Skip to main content

Author: Matthew O'Leary

Reconciling food security, resource depletion and environmental quality trade-offs in India

Northwestern India is home to millions of smallholder farmers making it a breadbasket for grain staples. Since giving birth to the Green Revolution it has continued to increase its food production through rice and wheat farming providing food security to the region.

This high production has not come without shortfalls; groundwater tables are falling from excessive irrigation and climate change has brought erratic rainfall. In response, the state governments of Haryana and Punjab introduced separate legislation forcing farmers to delay rice planting to coincide with the arrival of the monsoonal rains in late June.

With rice sowing pushed back to tackle a looming water crisis, the time available between harvesting rice and planting wheat has been reduced. Consequently, the majority of farmers opt to burn the post-harvest rice straw to quickly prepare their fields for wheat. The majority of the 34 tons of rice residues the region produces is burned in a short window of time, throwing a lot of toxic smoke into the air.

New research, by the International Maize and Wheat Improvement Center (CIMMYT), delved into linkages between groundwater and agricultural burning policies. The study uncovered that groundwater conservation policies in Haryana and Punjab are exacerbating the nation’s air pollution crisis by concentrating crop residue burning in the late fall.

“Despite being illegal, the burning of post-harvest rice residues continues to be the most common practice of crop residue management, and while groundwater policies are helping arrest water depletion, they also appear to be exacerbating one of the most acute public health problems confronting India – air pollution,” said CIMMYT scientist and author of the study, Balwinder Singh.

Millions of farmers burn the straw that remains after the rice harvest to prepare their fields for a wheat crop. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Getting to the guts of air pollution’s chokehold on India

Air pollution in India has increased significantly since 2000. Each fall, from late October to November, a toxic fog containing a mixture of dust, carbon and particles covers northwestern India. For the 18.6 million who live in New Delhi the smog not only brings daily life to a standstill but slices years off life expectancy. It kills an estimated 1.5 million people every year, with nearly half of these deaths occurring in the Indo-Gangetic Plains, the northernmost part of the country that includes New Delhi.

The analysis suggests that temporal changes in burning are a prime contributor to the air quality crisis. The limited amount of time to prepare fields for wheat planting has caused fire intensity to increase by 39 percent, peaking in November with a maximum of 681 fires per day. This increase occurs when temperatures in New Delhi are lower and winds are weak. The still conditions trap pollution and limit the amount that can escape.

Recognizing policy tradeoffs is important for sustainable agricultural intensification

Agriculture for development researchers with CIMMYT investigate how best to sustainably intensify food production. This seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – while reducing environmental impacts. Policies can help to shape efforts towards sustainable intensification by encouraging farming practices that save resources and protect the environment. However, it is important that governments strike the right balance between food security, resource depletion and environmental quality.

The research results shed light on the sustainability challenges confronting many highly productive agricultural systems, where addressing one problem can exacerbate others, said Andrew McDonald, a professor at Cornell University and co-author of the study.

“Identifying and managing tradeoffs and capitalizing on synergies between crop productivity, resource conservation, and environmental quality is essential,” he said.

Policies to promote sustainable intensification can also burst India’s pollution bubble

Surface crop residue retention and incorporation are the promising on-farm management options to address the issue of burning as well as maintaining soil health and long-term sustainability, said M.L. Jat, a scientist with CIMMYT who coordinates sustainable intensification programs in northwestern India.

Apart from pumping toxic smoke into the air, ash left on fields after residue burning can negatively affect soil health in the long term. However, if residue is mulched into the soil, nutrient levels improve and carbon sequestration capacity increases, lowering the release of greenhouse gases. Additionally, residue retention reduces evaporation and increases soil moisture by as much as 10 percent during the wheat-growing season.

“A sensible approach for overcoming tradeoffs will embrace agronomic technologies such as the Happy Seeder, a seed drill that plants seeds without impacting crop residue, providing farmers the technical means to avoid residue burning,” he explained.

“When rice is ready to be reaped, a tractor or a harvester collects the grain, a spreader distributes the straw that remains on the ground and the Happy Seeder drills into the land to seed wheat,” Jat said. “Farmers no longer need to till the land to plant their wheat, instead they practice a form of conservation agriculture.”

M. L. Jat, CIMMYT Cropping Systems Agronomist with a no-till planter that facilitates no-burn farming. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Researchers at CIMMYT and Punjab Agricultural University have undertaken extensive trials in farmer fields and the new technology has proven itself as a step forward for developing viable solution to rice crop residue burning.

The Indian government launched a $157 million initiative to discourage burning through agricultural machinery innovations. However, the Happy Seeder is yet to be adopted widely. It is estimated that to cover 50 percent, 5 million ha, of the total acreage under rice-wheat cropping systems in India, about 60,000 Happy Seeders are needed. At present, there are only about 10,000 available.

A recent policy brief suggests rapid adoption needs a major government push to publicize and popularize the technology. The brief suggests delivery of machinery hire services through Primary Agriculture Cooperative Societies and private entrepreneurs with ongoing government support is a viable tool to equitably reach farmers.

Access the journal article on Nature Sustainability:
Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India

Policy Brief:
Innovative Viable Solutions to Rice Residue Burning in Rice-Wheat Cropping System through Concurrent Use of Super Straw Management System-fitted Combine and Turbo Happy Seeder

Video demonstration:
The concurrent use of super SMS-fitted combines and Turbo Happy Seeder

Are high land rental costs pricing African youth out of agriculture?

A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker carrying her baby on her back weeds maize in Tanzania. (Photo: Peter Lowe/CIMMYT)

A new study shows that youth can face higher land rental prices than older farmers in Tanzania and other parts of sub-Saharan Africa.

“The rising importance of land rental markets reflects increasing rural population densities in many parts of the continent,” said Jordan Chamberlin, an agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and study co-author.

“Evidence that the effective costs of rental market participation are relatively higher for younger farmers suggests that the markets are not yet mature,” Chamberlin explained. “This appears to stem partly from weak contract enforcement norms that make land rental arrangements more sensitive to trust and reputation. That puts younger farmers, who have not yet built up such social capital stocks, at a disadvantage.”

As many as three-quarters of Tanzanian youth are employed in agriculture, and with rural populations in Africa expected to rise over the next several decades, the region will experience an increasing scarcity of land relative to labor.

Young people today are already inheriting less land than previous generations and waiting longer to obtain the land they do inherit, according to the authors, who observe as one result a rising dependence on labor markets.

“Wage income’s importance will continue to rise in rural areas of sub-Saharan Africa, but policymakers should also foster equitable access to land for young agricultural entrepreneurs,” said Chamberlin.

The authors recommend measures such as tenant-landlord “matchmaking” programs, arrangements that encourage land sales by older farmers to younger farmers, and clarifying and simplifying regulations and procedures for title conversions and land purchases.

“Local governments may also share information about land rental rates for different areas, to provide a reference for rental negotiations,” added Chamberlain.

Read the study:
“Transaction Costs, Land Rental Markets, and Their Impact on Youth Access to Agriculture in Tanzania”

The recipe for better food systems

How food is produced, consumed, and how much is lost or wasted shapes the health of both people and planet. The EAT-Lancet Commission report, released in January 2019, brought together 30 interdisciplinary scientists from across the globe to propose a dietary pattern that meets nutritional requirements and promotes health but uses less environmental resources.

The report promotes diets consisting of a variety of plant-based foods, with low amounts of animal-based foods, refined grains, highly processed foods or added sugars, and with unsaturated rather than saturated fats.

The EAT Food Forum 2019 is taking place in Stockholm June 11-14, 2019. Natalia Palacios, maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT), will participate in a panel of agricultural research experts organized by CGIAR which will explore the implications of the EAT-Lancet report in the Global South, particularly for small farmers.

Palacios and her CIMMYT colleagues Santiago Lopez Ridaura, agronomist, and Jason Donovan, socioeconomist, got together for a conversation with CIMMYT editors to analyze how EAT-Lancet recommendations adapt to smallholder farmers’ realities.

Can nutrition bring the food system together?

Santiago Lopez Ridaura: Nutrition is the perfect setting to create system approaches to food. Nutrition involves everything: production quality, the genetics of the seed, input supply, output demand, as well as the purchasing power of farmers, dietary and cooking habits. It truly requires an interdisciplinary approach to look at food systems through a nutrition lens.

Natalia Palacios: We must stop thinking about the crop and think about the diet. Interdisciplinary and inter-institutional research is key to improve nutrition and agricultural sustainability in the context of smallholder farmers in Africa, Asia and Latin America.

