Skip to main content

Author: Matthew O'Leary

CRP Maize Annual Report 2016

In 2016, the CGIAR Research Program on Maize (MAIZE) made strong progress on both of its research strategies, stress resilient and nutritious maize, and sustainable intensification of maize-based systems. In total, 111 improved maize varieties based on germplasm from MAIZE lead centers, CIMMYT and the International Institute of Tropical Agriculture (IITA), were released through MAIZE partners in 2016.

Read the full report online

Action needed to adapt maize breeding to climate change, report shows

Listen to a podcast of CIMMYT maize breeder Biswanath Das discussing the importance of adapting maize breeding and seed systems to climate change here.

Investment in speeding up the adaptation maize breeding and seed systems to climate change is needed, report finds. Photo: Peter Lowe/ CIMMYT
Investment in accelerating the adaptation of maize breeding and seed systems to climate change is needed a new report finds. Photo: Peter Lowe/ CIMMYT

EL BATAN, Mexico (CIMMYT) – Breeding and seed systems must be adapted to survive projected climate change if major loss of maize yields is to be avoided, a new report shows.

Tools that forecast the response of crops to different weather and climate conditions, coupled with crop yield modeling have enabled agricultural scientists to predict and formulate plans for potential future climate change.

“Responding better to changes in climate by improving efficiency of the breeding cycle and reducing the amount of time it takes to get improved maize into the hands of farmers is key to ensuring a food secure future,” said International Maize and Wheat Improvement Center (CIMMYT) maize breeder and co-author of the study Biswanath Das.

Projections for Africa demonstrate climate-change related increases in temperature will negatively impact on-farm yields as heat and drought stress shorten crop production time, the length of time between maize planting and harvesting, Das said.

Shorter and hotter growing seasons are expected to become a reality over the next 15 years, which could mean that maize varieties currently being developed may struggle to adapt, particularly since current breeding and commercialization cycles to improve maize in Africa can take several decades.

The report published in Nature Climate Change, led by Andy Challinor from the University of Leeds in collaboration with the International Center for Tropical Agriculture (CIAT) and CIMMYT, calls for an acceleration of breeding, delivery and adoption processes. The authors suggest that all stages could be sped up using a variety of techniques, requiring elaborate planning and coordination involving numerous actors and interest groups.

“Current warming will reduce yields unless maize breeding and seed systems adapt immediately,” Das said. “Increased collaboration among different breeding institutes and public-private collaborations are needed so that we share information, technologies and germplasm to make the best germplasm and technology available to the widest number of scientists as possible.”

“Seed systems could be working with regulators to reduce the amount of time it takes for varieties to become available to farmers and developing new ways of producing seed more cheaply and efficiently while maintaining quality.”

Public seed systems should continue working closely with the private sector to encourage the latest genetic advances to become available to farmers in the shortest time possible, Das added.

CIMMYT has undertaken other work in this area. An intensive breeding effort through the Drought Tolerant Maize for Africa (DTMA) project developed a large phenotyping network and breeding pipeline to produce new maize varieties with heat and drought tolerance. In collaboration with over 100 national seed companies, the project supported the production of 54,000 tons of drought-tolerant maize in 2014 alone, benefiting an estimated 5.4 million households – or 43 million people – across 13 countries in Africa.

In 2015, a new project was started to expand the success of DTMA so that more smallholder farmers in Africa would have access to affordable improved maize varieties through a network of national seed companies.

Despite the considerable efforts being made to adapt maize farming to changing climates, Das warned that they must be sustained and encouraged on a larger scale in order for breeding programs to produce climate-ready maize varieties for the future.

This study was supported by the CGIAR Research Program on Climate Change (CCAFS) and the CGIAR Research Program on Maize (MAIZE CRP).

