting up a community of practice, where the “practice” to be improved is the practice of advancing gender research methodologies to go from diagnosis to action. This will start with a core group of enthusiastic researchers and then will expand as it gains momentum, so that all researchers in the various Initiatives interested in social equity can contribute
  • To seek funding opportunities to support the activities outlined above.

The GENNOVATE 2 organizing team welcomes the participation of interested CGIAR Initiatives as they move forward. The organizing team will also help strengthen interactions with external resource people and research networks, in to cross-pollinate new knowledge and innovations.

If you would like to know more about GENNOVATE 2, please contact Anne Rietveld, Gender Scientist at the Alliance of Bioversity International and CIAT and Hom Gartaula, Gender and Social Inclusion Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

The GENNOVATE 2 workshop was supported with funds from the CGIAR Research Programs on Roots Tubers and Bananas, Maize, and Wheat.

Workshop organizers Anne Rietveld (Alliance), Cathy Rozel Farnworth (Pandia Consulting, an independent gender researcher), Diana Lopez (WUR) and Hom Gartaula (CIMMYT) guided participants. Arwen Bailey (Alliance) served as facilitator.

Participants were: Renee Bullock (ILRI); Afrina Choudhury (WorldFish); Marlene Elias (Alliance); Gundula Fischer (IITA); Eleanor Fisher (The Nordic Africa Institute/ClimBeR); Alessandra Galie (ILRI); Elisabeth Garner (Cornell University/Market Intelligence); Nadia Guettou (Alliance); Jon Hellin (IRRI); Deepa Joshi (IWMI); Berber Kramer (IFPRI); Els Lecoutere (CGIAR GENDER Platform); Angela Meentzen (CIMMYT); Gaudiose Mujawamariya (AfricaRice); Surendran Rajaratnam (WorldFish); Bela Teeken (IITA), among others.

External experts who provided methodological inputs were: Nick Vandenbroucke of Trias talking about institutional change; Shreya Agarwal of Digital Green talking about transformative data; Katja Koegler of Oxfam Novib talking about Gender Action Learning Systems (GALS) for community-led empowerment; and Phil Otieno of Advocates for Social Change (ADSOCK) talking about masculinities and working with men.

Bringing wild wheat’s untapped diversity into elite lines

A collaboration involving 15 international institutes across eight countries has optimized efforts to introduce beneficial traits from wild wheat accessions in genebanks into existing wheat varieties.

The findings, published in Nature Food, extend many potential benefits to national breeding programs, including improved wheat varieties better equipped to thrive in changing environmental conditions. This research was led by Sukhwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT) as part of the Seeds of Discovery project.

Since the advent of modern crop improvement practices, there has been a bottleneck of genetic diversity, because many national wheat breeding programs use the same varieties in their crossing program as their “elite” source. This practice decreases genetic diversity, putting more areas of wheat at risk to pathogens and environmental stressors, now being exacerbated by a changing climate. As the global population grows, shocks to the world’s wheat supply result in more widespread dire consequences.

The research team hypothesized that many wheat accessions in genebanks — groups of related plant material from a single species collected at one time from a specific location — feature useful traits for national breeding programs to employ in their efforts to diversify their breeding programs.

“Genebanks hold many diverse accessions of wheat landraces and wild species with beneficial traits, but until recently the entire scope of diversity has never been explored and thousands of accessions have been sitting on the shelves. Our research targets beneficial traits in these varieties through genome mapping and then we can deliver them to breeding programs around the world,” Singh said.

Currently adopted approaches to introduce external beneficial genes into breeding programs’ elite cultivars take a substantial amount of time and money. “Breeding wheat from a national perspective is a race against pathogens and other abiotic threats,” said Deepmala Sehgal, co-author and wheat geneticist in the Global Wheat program at CIMMYT. “Any decrease in the time to test and release a variety has a huge positive impact on breeding programs.”

Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)
Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)

Taking into genetic biodiversity

The findings build from research undertaken through the Seeds of Discovery project, which genetically characterized nearly 80,000 samples of wheat from the seed banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).

First, the team undertook a large meta-survey of genetic resources from wild wheat varieties held in genebanks to create a catalog of improved traits.

“Our genetic mapping,” Singh said, “identifies beneficial traits so breeding programs don’t have to go looking through the proverbial needle in the haystack. Because of the collaborative effort of the research team, we could examine a far greater number of genomes than a single breeding program could.”

Next, the team developed a strategic three-way crossing method among 366 genebank accessions and the best historical elite varieties to reduce the time between the original introduction and deployment of an improved variety.

Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)
Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)

Worldwide impact

National breeding programs can use the diverse array of germplasm for making new crosses or can evaluate the germplasm in yield trials in their own environments.

The diverse new germplasm is being tested in major wheat producing areas, including India, Kenya, Mexico and Pakistan. In Mexico, many of the lines showed increased resistance to abiotic stresses; many lines tested in Pakistan exhibited increased disease resistance; and in India, many tested lines are now part of the national cultivar release system. Overall, national breeding programs have adopted 95 lines for their targeted breeding programs and seven lines are currently undergoing varietal trials.

“This is the first effort of its kind where large-scale pre-breeding efforts have not only enhanced the understanding of exotic genome footprints in bread wheat but also provided practical solutions to breeders,” Sehgal said. “This work has also delivered pre-breeding lines to trait pipelines within national breeding programs.”

Currently, many of these lines are being used in trait pipelines at CIMMYT to introduce these novel genomic regions into advanced elite lines. Researchers are collaborating with physiologists in CIMMYT’s global wheat program to dissect any underlying physiological mechanisms associated with the research team’s findings.

“Our investigation is a major leap forward in bringing genebank variation to the national breeding programs,” Singh explained. “Most significantly, this study sheds light on the importance of international collaborations to bring out successful products and new methods and knowledge to identify useful contributions of exotic in elite lines.”

Read the full article:
Direct introgression of untapped diversity into elite wheat lines

Cover photo: A researcher holds a plant of Aegilops neglecta, a wild wheat relative. Approximately every 20 years, CIMMYT regenerates wheat wild relatives in greenhouses, to have enough healthy and viable seed for distribution when necessary. (Photo: Rocío Quiroz/CIMMYT)