Lopez-Ridaura: An economic analysis, a soil fertility study, or pest and disease breeding alone does not give us a holistic view of the food system. However, nutrition gives us the opportunity to have an integrated view. Equally, sustainability and avoiding food loss relate to all parts of the food system.

It’s a synergy of things. CIMMYT has been advocating for a systems approach to maize and wheat farming and nutrition, and sustainability fits right in with this.

Jason Donovan: It’s time to develop that dialogue, including specialists from different fields such as nutritionists, economists, agronomists, breeders and gender specialists when we investigate and form research questions on the health benefits and sustainability of our food systems and take holistic view of how all these things come together.

Palacios: A shift in our priority research is needed. It is important to integrate resilient production with nutrition. Focus only on productivity should no longer be the driver. We might not need big changes in the technologies and interventions, but we need to make sure nutrition and consumer demands are included.

There is no silver-bullet solution. You need to take action from different points, whether it is biofortified crops, intercropping for diversified diets or access to markets.

Is the EAT-Lancet report a recipe for a planetary diet?

Palacios: The report takes a global focus and is overwhelmingly targeted at high income nations. However, if we look at its five strategies, they are actually applicable for low- and middle-income countries as well: Seek international and national commitment to shift toward healthy diets; reorient agricultural priorities from producing high quantities of food to producing healthy food; sustainably intensify food production to increase high-quality output; strong and coordinated governance of land and oceans; and halve food losses at the production side and food waste at the consumption side.

CIMMYT scientists Natalia Palacios (left), Santiago Lopez-Ridaura (center) and Jason Donovan discuss the implications of a "planetary health diet" for producers and consumers in low- and middle-income countries. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientists Natalia Palacios (left), Santiago Lopez-Ridaura (center) and Jason Donovan discuss the implications of a “planetary health diet” for producers and consumers in low- and middle-income countries. (Photo: Alfonso Cortés/CIMMYT)

Lopez-Ridaura: Rather than a recipe, the commission proposes a “reference healthy diet” that will need to be adapted to different regions and cultures. More importantly, the trajectories towards such diet will probably be very different, depending on the region and culture, the current dietary habits of the population, and the production systems they are based on.

In some cases, consumption of meat and sugars will need to decrease, but in other regions it might need to be increased. It all depends on the current situation.

Donovan: The report highlighted the sustainability issues around our food production. Although it was focused toward high-income countries who consume a lot of proteins. One of the big questions I had after reading it was the “how” question. In a lot of countries where we work — in Africa, Asia and Latin America — the consumption of meat is increasing at a rapid pace.

So, the question that struck me was how do these societies with fast rural and urban transformations, and an increasing taste for animal-based food products, fit into the context of the report? How can we promote plant-based diets in these contexts?

Adjusting their diets towards a universal healthy reference diet would be difficult as there is little room for maneuver.

Is adaptation the key to success?

Lopez-Ridaura: Yes, adaptation is needed and I think the EAT-Lancet Commission colleagues are well aware of that. The healthy reference diet needs to be seen as such, as a reference, with some basic principles regarding food quantity and quality as well as sustainable use of resources.

Each region, sub-region or even families and individuals will need to adapt their dietary habits and production systems in order to attain healthy diets and halt the degradation of the resource base.

Palacios: It is important to look at smallholder farmers in the context of diet and sustainable agriculture. We need to ask, what are they growing? How are they growing it? How are they eating it? What do they sell?

Quite often smallholder farmers are already using agricultural practices that improve their nutrition and benefit the environment. For example, look at the milpa farm system: it combines maize, beans, squash, chili, tomatoes and seasonal fruits to provide a diverse plant-based diet. The milpa system, combined with crop residue retention and other conservation agriculture techniques can improve soil fertility.

Latin American farmers also use the traditional nixtamalization technique to prepare maize grain for cooking, which improves its nutritional value. Farmers in Africa are adopting green manure cover crops grown with maize as a way to improve soil health, diversify household diets and provide a cash crop to be sold at markets.

It is important that these initiatives are promoted through national and local government policy and supported by the private sector if they are to have real impact on the health of people and the planet.

Donovan: Local policies to promote healthy diets and diversification in the field are being put in place — Latin America is a good example. However, this is not at a scale where it can have real impact on the health of people and environments. There is pressure on the private sector to respond, especially considering the increasing consumption of processed foods. It is important to engage with the private sector on issues of nutrition and sustainability.

Solutions will be at multiple levels when we look at nutrition and food systems. Too often the actors in a food system act alone, for example many NGOs, universities, and government programs. There needs to be unity in action — players need to work together as creators of holistic solutions. This is currently a gap, as many nutritionists do not look at agriculture or food systems. Addressing this can have a significant impact on the health of family farmers in Africa, Asia and Latin America.

This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.

Fact sheet debunking labor and mechanization myths presented in Zimbabwe

A new fact sheet debunking myths about agricultural labor and mechanization has been presented at the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) end of project review meeting in Harare, Zimbabwe.

The fact sheet, based on a recent study by the International Maize and Wheat Improvement Center (CIMMYT), shows African farming households are far more dependent on hire labor markets, and much more inclined to hire mechanization services, than previously assumed.

Download the fact sheet “Debunking myths about agricultural labor and mechanization in Africa”.

FACASI review meeting

Over 50 agriculture for development specialists are gathering from May 11 to 17, 2019, to review the FACASI project’s progress. The project investigated how small-scale mechanization, such as two-wheel tractors with attachments, can be used to improve farm power balance, reduce labor drudgery, and promote sustainable intensification in Eastern and Southern Africa. The project also built the capacity of farmers to use size-appropriate machinery and trained hire service providers, to increase the equitable availability of mechanization services.

At the review meeting, participants will focus on widening the availability and use of small mechanization through commercialization, social inclusion, policy implications, and how to best use research outputs. They will also get to see two-wheel tractors in action and meet project farmers in visits to different districts around Zimbabwe.

In attendance are representatives from the project’s funder, the Australian Centre for International Agricultural Research (ACIAR), and partners including Ethiopia’s Ministry of Agriculture, the University of Zimbabwe, Zimbabwe’s Ministry of Lands Agriculture Water Climate and Rural Resettlement, the University of Southern Queensland, service providers and training centers from Zimbabwe, and private sector representatives from Zimbabwe and Ethiopia.


For further information on CIMMYT’s agricultural mechanization work in Africa:

FACASI knowledge platform

Appropriate mechanization for African smallholders: A pathway to sustainable intensification and rural development.

Training manual greases the wheels for mechanization entrepreneurs

African youth find entrepreneurial opportunity in agricultural mechanization

Research busts common myths about agricultural labor in Africa, suggests a shift in mechanization policy

Research busts common myths about agricultural labor in Africa, suggests a shift in mechanization policy

New farm-level research into agricultural labor in eastern and southern Africa found that a lack of farm power is costing smallholders in productivity, demonstrating a far higher demand for mechanization than commonly thought.

The study identified African farming households are far more dependent on labor markets than previously assumed, and thus far more inclined to hire mechanization services. The findings call on governments in the region to create an enabling environment to promote appropriate mechanization for small-scale farmers, said lead researcher Frédéric Baudron, systems agronomist with the International Maize and Wheat Improvement Center (CIMMYT).

“The high number of households already hiring farm power challenges common myths that suggest smallholder farms depends almost entirely on labor as it’s provided by family members. The demand for mechanized farm power is there, the supply isn’t and that is the issue,” he explained.

Unlike studies before it, the research avoided country-level indicators, such as the share of fallow land or population density, to assess the need for mechanized farming operations. Instead, it gathered detailed labor data from households in eight sites dominated by smallholder agriculture across Ethiopia, Kenya, Tanzania and Zimbabwe.

The study demonstrated that households that invest in agricultural power improve food production.

“To increase farm productivity, profitability, and sustainability, African farmers need greater access to affordable farm machinery to optimize processes,” Baudron said.

Small-scale mechanization appropriately sized for small farms — such as technologies based on two-wheel tractors, including direct planters — represents a shift away from conventional mechanization strategies dependent on large machines, leading to land consolidation and the disappearance of otherwise-productive small farms, Baudron said.

“Governments in the region need to create an enabling environment for mechanization supply chains to develop,” he explained. “This includes the creation of mechanization policy instruments, such as subsidies and training, that further respond to smallholder demand.”

Training and supporting hire service providers has shown to improve the equitable access to mechanization, which reduces labor drudgery and promotes sustainable intensification practices.