This research is carried out with support from CGIAR Fund DonorsCCAFS Donors, MAIZE CRP Donors and through bilateral funding agreements. Funding for this project came from: Australian Centre for International Agricultural Research;  Ireland Department of Foreign Affairs and Trade; Netherlands Ministry of Foreign Affairs; New Zealand Ministry of Foreign Affairs & Trade;  Swiss Agency for Development and Cooperation; Thailand; UK Department of International Development; The United States Agency for International Development and the European Union. The Program is carried out with technical support from The International Fund for Agricultural Development.

DTMA was funded by the United States Agency for International Development and the Bill & Melinda Gates Foundation.

Read the paper (subscription required)

Current warming will reduce yields unless maize breeding and seed systems adapt immediately

A. J. Challinor, A.-K. Koehler, J. Ramirez-Villegas, S. Whitfield & B. Das

http://dx.doi.org/10.1038/nclimate3061

 

Maize: From Mexico to the world

Scientists agree maize originated in Mexico thousands of years ago. CIMMYT/ Peter Lowe
Scientists agree maize originated in Mexico thousands of years ago. CIMMYT/ Peter Lowe

EL BATAN, Mexico (CIMMYT) – For Mexicans, the “children of corn,” maize is entwined in life, history and tradition. It is not just a crop; it is central to their identity.

Even today, despite political and economic policies that have led Mexico to import one-third of its maize, maize farming continues to be deeply woven into the traditions and culture of rural communities. Furthermore, maize production and pricing are important to both food security and political stability in Mexico.

One of humanity’s greatest agronomic achievements, maize is the most widely produced crop in the world. According to the head of CIMMYT’s maize germplasm bank, senior scientist Denise Costich, there is broad scientific consensus that maize originated in Mexico, which is home to a rich diversity of varieties that has evolved over thousands of years of domestication.

The miracle of maize’s birth is widely debated in science. However, it is agreed that teosinte (a type of grass) is one of its genetic ancestors. What is unique is that maize’s evolution advanced at the hands of farmers. Ancient Mesoamerican farmers realized this genetic mutation of teosinte resembled food and saved seeds from their best cobs to plant the next crop. Through generations of selective breeding based on the varying preferences of farmers and influenced by different climates and geography, maize evolved into a plant species full of diversity.

The term “maize” is derived from the ancient word mahiz from the Taino language (a now extinct Arawakan language) of the indigenous people of pre-Columbian America. Archeological evidence indicates Mexico’s ancient Mayan, Aztec and Olmec civilizations depended on maize as the basis of their diet and was their most revered crop.

Maize is entwined in the history and traditions of Mexico. Artwork by Marcelo Ortiz
Maize is entwined in the history and traditions of Mexico. Artwork by Marcelo Ortiz

As Popol Vuh, the Mayan creation story, goes, the creator deities made the first humans from white maize hidden inside a mountain under an immovable rock. To access this maize seed, a rain deity split open the rock using a bolt of lightning in the form of an axe. This burned some of the maize, creating the other three grain colors, yellow, black and red. The creator deities took the grain and ground it into dough and used it to produce humankind.

Many Mesoamerican legends revolve around maize, and its image appears in the region’s crafts, murals and hieroglyphs. Mayas even prayed to maize gods to ensure lush crops: the tonsured maize god’s head symbolizes a maize cob, with a small crest of hair representing the tassel. The foliated maize god represents a still young, tender, green maize ear.

Maize was the staple food in ancient Mesoamerica and fed both nobles and commoners. They even developed a way of processing it to improve quality. Nixtamalization is the Nahuatl word for steeping and cooking maize in water to which ash or slaked lime (calcium hydroxide) has been added. Nixtamalized maize is more easily ground and has greater nutritional value, for the process makes vitamin B3 more bioavailable and reduces mycotoxins. Nixtamalization is still used today and CIMMYT is currently promoting it in Africa to combat nutrient deficiency.

White hybrid maize (produced through cross pollination) in Mexico has been bred for making tortillas with good industrial quality and taste. However, many Mexicans consider tortillas made from landraces (native maize varieties) to be the gold standard of quality.