The research also presented a more nuanced analysis of the interrelations between male and female labor than usually presented in academic studies. It found women provide less labor than men and hired labor and suggests reducing drudgery among women relies upon understanding men’s chores and improving both as a two-way process.

In all sites studied rural women found that the priority for mechanization should be given to crop establishment, which would benefit both men and women. Land preparation and planting are tasks commonly performed by males, but their optimization influences weeding and postharvest tasks, primarily completed by women.

“These interconnections between men’s and women’s tasks have rarely been mentioned before, and should be tapped into for gender-sensitive interventions,” said Baudron.

Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)
Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)

Five persistent myths related to labor in African smallholder agriculture, challenged

Myth 1: Labor is abundant and cheap; thus, farm power does not limit agricultural productivity

Reality: It is commonly believed farm power does not limit agricultural productivity because there is an abundant amount of cheap labor options in southern and eastern Africa. However, the farm-level study showed a lack of farm power is holding back productivity and illustrated a much higher demand for mechanization than macroeconomic analyses, pointing to a problem of access rather than a lack of demand. It revealed the importance of labor or other sources of farm power in explaining the variability of land productivity. It also found that investments in farm power at the farm level improved land productivity.

Myth 2: Most of the labor is provided by women

Reality: Across the eight sites studied, women were found to provide just 7 to 35% of the labor invested in household farming, far less than the often-claimed percentage of 60 to 80%. Overall, the farm-level study found women tended to provide less labor for farming than men and hired labor. Even when considering female-headed households alone, women were only the main providers of labor in half of the sites — hired labor or children were we the main providers of labor.

The largest share of female labor tended to be invested in activities characterized by high drudgery, weeding and postharvest in particular, although this varied across sites. Weeding was also the main task performed by men in four of the sites studied. In fact, the study revealed that weeding tended to be a shared task between men, women, children, and hired labor, and not as dominated by female labor as commonly thought.

Myth 3: Agricultural tasks are carried out almost entirely by family labor

Reality: The study showed the majority of farming households in the region hire labor to complete agricultural tasks. Farm power hired included human labor, draught animals and, to a much lesser extent, tractor power.

This challenges the common view of Africa being dominated by family farms which, according to FAO, “rely mainly on the labor of family members.” African farming households may be far more dependent on labor markets than commonly assumed, and thus far more inclined to hire mechanization services.

Myth 4: Consolidation, by enabling “efficient” mechanization, would have a positive impact on agricultural productivity

Reality: The study found the maximum land productivity a farm can achieve decreased with increasing farm area in the majority of sites. This supports the so-called “negative farm size–productivity relationship” which has been reported by other studies in eastern and southern Africa.

Mechanization should not be a cause of consolidation — it should rather be driven by economic development. The concept of “appropriate mechanization” embraced by CIMMYT argues that machines should adapt to farm size, and not the opposite. Recent research and development initiatives taking place in the region point to the potential of using small single-axle tractors for agricultural mechanization in areas dominated by small and fragmented fields.

Myth 5: African agriculture is characterized by a wide gender gap

Reality: Research across all eight sites provided little evidence of a consistent gender gap. Land productivity was found not to differ significantly between male-headed households and female-headed households.

The research suggests the limited evidence of any substantial gender gap may stem from the fact that resources are highly inadequate across all sites, limiting large inequalities to manifest. This is not to deny the usefulness of current interventions targeting women-headed households, but rather to highlight the importance of preserving, strengthening, and tapping on social mechanisms in rural communities.

Read the complete study:
A farm-level assessment of labor and mechanization in Eastern and Southern Africa

For more information on appropriate-sized agricultural mechanization in Africa

With multi-sector support for climate-sensitive practices, African farmers can boost food security and resilience

Support for smallholder farmers to trial and select sustainable practices suited to their varying conditions is essential to build resilient farms needed to feed Africa’s soaring population, said economist Paswel Marenya at the Second African Congress on Conservation Agriculture in Johannesburg this October.

Farmers face different agroecological, socioeconomic and institutional environments across Africa. The mounting challenges brought by climate change also vary from place to place. Family farmers are born innovators, with government and industry support they can develop a resilient farming system that works for them, said the researcher from the International Maize and Wheat Improvement Center (CIMMYT).

One of the emerging paradigms of sustainable agriculture resilient to climatic changes is conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation. Although not a one-size-fits-all approach, it is a promising framework to be applied and adapted to meet farmers’ unique contexts, he said.

“Conservation agriculture’s potential to conserve soils, improve yields and limit environmental impacts makes it one of the elements that should be given prominence in efforts to secure sustainable and resilient farming in Africa,” he told audiences at the conference dedicated to discuss conservation agriculture systems as the sustainable basis for regional food security.

Along with eleven other researchers, Marenya presented evidence gathered over eight years researching the development of locally-adapted conservation agriculture-based practices as part of the Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA).

“Research shows that with a network of appropriate support, farmers can access the tools and knowledge to experiment, learn, adapt and adopt these important principles of conservation agriculture,” he said.

“Their farming can thus evolve to practices that have low environmental impacts, diversify their cropping including intercropping maize with legumes, and test affordable machinery for efficient, timely and labor-saving operations. In the end, each farmer and farming community have the ability to tailor a conservation agriculture-based system based on what works best given their unique socioeconomic settings,” said Marenya.

Trialing sustainable practices leads to adoption

Through the project over 235,000 farming households in the region have trialed sustainable practices reporting positive results of improved soil fertility, reduced labor costs, and increased food production and maize yields despite erratic weather, said collaborating investigator Custudio George from the Mozambique Institute of Agricultural Research.

“The majority of these farmers have gone on to adopt their preferred practices throughout their whole farm and now actively promote conservation agriculture to other farmers,” he added

Women undertake the majority of agricultural activities in sub-Saharan Africa. When they are empowered to try sustainable practices they overwhelmingly adopt those technologies identifying them as an economically viable way to overcome challenges and increase household food security, said Maria da Luz Quinhentos, who is an agronomist with the Mozambique Institute of Agricultural Research.

Maria da Luz Quinhentos, from the Mozambique Institute of Agricultural Research (IIAM).
Maria da Luz Quinhentos, from the Mozambique Institute of Agricultural Research (IIAM).

Forming networks to support farmer resilience

The research project took a multidisciplinary approach bringing together sociologists, economists, agronomists and breeders to study how maize-legume conservation agriculture-based farming can best benefit farmers in seven countries; including Ethiopia, Kenya, Malawi, Mozambique, Tanzania and Uganda.

In this vein, the project sought to connect farmers with multi-sector actors across the maize-legume value chain through Innovation platforms. Innovation Platforms, facilitated by SIMLESA, are multi-stakeholder forums connecting farmer groups, agribusiness, government extension, policy makers and researchers with the common goal to increase farm-level food security, productivity and incomes through the promotion of maize-legume intercropping systems.

“Having a network of stakeholders allows farmers to test and adopt conservation agriculture-based techniques without the risk they would have if they tried and failed alone,” said Michael Misiko who studies farmer adoption as part of SIMLESA.

“Farmers form groups to work with governments to gain access to improved seed, learn new farming practices and connect with local agribusinesses to develop markets for their produce,”

“When new problems arise stakeholders in local and regional innovation platforms can diagnose barriers and together identify mutual solutions,” he said.

Researchers and governments learn from innovation platforms and can use results to recommend productive climate-smart practices to other farmers in similar conditions, Misiko added.

Climate-smart agriculture key to achieve Malabo Declaration

The results from SIMLESA provide African governments with evidence to develop policies that achieve the Malabo Declaration to implement resilient farming systems to enhance food security in the face of a growing climate risks, said Marenya.

Hotter temperatures, increased dry spells and erratic rainfall are major concerns to farmers, who produce the majority of the region’s food almost entirely on rain-fed farms without irrigation.

If these smallholders are to keep up with food demand of a population set to almost double by 2050 while overcoming challenges they need productive and climate-resilient cropping systems.

CIMMYT research identifies that the defining principles of conservation agriculture are critical but alone are not enough to shield farmers from the impacts of climate change. Complementary improvements in economic policies, markets and institutions — including multi-sectoral linkages between smallholder agriculture and the broader economy — are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, said Marenya.

CRP Maize Annual Report 2017

In 2017, 79 improved maize varieties were released by the CRP MAIZE partners worldwide, including 26 in Latin America, 44 in Sub-Saharan Africa and 9 in Asia. These varieties are based on use of CGIAR lines from CIMMYT and the International Institute of Tropical Agriculture (IITA). Some of the special traits stacked in these varieties include drought and heat tolerance, nitrogen use efficiency, enhanced protein quality, high kernel zinc and resistance to diseases of regional or global importance, such as maize lethal necrosis (MLN), tar spot complex (TSC), and resistance to the parasitic weed, Striga. MAIZE worked with partners to control the spread of Fall Armyworm in Africa.

Read the full report online

What is green manure? And how is it helping maize farmers?

Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)
Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)

Honest Musafari, a fifty-year-old farmer from rural Zimbabwe, eagerly picks up a clump of soil from his recently harvested field to show how dark and fertile it is. A farmer all his life, Musafari explains the soil has not always been like this. For years, he and his neighbors had to deal with poor eroding soil that increasingly dampened maize yields.

“My soil was getting poorer each time I plowed my field, but since I stopped plowing, left the crop residues and planted maize together with legumes the soil is much healthier,” says Musafari. His 1.6-hectare maize-based farm, in the Murehwa district, supports his family of six.

For over two years, Musafari has been one of the ten farmers in this hot and dry area of Zimbabwe to trial intercropping legumes and green manure cover crops alongside their maize, to assess their impact on soil fertility.

The on-farm trials are part of efforts led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with Catholic Relief Services (CRS) and government extension services to promote climate-resilient cropping systems in sub-Saharan Africa.

Increasing land degradation at the farm and landscape level is the major limitation to food security and livelihoods for smallholder farmers in sub-Saharan Africa, says CIMMYT senior cropping systems agronomist Christian Thierfelder.

Over 65 percent of soils in Africa are degraded. They lack the nutrients needed for productive crops. This is a major part of the reason why the region’s maize yields are not increasing,” he explains. “The failure to address poor soil health will have a disastrous effect on feeding the region’s growing population.”

The area where Musafari lives was chosen to test intercropping, along with others in Malawi and Zambia, for their infamous poor soils.

Mixing it up

When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)
When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)

Planted in proximity to maize, legumes — like pigeon pea, lablab and jack beans — add nitrogen to the soil, acting as green manure as they grow, says Thierfelder. Essentially, they replace the nutrients being used by the cereal plant and are an accessible form of fertilizer for farmers who cannot afford mineral fertilizers to improve soil fertility.

“Our trials show legumes are a win for resource poor family farmers. Providing potentially 5 to 50 tons per hectare of extra organic matter besides ground cover and fodder,” he notes. “They leave 50 to 350 kg per hectare of residual nitrogen in the soil and do not need extra fertilizer to grow.”

Added to the principles of conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping — farmers are well on their way to building a resilient farm system, says Geoffrey Heinrich, a senior technical advisor for agriculture with CRS working to promote farmer adoption of green manure cover crops.

For years Musafari, as many other smallholder farmers in Africa, tilled the land to prepare it for planting, using plows to mix weeds and crop residues back into the soil. However, this intensive digging has damaged soil structure, destroyed most of the organic matter, reduced its ability to hold moisture and caused wind and water erosion.

Letting the plants do the work

Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)
Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)

Musafari says the high price of mineral fertilizer puts it out of reach for farmers in his community. They only buy little amounts when they have spare cash, which is never enough to get its full benefit.

He was at first skeptical green manure cover crops could improve the quality of his soil or maize yields, he explains. However, he thought it was worth a try, considering growing different crops on the same plot would provide his family with more food and the opportunity to make some extra cash.

“I’m glad I tried intercropping. Every legume I intercropped with my maize improved the soil structure, its ability to capture rain water and also improved the health of my maize,” he says.

Thierfelder describes how this happens. Nitrogen fixation, which is unique to leguminous crops, is a very important process for improving soil fertility. This process involves bacteria in the soil and nitrogen in the air. The bacteria form small growths on the plant roots, called nodules, and capture the atmospheric nitrogen as it enters the soil. The nodules change the nitrogen into ammonia, a form of nitrogen plants use to produce protein.

In addition, legumes grown as a cover crop keep soil protected from heavy rains and strong winds and their roots hold the soil in place, the agronomist explains. They conserve soil moisture, suppress weeds and provide fodder for animals and new sources of food for consumption or sale.

Farmers embrace intercropping

Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)

Working with CIMMYT, Musafari and his wife divided a part of their farm into eight 20 by 10 meter plots. On each plot, they intercropped maize with a different legume: cowpea, jack bean, lablab, pigeon pea, sugar bean and velvet bean. They also tried intercropping with two legumes on one of the plots. Then they compared all those options to growing maize alone.

“Season by season the soil on each of the trial plots has got darker and my maize healthier,” describes Musafari. “Rains used to come and wash away the soil, but now we don’t plow or dig holes, so the soil is not being washed away; it holds the water.”

“I really like how the legumes have reduced the weeds. Before we had a major problem with witchweed, which is common in poor soils, but now it’s gone,” he adds.

Since the first season of the trial, Musafari’s maize yields have almost tripled. The first season his maize harvested 11 bags, or half a ton, and two seasons later it has increased to 32 bags, or 1.5 tons.

Musafari’s wife Eveline has also been convinced about the benefits of intercropping, expressing the family now wants to extend it to the whole farm. “Intercropping has more advantages than just growing maize. We get different types of food on the same space. We have more to eat and more to sell,” she says.

The family prefers intercropping with jack bean and lablab. Even though they were among the hardest legumes to sell, they improved the soil the most. They also mature at the same time as their maize, so they save labor as they only have to harvest once.

The benefits gained during intercropping have influenced farmers to adopt it as part of their farming practices at most of our trial sites across southern Africa, CRS’s Heinrich says.

“Immediate benefits, such as reduced weeding labor and legume cash crops that farmers can sell off quick, provide a good incentive for adoption,” he adds.

Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)
Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)

Climate-resilient farming systems for Africa

Food security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the continent by 2025. Temperatures are increasing: the past three decades have been the warmest on record, according to the International Panel on Climate Change.

Hotter climates, more dry spells and erratic rainfall are a major concern to farmers in sub-Saharan Africa, where over half of maize is grown in rain-fed farming without irrigation.

The majority of African farmers are smallholders who cultivate less than 2 hectares, explains Thierfelder. If they are to meet the food demand of a population set to almost double by 2050, bringing it to over 2 billion people while overcoming multiple challenges, they need much more productive and climate-resilient cropping systems.

New research identifies that the defining principles of conservation agriculture alone are not enough to shield farmers from the impacts of climate change. Complementary practices are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, he warns.

“Intercropping with legumes is one complementary practice which can help building healthy soils that stand up to erratic weather,” says Thierfelder. “CIMMYT promotes climate-resilient cropping systems that are tailored to farmers’ needs,” he emphasizes.

“To sustainably intensify farms, growers need to implement a variety of options including intercropping, using improved crop varieties resistant to heat and drought and efficient planting using mechanization along with the principles of conservation agriculture to obtain the best results.”

African youth find entrepreneurial opportunity in agricultural mechanization

After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)

The sound of an engine roars as Gift Chawara, a 28-year-old from rural Zimbabwe, carefully removes a mesh bag bulging with maize grain hooked to his mechanized sheller. Fed with dried maize cobs, the sheller separates the grain from the shaft before shooting the kernels out the side into the awaiting bag. Chawara swiftly replaces the full bag with an empty one as the kernels continue to spill out.

It is eleven in the morning and the sun beats down over the small farm. Chawara and his friends have only been working a few hours and have already shelled 7 tons for their neighbor and customer Loveness Karimuno; thirteen more tons to go.

The widowed farmer watches as the bags of grain line up, ready for her to take to market. It used to take Karimuno two to three weeks to shell her maize harvest by hand, even with the help of hired labor. This grueling task saw her rub each maize ear on a rough surface to remove the grain from the shaft. Now, these young men and their mechanized sheller will do it in just a few hours for a small fee.

“When my neighbor told me the boys were shelling small amounts of maize at reasonable prices, I got in contact with them,” said Karimuno. “It’s cheaper than hiring people to help me do it manually and the speed means I can sell it faster.”

It used to take widowed farmer Loveness Karimuno (left) two or three weeks to shell her 20-ton maize harvest manually, even with the help of hired labor. Using mechanization services, all of her maize is shelled within a day, meaning she can take her grain to market faster. (Photo: Matthew O’Leary/CIMMYT)
It used to take widowed farmer Loveness Karimuno (left) two or three weeks to shell her 20-ton maize harvest manually, even with the help of hired labor. Using mechanization services, all of her maize is shelled within a day, meaning she can take her grain to market faster. (Photo: Matthew O’Leary/CIMMYT)

The group of young entrepreneurs is serving almost 150 family farms around the village of Mwanga, located about two hours northwest of the capital Harare. They offer services such as shelling and planting, powered by special machinery. Since Chawara and his partners started the business three years ago, word has spread and now they are struggling to keep up with demand, he expressed.