“Many farmers, even those growing hybrid maize for sale, still grow small patches of the local maize landrace for home consumption,” noted CIMMYT Landrace Improvement Coordinator Martha Willcox. “However, as people migrate away from farms, and the number of hectares of landraces decrease, the biodiversity of maize suffers.”

Women representing four generations from a maize farming family in Chiapas, Mexico. CIMMYT/ Peter Lowe
Women representing four generations from a maize farming family in Chiapas, Mexico. CIMMYT/ Peter Lowe

Diversity at the heart of Mexican maize

The high level of maize diversity in Mexico is due to its varied geography and culture. As farmers selected the best maize for their specific environments and uses, maize diverged into distinct races, according to Costich. At present there are 59 unique Mexican landraces recorded.

Ancient maize farmers noticed not all plants were the same. Some grew larger than others, some kernels tasted better or were easier to grind. By saving and sowing seeds from plants with desirable characteristics, they influenced maize evolution. Landraces are also adapted to different environmental conditions such as different soils, temperature, altitude and water conditions.

“Selection for better taste and texture, ease of preparation, specific colors, and ceremonial uses all played a role in the evolution of different landraces,” said Costich. “Maize’s genetic diversity is unique and must be protected in order to ensure the survival of the species and allow for breeding better varieties to face changing environments across the world.”

“Organisms cannot evolve if there is no genetic, heritable variation for natural selection to work with. Likewise, breeders cannot make any progress in selecting the best crop varieties, if there is no diversity for them to work with,” she said.

Willcox agrees maize diversity needs to be protected. “This goes beyond food; reduced diversity takes away a part of civilization’s identity and traditions. Traditional landraces are the backbone of rural farming in Mexico, and a source of tradition in cooking and ceremonies as well as being an economic driver through tourism. They need to be preserved,” she said.

A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Xochiquetzal Fonseca/CIMMYT) CIMMYT/Xochiquetzal Fonseca
A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Xochiquetzal Fonseca/CIMMYT) CIMMYT/Xochiquetzal Fonseca

Mexican collection preserves maize diversity

CIMMYT’s precursor, the Office of Special Studies funded by the Rockefeller Foundation, aided in the preservation of Mexican landraces in the 1940s, when it began a maize germplasm collection in a project with the Mexican government. By 1947, the collection contained 2,000 accessions. In a bid to organize them, scientists led by Mario Gutiérrez and Efraim Hernández Xolocotzi drew a chalk outline of Mexico and began to lay down ears of maize based on their collection sites. What emerged was a range of patterns between the races of maize. This breakthrough allowed the team of scientists to codify races of maize for the first time.

Today, CIMMYT’s Maize Germplasm Bank contains over 28,000 unique collections of maize seed and related species from 88 countries.

“These collections represent and safeguard the genetic diversity of unique native varieties and wild relatives and are held in long-term storage,” said Costich. “The collections are studied by CIMMYT and used as a source of diversity to breed for traits such as heat and drought tolerance and resistance to diseases and pests, and to improve grain yield and grain quality.”

CIMMYT’s germplasm is freely shared with scientists and research and development institutions to support maize evolution and ensure food security worldwide.

Willcox said  on-farm breeding by Mexican farmers also continues and preserves maize diversity and the culinary and cultural traditions surrounding maize are the reason there is such a wealth of landraces in existence today.

“The diversity preserved in farmers’ fields is complementary to the CIMMYT germplasm bank collection because these populations represent larger population sizes and diversity than can be contained in a germplasm bank and are subjected to continuous selection under changing climatic conditions,” she added.

Examples of some of the 59 native Mexican maize landraces. Photo courtesy of CIMMYT Maize Germplasm Bank
Examples of some of the 59 native Mexican maize landraces. Photo courtesy of CIMMYT Maize Germplasm Bank

 

Q+A: How women and girls can succeed in science, according to CIMMYT’s Sarah Hearne

CIMMYT scientist Sarah Hearne talks about gender equality in science. (Photo: Alfonso Cortés Arredondo/ CIMMYT)
CIMMYT scientist Sarah Hearne talks about gender equality in science. (Photo: Alfonso Cortés Arredondo/ CIMMYT)

EL BATAN, Mexico (CIMMYT) – Scientific change requires innovation and the best solutions emerge when a wide range of perspectives have been considered, if you don’t have representation from half of the population the scope for innovation is narrowed, said a leading molecular geneticist on the International Day of Women and Girls in Science.