Mechanized agricultural services have traditionally only been used by large-scale farmers who could afford the high prices, but small and medium-sized machines are fast becoming affordable options for family farmers through the advent of service providers, explained Frédéric Baudron, an agronomist with the International Maize and Wheat Improvement Center (CIMMYT).

The five young men are among the increasing number of youth across eastern and southern Africa creating a stable living as entrepreneurs in agricultural mechanization service provision, Baudron said.

Tired of the lack of profitable work in their rural community, the group of youths jumped on the opportunity to join a training on agricultural mechanization, run by CIMMYT. They heard about this training through local extension workers.

“We would probably be out of work if we hadn’t had the opportunity to learn how agricultural mechanization can be used to help smallholder farmers and gain skills to run our own business to provide these services,” Chawara expressed as he took a quick rest from shelling under a tree.

“It has really changed our lives. Last season we shelled over 300 tons of maize making just under US $7,000,” he said. “It has gone a long way in helping us support our families and invest back into our business.”

Masimba Mawire, 30, and Gift Chawara, 28, take a break from shelling and rest under a tree. The small car behind was bought by Chawara with his profits earned from the mechanization service business. (Photo: Matthew O’Leary/CIMMYT)
Masimba Mawire, 30, and Gift Chawara, 28, take a break from shelling and rest under a tree. The small car behind was bought by Chawara with his profits earned from the mechanization service business. (Photo: Matthew O’Leary/CIMMYT)

Mechanization as a way out of poverty

Sub-Saharan African youth struggle with high unemployment and working poverty. Agriculture is perceived as a sector that can absorb much of the rising level of unemployment, particularly when combined with entrepreneurship. Mechanization is one of the ways youth can get ahead, pointed out Baudron.

Through the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, supported by the Australian Centre for International Agricultural Research (ACIAR), CIMMYT is offering training courses to promote mechanization in Ethiopia, Kenya, Tanzania and Zimbabwe. Trainings equip entrepreneurs with essential business skills and knowledge, tailored to rural environments, so they can support farmers with appropriate mechanization services that sustainably intensify their production.

Chawara and his partners attended one of these trainings, hosted on the grounds of an agricultural technical college on the outskirts of Harare. For a week, they participated in practical courses led by local agriculture and business experts.

As part of the CIMMYT research project, the youth group paid a commitment fee and were loaned a planter and sheller to start their business, which they are now paying off with their profits.

Youth tend to be better at managing modern technologies and successfully take to service providing, said Baudron, who leads the FACASI project.

“We found consistently, in all countries where we work, that being a successful service provider is highly correlated to being young,” he highlighted. “However, other factors are also important, such as being entrepreneurial, educated, able to contribute to the cost of the machinery and preferably having an experience in similar businesses, particularly in mechanics.”

(From left to right) Shepard Kawiz, 24, gathers dried maize cobs into a bucket passing it to his brother Pinnot Karwizi, 26, who pours the maize into the sheller machine by feeding the hopper. The maize falls into the sheller’s barrel where high-speed rotation separates the grain from the cob. As the bare shafts are propelled out one side, Masimba Mawire, 30, is there to catch and dispose of them. Meanwhile, Gift Chawara, 28, is making sure a bag is securely hooked to the machine to collect the maize grain. (Photo: Matthew O’Leary/CIMMYT)
(From left to right) Shepard Kawiz, 24, gathers dried maize cobs into a bucket passing it to his brother Pinnot Karwizi, 26, who pours the maize into the sheller machine by feeding the hopper. The maize falls into the sheller’s barrel where high-speed rotation separates the grain from the cob. As the bare shafts are propelled out one side, Masimba Mawire, 30, is there to catch and dispose of them. Meanwhile, Gift Chawara, 28, is making sure a bag is securely hooked to the machine to collect the maize grain. (Photo: Matthew O’Leary/CIMMYT)

Mentoring and support are key to success

The young men operate like a well-oiled machine. Shepard Kawiz, 24, gathers dried maize cobs into a bucket and passes it to his brother Pinnot Karwizi, 26, who pours the maize into the sheller machine by feeding the hopper. The maize falls into the sheller’s barrel where high-speed rotation separates the grain from the cob. As bare shafts are propelled out one side, Masimba Mawire, 30, is there to catch and dispose of them. Meanwhile, Gift Chawara is making sure a bag is securely hooked to the machine to collect the maize grain.

Trials showed that when youth form a group and are provided guidance they are more inclined to succeed as service providers, explained CIMMYT agribusiness development specialist Dorcas Matangi.

“The group model works because they share the costs, the workload and they are more attractive to lenders when looking for investment capital,” she remarked.

Throughout the season, Mantangi works with local government extension workers and engineers from the University of Zimbabwe to mentor those starting out. They also organize meetings where service providers can gather to discuss challenges and opportunities.

“This is a good opportunity to iron out any problems with the machines, connect them with mechanics and spare part providers and we gain their feedback to improve the design of machinery,” she added.

Mechanization backs resilient farming systems

CIMMYT has provided a model to promote the use of agricultural mechanization among smallholder farmers through service providers, affirmed Misheck Chingozha, a mechanization officer with Zimbabwe’s Ministry of Agriculture.

Farm machinery helps farmers implement sustainable crop practices that benefit from greater farm power and precision,” he said. “This is in line with the government’s strategy to promote conservation agriculture – defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping.”

CIMMYT promotes small-scale mechanization, such as two-wheel tractor-based technologies, including direct seeding planters that reduce labor and allow for improved resource allocation when implementing these practices, described CIMMYT’s Baudron.

Conservation agriculture is a sustainable intensification practice that seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – thus reducing environmental impacts.

With support from CIMMYT, students at the University of Zimbabwe are working to develop agricultural machinery fitted to the environmental conditions and needs of farmers in their country and other parts of Africa. (Photo: Matthew O’Leary/CIMMYT)
With support from CIMMYT, students at the University of Zimbabwe are working to develop agricultural machinery fitted to the environmental conditions and needs of farmers in their country and other parts of Africa. (Photo: Matthew O’Leary/CIMMYT)

Students fuel next-generation machinery

As part of their degree, students at the University of Zimbabwe are working with CIMMYT to continuously improve the effectiveness and efficiency of agricultural machinery.

In a bid to improve the allocation of resources, agricultural engineering student Ronald Mhlanga, 24, worked on a prototype that uses sensors to monitor the amount of seed and fertilizer distributed by planters attached to two-wheel tractors. The device sends information to the driver if anything goes off course, helping farmers improve precision and save resources.

“Often planters will get clogged with mud blocking seeding. The sensors identify this and send a signal to the driver,” said Mhlanga. “This allows the driver to focus on driving and limits wasted resources.”

Learning from farmer feedback and working with agricultural engineers and the private sector, CIMMYT is building agricultural mechanization suited to the needs and conditions of sub-Saharan African farms, concluded Baudron.

Nutritious vitamin A orange maize boosts health and livelihoods in Zimbabwe

Ashley Muzhange, 18 months old, eats sadza porridge in the Chiweshe Communal Area. This porridge is made of vitamin A orange maize, a variety improving the nutrition of children and families in Zimbabwe.
Ashley Muzhange eats sadza with her family in rural Zimabwe. Her sadza is made with vitamin A orange maize, a variety improving the nutrition of children and families in the nation. Photo: Matthew O’Leary/ CIMMYT

In the rural Chiweshe Communal Area, about two hours north of Zimbabwe’s capital Harare, 18-month-old Ashley Muzhange tucks into a bowl of vitamin A orange maize sadza. Sadza, a thickened porridge made from finely ground maize grain with a side of stewed vegetables, is the staple dish for rural families.

Ashley’s sadza is made from biofortified maize, conventionally bred by researchers at the International Maize and Wheat Improvement Center (CIMMYT) under the work of HarvestPlus to contain a higher amount of nutritious vitamin A.

As Zimbabwe’s child malnutrition rate peaks above the international threshold for emergency response, nutritious vitamin A orange maize gains ground on the national market.

Recent prolonged drought pushed malnutrition to levels not seen in over 15 years, with almost 33,000 children in need of urgent treatment for severe acute malnutrition, according to the United Nations Children’s Fund (UNICEF). Many experience micronutrient deficiencies, since their diets lack the vitamins and minerals required for growth and development.