“Women often look at problems from a different angle from men – not better, just different – and like men we have a different gender perspective – all perspectives are valid and of value,” said Sarah Hearne, who leads the maize component of the Seeds of Discovery project at the International Center for Maize and Wheat Improvement.

Her passion for science began in girlhood, stemming from a curiosity about how things work.

“I loved experimenting and figuring out how and why things happen; I used to dissect my grandma’s fish when they died to try to work out why they were floating in the tank – I was six at the time,” she said. “Thankfully my parents weren’t horrified by this and over the years my requests for microscopes, chemistry sets and supplies of organs to dissect were realized by Santa and the village butcher.”

Not all girls receive such encouragement. A study conducted in 14 countries found the probability for female students graduating with a bachelor’s, master’s or doctoral degree in a science-related field are 19, 8 and 2 percent respectively, while the percentages of male students are 37, 18 and 6, according to the United Nations.

In response, in December, U.N. member states adopted a resolution to establish an annual international day to mark the crucial role women and girls play in science and technological communities celebrated for the first time on Feb. 11 this year. The aim is to further the access of women and girls and their participation in science, technology, engineering and mathematics education, training and research activities.

She kicked off her career in adulthood by earning a Bachelor of Science degree in Applied Plant Science at the University of Manchester and a doctoral degree at the University of Sheffield where she focused on work based across the University of Sheffield, the John Innes Center and Syngenta. Since graduating she has worked at two CGIAR centers in Latin America and East and West Africa.

She currently works with CIMMYT in the Seeds of Discovery project where she develops and applies tools to identify and enable the use of the valuable genetic variation present in genebanks for the benefit of farmers and consumers around the world.

She shared her views on women and girls in science in the following interview.

Q: Why is it important to have an increased number of woman and girls studying as well as working in scientific fields?

Girls rock!

Half the population is female but in science careers we are underrepresented, this imbalance becomes increasingly acute as you move up in career structures towards positions of more decision making.

Gender-balanced companies tend to have higher profitability and rank higher in terms of institutional health. This translates to the non-profit sector – impact instead of profitability is the measure of success. More women are needed in scientific research and development at all levels of organizations. This ideal requires a gender-balanced pool of potential applicants – something that is hard to obtain when women are underrepresented in sciences from school to university.

Q: What inspired you to follow a career in science and agriculture?

I grew up in Yorkshire, a rural area in the UK, my dad was an agricultural engineer and my mum still runs her own shop. Farming was an integral part of our community and our lives.

I loved science at school and was one of the few who studied chemistry and physics. Indeed, I was the only girl who studied the four sciences on offer. I enjoyed studying biology and environmental science the most, and after leaving school I deliberated whether to study genetics or plant science at university, eventually deciding to do a degree in applied plant science.

I spent my third year at university working with Zeneca – now Syngenta. My fellow interns and I were plunged into the deep end of applied research with very limited supervision; I LOVED IT! I got to research design, test, evaluate and develop tools and resources that mattered to the company and to farmers; my boss was very supportive and he encouraged me to try out some of my more “wacky” ideas…I was allowed to fail and learn from failure, developing better methods as a result. After earning my B.Sc. I applied for Ph.Ds., all the Ph.Ds. I applied for were focused on different aspects of crop improvement – I wanted to work with plant science that had an impact on people’s lives. The Ph.D. I chose was on maize molecular genetics and physiology working on Striga (a parasitic weed endemic to Africa) and drought. My Ph.D. experiences importantly gave me first-hand experience of the hard reality of the precariousness of food and nutritional security across vast swathes of the human population. When completing my Ph.D. I decided I wanted to be able to contribute to food security through research but I didn’t want to do this within a university setting- I thought that was too far from farmers. I came to know CIMMYT through my doctoral research and I have been working in the CGIAR system of agricultural researchers ever since completing my Ph.D.