Ashley's mother, , prepares fritas made with vitamin A maize grown on their family farm. Photo: Matthew O'Leary/ CIMMYT
Ashley’s mother, Lilian Muzhange, prepares fritas made with vitamin A orange maize grown on their family farm. Photo: Matthew O’Leary/ CIMMYT

According to the World Health Organization, 35.8 percent of preschool aged children suffer from vitamin A deficiency. The leading cause of preventable blindness in children, it compromises the immune system increasing the risk of death from diseases like measles, diarrhea and respiratory infections.

Biofortification increases the density of vitamins and minerals in a crop through conventional plant breeding or agronomic practices. When consumed regularly, biofortified crops generate measurable improvements in health and nutrition. The process develops crops rich in nutrients for consumers as well as the agronomic characteristics like drought and disease resistance valued by farmers. It is considered a sustainable way to bring micronutrients to populations with limited access to diverse diets.

Even though baby Ashley is unaware her sadza not only fills her stomach, but also provides her with a dose of vitamin A, her family is conscious of the benefits.

“This orange maize assures me that my daughter gets a nutritious meal and means we don’t only rely on the supplements provided by the government,” said Lilian Muzhange, her mother.

Orange the color of health

The farming family first began trialing the biofortified vitamin A orange maize in 2015 and are now growing it in place of traditional white maize. The nutritious variety contains high levels of beta-carotene, a vitamin A precursor that produces the rich orange color and once ingested is converted into the micronutrient, acting as an antioxidant to protect cells.

“Our family now prefers the new vitamin A orange maize over the white maize, as it has great health benefits for my children and granddaughter and the taste is delicious. The sadza truly is better,” said Ashley’s grandfather Musonza Musiiwa. “I was also pleased the variety is drought tolerant. Despite a dry spell in January my maize was able to yield a good harvest.”

Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O'Leary/ CIMMYT)
Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O’Leary/ CIMMYT)

Rural diets mainly consist of what farming families can grow, which is predominantly maize, said CIMMYT maize breeder Thokozile Ndhlela. The majority of rural households do not meet minimum dietary diversity, reliant on a cereal-based diet where meat is a rarity, the Zimbabwe Food and Nutrition Council finds.

“White maize traditionally used for the staple sadza is predominantly starch and very low in nutritional value,” said Ndhlela, who leads CIMMYT’s biofortified breeding efforts in Zimbabwe. “Biofortifying this staple crop ensures consumers have access to nutritious food season after season as farmers continue to grow it.”

Musiiwa not only sees the health and agronomic benefits of vitamin A orange maize, but has also identified its economic opportunity. The farmer is planning to increase the amount he grows to capitalize on the market he believes is set to grow.

Getting vitamin A maize into farmers’ fields and onto plates

Sakile Kudita, HarvestPlus researcher, eplains the benefits of of biofortified orange maize to seed company and government representatives. Photo: Matthew O'Leary/ CIMMYT
Sakile Kudita, HarvestPlus researcher, explains the benefits of of vitamin A orange maize to seed company and government representatives. Photo: Matthew O’Leary/ CIMMYT

For the new biofortified maize to be part of the food system it must be commercialized creating a full value chain, said Sakile Kudita, a demand creation researcher with HarvestPlus, a program improving nutrition and public health by developing and promoting biofortified food crops.

“Vitamin A orange maize needs to be a product millers take up and processed foods are made of, so that seed companies have an incentive to keep producing seed and farmers have an incentive to grow more than just for consumption but also sale in order to generate income,” she said.

The efforts of HarvestPlus and CIMMYT to engage government, food processors and seed companies at field days, where they learn about the nutritional and agronomic benefits and taste the orange maize have yielded success, said Kudita. Working with the government, four biofortified varieties have been commercialized since 2015.

Prime Seed Co, a subsidiary of the regional certified seed company Seed Co, was the first company commissioned by the government to commercialize vitamin A orange maize in Zimbabwe and now sells the variety Musiiwa uses in his field.

Prime Seed Co worked with CIMMYT, HarvestPlus and the Zimbabwe government to release the first orange variety onto the market. Photo: Thoko Ndhlela/ CIMMYT
Prime Seed Co worked with CIMMYT, HarvestPlus and the Zimbabwe government to release the first vitamin A orange maize variety onto the market. Photo: Thoko Ndhlela/ CIMMYT

“Through our partnership with CIMMYT and HarvestPlus we are developing a market for vitamin A orange maize in Zimbabwe,” said Masimba Kanyepi, a sales manager at Prime Seed Co. “We have seen our sales improve since launching the first variety and expect an increase.”

Kanyepi is confident the market will grow following a new government regulation requiring all processed maize products to contain added micronutrients, including vitamin A, through fortification.

Food industry representatives taste test foods made with vitamin A orange maize at an open day. Photo: Matthew O'Leary/ CIMMYT
Food industry representatives taste-test foods made with vitamin A orange maize at an open day. Photo: Matthew O’Leary/ CIMMYT

“Adding vitamin A to maize at the processing stage is expensive for food companies due to the cost of importing the vitamin from overseas,” said Kanyepi. “Buying vitamin A orange maize grown by local farmers already biofortified at the same price as the white variety makes economic sense.”

Food companies see the saving with Zimbabwe manufacturer, Cairns Foods, confirming it’s taking steps to include biofortified maize in its cereals and biofortified beans in its canned products.

With food processors and millers buying vitamin A orange maize there is demand for farming families like the Musiiwas to grow more, ensuring not only a boost to their health but also their livelihood, said Kudita.

Breeding for a more nutritious future

Biofortified orange maize in a farmer's field. Photo: Matthew O'Leary/ CIMMYT
Vitamin A orange maize in a farmer’s field. Photo: Matthew O’Leary/ CIMMYT

Nutritional studies show vitamin A biofortified maize is as effective as supplementation in improving total body stores of the micronutrient, and significantly improving visual function in children with a marginal deficiency.

With maize the preferred staple in sub-Saharan Africa, where the World Health Organization records almost half of all children 6 to 59 months as vitamin A deficient, biofortification is a sustainable solution to improve health in the region, said CIMMYT’s Ndhlela. Across Africa almost 50 varieties of biofortified maize have been released onto the market.

The crop diversity found in the maize species is key to nutritional gain. The plant grows in distinct environments and has developed a diverse range of valuable traits including nutritional properties.

Following a lengthy analysis of thousands of samples in the CIMMYT Maize Germplasm Bank researchers discovered native landraces and varieties from South and Central America containing increased levels of beta-carotene, explained Ndhlela. These were included in breeding programs in Africa and crossed with local varieties to ensure they were fit for the subtropical climate and were tolerant to local biotic and abiotic stresses.

Working alongside Zimbabwe’s national breeding program Ndhlela continually monitors, improves and combines dozens of characteristics, which include high yield potential, nitrogen use efficiency, and tolerance to drought, into new varieties that meet farmers’ preferences.

The most recent biofortified varieties contain about 39 percent more vitamin A compared to the first, she said.

“CIMMYT’s support through free access to maize germplasm and breeding expertise has allowed us to continue developing this nutritious maize,” said Prince Matova, a maize breeder with the Zimbabwe Ministry of Agriculture. “In the next few years we expect to release two more varieties.”

At the end of the day, farming is a business and farmers value varieties with high yield, adapted to stress conditions. The breeders are currently trialing new vitamin A maize varieties with the hope of identifying those with the potential to yield as much as the traditional white varieties and are already garnering positive feedback from farmers.

CIMMYT maize breeder Thoko Ndhlela shows food industry representatives the agronomic benefits of orange maize in the field. Photo: Matthew O'Leary/ CIMMYT
CIMMYT maize breeder Thoko Ndhlela shows food industry representatives the agronomic benefits of vitamin A orange maize in the field. Photo: Matthew O’Leary/ CIMMYT

CIMMYT’s biofortified vitamin A maize breeding is  supported by HarvestPlus. HarvestPlus improves nutrition and public health by developing and promoting biofortified food crops that are rich in vitamins and minerals, and providing global leadership on biofortification evidence and technology. HarvestPlus is part of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH). CGIAR is a global agriculture research partnership for a food secure future. Its science is carried out by its 15 research centers in collaboration with hundreds of partner organizations. The HarvestPlus program is coordinated by two of these centers, the International Center for Tropical Agriculture (CIAT) and the International Food Policy Research Institute (IFPRI).

HarvestPlus’ principal donors are the UK Government; the Bill & Melinda Gates Foundation; the US Government’s Feed the Future initiative; the European Commission; and donors to the CGIAR Research Program on Agriculture for Nutrition and Health. HarvestPlus is also supported by the John D. and Catherine T. MacArthur Foundation.