Q: What challenges do women and girls face with regard to science today?

Perceptions: Women can face direct sexism related to their choice of class/degree/career not being considered gender appropriate, this often has cultural influence so while a girl may be more or less accepted in one culture she is not in another. Role models also pose a challenge. There are few female role models in many areas; those that exist have often sacrificed much personal life to be where they are. This gives a skewed picture to girls in an image-obsessed world where people are expected to be perfect in all aspects of life. Science is still very male dominated, especially agricultural science. Overt and unintentional sexism is rife in many organizations – women can be made to feel like a “token” staff member..

Being assertive and focused is often viewed very negatively when women display this behavior with gender-specific terms being used. I have been called “bossy, bitchy, emotional, aggressive, ice queen, scary, etc.”, my male colleagues exhibiting the same behavior are “driven, focused, tough, go-getters, etc.” I have never heard them being called bossy….

Inequality at home results in inequality in science. Women still tend to bear the brunt of home and childcare activities and this creates real or perceived impacts. Institutions and national governments don’t always help – shared maternity/paternity leave would be a good starting point.

Q: What is your advice to young aspiring female scientists?

Wow, there are lots of wisdom picked up and passed on I could share, here are a few I have found the most useful:

Personal: Check your own prejudice and ensure you treat others in an equal way. I get tired of hearing statements like “men can’t multi-task”… it is as offensive as “women can’t read maps”. If we want equality we have to ensure we model it ourselves.

Work on self-confidence, self-esteem and develop a good, self-depreciating sense of humor. Build a support network to help maintain these things and give you honest feedback. Don’t be afraid to ask questions; ask lots of questions.

Don’t stress about titles, positions or detailed career paths – career paths don’t usually follow a straight or planned path and you discover more fulfilling things on the journey. Give yourself time to explore and discover an area of science you love and are inspired by; believe me it is worth every second invested. Happiness is more important that a title on a business card.

Pick your partners carefully, life is full of surprises and striving for equality shouldn’t stop in the classroom or workplace.

In school/the workplace, do not accept gender loaded statements; “you are bossy” should be quickly but firmly rebuked with “not bossy, simply assertive”. Speak out about gender bias –be it female, male, bi -or trans gender – and enable and support others to speak out. If someone says something that makes you feel uncomfortable, articulate this to them. In addition, I would advise that you should never, ever accept sexual harassment of yourself or others in the workplace. Report it and if needed shout and scream about it. It is a good idea to build a financial/family safety net for yourself so that you have the freedom to leave situations where there is unwillingness of employers to deal with sexual harassment.

Learn to program Python and a bit of Java. Data is getting easier to capture and as a result the volume of data we are processing grows year on year. Having the skills to manipulate and analyze this is increasingly critical – off the shelf solutions no longer work. Being able to program is an increasingly valuable skill and one many girls are not encouraged to explore.

Try to understand the gender climate of the organization you are working for – or want to work for – and seek out allies to navigate and – hopefully – start to influence the climate to a more gender neutral workplace.

Don’t view every decision as having gender bias – sometimes there really isn’t any- you just don’t like the decision.

Apply for jobs even when you don’t meet all of the requirements – if you can do half of the things well and can learn the others then apply- nothing ventured nothing gained (and few candidates, male or female, tick all of the boxes).

Learn how to negotiate and try not to enter a situation in which you are unaware of the facts about what you are arguing for. Women often feel uncomfortable to negotiate salaries – you feel worse when you realize a male colleague doing the same job is being paid more.

Don’t let anyone shout at you, and don’t let anyone talk over you – calmly, quietly, and privately explain how you want to be treated – if the shouting continues walk away from the situation.

Consider family issues whether you have a family or not; do you need to send an urgent request to someone at 5pm on a Friday? -This helps all colleagues – men have families too and we all need work-life balance.