 

Training manual greases the wheels for mechanization entrepreneurs

ROME — A new training manual is set to provide practical guidance for agricultural mechanization entrepreneurs in rural areas, where family farmers commonly lack capital to invest in the farm power required to increase food production.

The five-module training manual targeted at farm mechanization hire service providers, including youth and women, was developed by researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the UN Food and Agriculture Organization (FAO) and official launched July 13 at FAO’s Rome headquarters.

Bedilu Desta, an agricultural mechanization service provider, demonstrates a two-wheel tractor. (Photo: Frédéric Baudron/CIMMYT)
Bedilu Desta, an agricultural mechanization service provider, demonstrates a two-wheel tractor. (Photo: Frédéric Baudron/CIMMYT)

It sets out a syllabus which trainers can tailor to local environments to equip entrepreneurs with essential business skills and knowledge to promote appropriate mechanization farmers need to sustainably intensify production, said Josef Kienzle, an agricultural engineer at FAO.

The manual will initially be rolled out in sub-Saharan African rural communities where improved access to agricultural mechanization is crucial, he said.

Small-scale mechanization, such as two-wheel tractor based technologies including direct seed planters, represent a shift away from destructively intensive agriculture. However, the decline of hire tractor schemes means resource-poor farmers often lack the financial means to obtain them, said Bruno Gerard, director of CIMMYT’s sustainable intensification program.

“To increase the productivity, profitability, and sustainability of their farms, family farmers need greater access to affordable yield-enhancing inputs. Hire service providers can improve access to mechanization that reduces labor drudgery and promotes sustainable intensification practices,” he said.

Sustainable intensification seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – thus reducing environmental impacts.

Sub-Saharan Africa needs sustainable intensification of agriculture. With 224 million people currently undernourished and a population tipped to almost double by 2050, bringing it to over 2 billion people, increasing food production is of the utmost importance.

Despite the need, African crop yields are stagnant with more than 95 percent of farmed land in sub-Saharan Africa rain-fed. Over half of soils are degraded following years of farming without replacing nutrients and low fertilizer use, as most farmers can’t afford it.

“Inclusive mechanization strategies create an enabling environment and provide a framework for making decisions on how to allocate resources, how to address current challenges, how to take advantage of opportunities that arise while in the meantime emphasize the concept of sustainable crop intensification and the roles of the private and public sectors,” said Kienzle. Farm machinery enables farmers to adopt sustainable crop production intensification practices – such as conservation agriculture – that benefit from greater farm power and precision.

The manual will be initially distributed and courses organized through FAO and CIMMYT field projects in sub-Saharan Africa utilizing local trainers and experts in machinery and agribusiness, he said. The manual is expected to be rolled out to other subregional offices and hubs in the future.

Mechanization fuels rural employment opportunity

Increased adoption of agricultural mechanization is stimulating jobs and entrepreneurial opportunities in Africa where youth and women increasingly face severe job insecurity, said Gerard.

Clara Chikuni has gained a reliable income since becoming a mechanization service provider and offering maize shelling in her local area. (Photo: Matthew O’Leary/CIMMYT)
Clara Chikuni has gained a reliable income since becoming a mechanization service provider and offering maize shelling in her local area. (Photo: Matthew O’Leary/CIMMYT)

Clara Chikuni, a mother from rural Zimbabwe, has secured a stable income after starting her own mechanized shelling business two years ago. Servicing maize farmers in a 5 kilometer radius of her home, Chikuni has more customers than she says she can handle and has developed reliable employment compared to her previous job buying and selling shoes.

“There is a lot of demand for mechanized maize shelling services. I am happy I can provide a service to the community and make money to support my family,” she said. “I hope with the profits I can move into the two wheel tractor business in the future.”

Chikuni was trained as an agricultural mechanization service provider through CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project supported by the Australian Government.

“The training and support gave me the know-how and confidence to start my business,” said the mother. “Other women now ask me how I did it and I encourage them to also get involved.”

There is a market for farming mechanization services that can make a big difference for a smallholder farm and help it transition from subsistence farming to a more market-oriented farming enterprise, said FAO’s Kienzle.

Apart from hire services, mechanization creates additional opportunities for new business with repair and maintenance of equipment, sales and dealership of related businesses including transport and agro-processing along the value chain.

The knowledge and expertise of both CIMMYT and FAO combined has made this manual unique and very praxis oriented, focused on smallholder mechanization businesses, he said.

Download the training manual: Hire services as a business enterprise: a training manual for small-scale mechanization service providers

Further information:

Q+A: Agricultural mechanization fuels opportunity for youth in rural Africa

Mechanization fuels rural opportunities around the globe

Rural21 features CIMMYT mechanization experts

Mechanization for smallholder farmers fact sheet

Preserving native maize and culture in Mexico

Felipa Martinez shows off some of her family’s maize from last year’s harvest. Photo: Matthew O’Leary

Felipa Martinez, an indigenous Mexican grandmother, grins as she shows off a bag bulging with maize cobs saved from last harvest season. With her family, she managed to farm enough maize for the year despite the increasing pressure brought by climate change.

Felipa’s grin shows satisfaction. Her main concern is her family, the healthy harvest lets her feed them without worry and sell the little left over to cover utilities.

“When our crops produce a good harvest I am happy because we don’t have to spend our money on food. We can make our own tortillas and tostadas,” she said.

Her family belongs to the Chatino indigenous community and lives in the small town of Santiago Yaitepec in humid southern Oaxaca. They are from one of eleven marginalized indigenous communities throughout the state involved in a participatory breeding project with the International Maize and Wheat Improvement Center (CIMMYT) to naturally improve the quality and preserve the biodiversity of native maize.

These indigenous farmers are custodians of maize biodiversity, growing seeds passed down over generations. Their maize varieties represent a portion of the diversity found in the 59 native Mexican races of maize, or landraces, which first developed from wild grasses at the hands of their ancestors. These different types of maize diversified through generations of selective breeding, adapting to the environment, climate and cultural needs of the different communities.

In recent years, a good harvest has become increasingly unreliable, as the impacts of climate change, such as erratic rainfall and the proliferation of pests and disease, have begun to challenge native maize varieties. Rural poor and smallholder farmers, like Martinez and her family, are among the hardest hit by the mounting impacts of climate change, according to the Food and Agriculture Organization of the United Nations.

These farmers and their ancestors have thousands of years of experience selecting and breeding maize to meet their environment. However, climate change is at times outpacing their selection methods, said CIMMYT landrace improvement coordinator Martha Willcox, who works with the community and coordinates the participatory breeding project. Through the initiative, the indigenous communities work together with professional maize breeders to continuously improve and conserve their native maize.

Despite numerous challenges, farmers in the region are unwilling to give up their maize for other varieties. “The native maize, my maize grows best here, it yields well in our environment. The maize is sweeter, it is heavier,” said Don Modesto Suarez, Felipa’s husband. “This maize has been grown by our grandfathers and this is why I will not change it.”

Una mujer de la comunidad Chatino prepara tortillas muy grandes de maíz criollo que son muy apreciadas en los mercados locales. Foto: Matthew O’Leary

This is because a community’s native maize varieties are adapted to their specific microclimate, such as elevation and weather patterns, and therefore may perform better or be more resistant to local pests and diseases than other maize varieties. They may also have specific characteristics prized for local culinary traditions — for example, in Santiago Yaitepec the native maize varieties have a specific type of starch that allows for the creation of extra-large tortillas and tostadas that are in high demand in local markets.

Other varieties may not meet farmers’ specific needs or climate, and many families do not want to give up their cultural attachment to native maize, said Flavio Aragon, a genetic resources researcher at the Mexican National Institute for Forestry, Agriculture and Livestock Research (INIFAP) who collaborates with Willcox.

CIMMYT and INIFAP launched the four-year participatory plant breeding project to understand marginalized communities’ unique makeup and needs – including maize type, local climates, farming practices, diseases and culture – and include farmers in breeding maize to suit these needs.

“Our aim is to get the most out of the unique traits in the native maize found in the farmer’s fields. To preserve and use it to build resistance and strength without losing the authenticity,” said Aragon.

“When we involve farmers in the process of selection, they are watching what we are doing and they are learning techniques,” he said. “Not only about the process of genetic selection in breeding but also sustainable farming practices and this makes it easier for farmers to adopt the maize that they have worked alongside breeders to improve through the project.”

Suarez said he appreciates the help, “We are learning how to improve our maize and identify diseases. I hope more farmers in the community join in and grow with us,” he said.

When disease strikes

Chatino men stand in a maize field in Santiago Yaitepec, Oaxaca, Mexico. Tar spot complex threatened harvests, but work in participatory breeding with CIMMYT has helped local communities to improve their native maize without loosing preferred traits. (Photo: Matthew O'Leary)
Chatino men stand in a maize field in Santiago Yaitepec, Oaxaca, Mexico. Tar spot complex threatened harvests, but work in participatory breeding with CIMMYT has helped local communities to improve their native maize without loosing preferred traits. (Photo: Matthew O’Leary)

Changes in weather patterns due to climate change are making it hard for farmers to know when to plant their crops to avoid serious disease. Now, a fungal disease known as tar spot complex, or TSC, is increasingly taking hold of maize crops, destroying harvests and threatening local food security, said Willcox. TSC resistance is one key trait farmers want to include in the participatory breeding.

Named for the black spots that cover infected plants, TSC causes leaves to die prematurely, weakening the plant and preventing the ears from developing fully, cutting yields by up to 50 percent or more in extreme cases.

Caused by a combination of three fungal infections, the disease occurs most often in cool and humid areas across southern Mexico, Central America and into South America. The disease is beginning to spread, possibly due to climate change, evolving pathogens and introduction of susceptible maize varieties.

“Our maize used to grow very well here, but then this disease came and now our maize doesn’t grow as well,” said Suarez. “For this reason we started to look for maize that we could exchange with our neighbors.”

A traditional breeding method for indigenous farmers is to see what works in fields of neighboring farmers and test it in their own, Willcox said.

Taking the search to the next level, Willcox turned to the CIMMYT Maize Germplasm Bank, which holds over 7000 native maize seed types collected from indigenous farmers. She tested nearly a thousand accessions in search of TSC resistance. A tedious task that saw her rate the different varieties on how they handled the disease in the field. However, the effort paid off with her team discovering two varieties that stood up to the disease. One variety, Oaxaca 280, originated from just a few hours north of where the Suarez family lives.

Farmer Modesto Suarez (left) and neighbors were originally cautious to plant Oaxaca 280 in their fields, but were pleased with the results. (Photo: Matthew O’Leary)
Farmer Modesto Suarez (left) and neighbors were originally cautious to plant Oaxaca 280 in their fields, but were pleased with the results. (Photo: Matthew O’Leary)

After testing Oaxaca 280 in their fields the farmers were impressed with the results and have now begun to include the variety in their breeding.

“Oaxaca 280 is a landrace – something from Mexico – and crossing this with the community’s maize gives 100 percent unimproved material that is from Oaxaca very close to their own,” said Willcox. “It is really a farmer to farmer exchange of resistance from another area of Oaxaca to this landrace here.”

“The goal is to make it as close as it can be to what the farmer currently has and to conserve the characteristics valued by farmers while improving specific problems that the farmers request help with, so that it is still similar to their native varieties and they accept it,” Aragon said.

Expanding for impact

Willcox and colleagues throughout Mexico seek to expand the participatory breeding project nationwide in a bid to preserve maize biodiversity and support rural communities.

“If you take away their native maize you take away a huge portion of the culture that holds these communities together,” said Willcox. Participatory breeding in marginalized communities preserves maize diversity and builds rural opportunities in areas that are hotbeds for migration to the United States.

“A lack of opportunities leads to migration out of Mexico to find work in other places, a strong agricultural sector means strong rural opportunities,” she said.

To further economic opportunities in the communities, these researchers have been connecting farmers with restaurant owners in Mexico City and the United States to export surplus grain and support livelihoods. A taste for high-quality Mexican food has created a small but growing market for the native maize varieties.

The next generation: The granddaughter of Felipa Martinez and Modesto Suarez stands in her grandparent's maize field. (Photo: Matthew O'Leary)
The next generation: The granddaughter of Felipa Martinez and Modesto Suarez stands in her grandparent’s maize field. (Photo: Matthew O’Leary)

Native maize hold the building blocks for climate-smart crops

Native maize varieties show remarkable diversity and climate resilience that grow in a range from arid to humid environments, said Willcox. The genetic traits found in this diversity are the building blocks that can be used to develop varieties suitable for the changing crop environments predicted for 2050.

“There is a lot of reasoning that goes into the way that these farmers farm the land, the way they decide on what they select for,” said Willcox. “This has been going on for years and has been passed down through generations. For this reason, they have maize of such high quality with resistance to local challenges, genetic traits that now can be used to create strong varieties to help farmers in Mexico and around the world.”

It is key to analyze the genetic variability of native maize, and support the family farmers who conserve it in their fields, she added. This biodiversity still sown and selected throughout diverse microclimates of Mexico holds the traits we need to protect our food supplies.

To watch a video on CIMMYT’s work in this community, please click here.

This work has been conducted as part of the CIMMYT-led MasAgro project in collaboration with INIFAP, and supported by Mexico’s Department of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and the CGIAR Research Program MAIZE

 

Breaking Ground: Lorena Gonzalez fast-forwards action on hunger using technology

LorenaIntrigued by the unique relationship our food crops have to their geographical environment, Lorena Gonzalez dedicated her passion for geomatic technology to collect site-specific farm data that is revolutionizing the way researchers and farmers tackle hunger.

Working with the International Maize and Wheat Improvement Center (CIMMYT) as a research assistant, Gonzalez is part of a seismic shift in agriculture, replacing time-consuming manual data collection with technology.

Instead of walking the fields taking measurements by hand, data is collected from a distance through remote sensing. Using cameras on board manned and unmanned aerial vehicles, as well as on ground sensors, Gonzalez gathers information such as plant height, canopy temperature and relative biomass, and evaluates plant health and soil spatial variability in minutes rather than weeks.

Collaborating with farmers and colleagues from maize and wheat breeding programs Gonzalez uses Geographical Information Systems (GIS) to organize and analyze data and patterns related to specific farm locations, making it easier to relate information to growers’ specific needs.

“It is important to make sure that data is properly geo-referenced, this way we know exactly how each crop is impacted by the matrix of factors in its environment,” said Gonzalez. “Collecting crop management and field data such as fertilization rates, irrigations schemes or soil properties provides us with information to understand and improve plant growth.”

The tailored information is used to improve farmers’ decision-making, allowing for more precise agriculture to create sustainable farming systems that produce more food with fewer resources, she said.

Gonzalez’ love for all things data saw her delve into the world of geospatial science studying her bachelor in Geomatics Engineering in the Mexican state of San Luis Potosi. Her passion for helping farmers achieve food security led her to apply for a job at CIMMYT. Since working with the Sustainable Intensification Program she has developed skills to collect and visualize agricultural data in meaningful ways to inform different stakeholders.

“Farmers, researchers and politicians can make better decisions when we streamline field data using available technology. The path of data from field to farm decision-makers can be streamlined using the available technology creatively and collaboratively, if we dare to build the appropriate systems.”

A UAV is launched to collect data from a field in CIMMYT’s experiment station in Ciudad Obregón, Mexico. Photo: CIMMYT/ Peter Lowe
A UAV is launched to collect data from a field in CIMMYT’s experiment station in Ciudad Obregón, Mexico. Photo: CIMMYT/ Peter Lowe

With climate change already affecting crop production, GIS becomes an increasingly important tool farmers can use to adapt and maintain crop yields, Gonzalez said. According to PNAS, each degree Celsius increase in global mean temperature is estimated to reduce the average global yields of wheat and maize by up to seven percent. These crops are key to the survival of humanity, providing a major portion of our caloric intake.

Remote sensing and precision agriculture plays a fundamental role in the ongoing challenge to reduce and cope with the effects of climate change and maximize land efficiency. Using quality data presented in useful ways helps farmers improve decision making, she added.

Gonzalez believes providing open access to geospatial decision support tools will allow smallholder famers to gain the information needed to make site-specific decisions on the exact quantity, location and timely application of resources needed to optimize food production.

If the world is to eliminate world hunger and malnutrition by 2030 as set out in the UN Sustainable Development Goals, smallholder farmers – who produce 80 percent of the world’s food – must benefit from access to remote sensing and precision agriculture, she said. Nine out of ten of the world’s 570 million farms are managed by families, making the family farm the predominant form of agriculture, and consequently a potentially crucial agent of change in achieving sustainable food security and in eradicating hunger in the future, according to UN reports.

Currently, Gonzalez is collecting data for an innovative private-public partnership, Mexico COMPASS, to help Mexican smallholder farmers increase wheat and sugar cane production by identifying factors that cause the yield gap between crop potential and actual performance.

The project aims to improve crop productivity and smallholder farmer incomes while facilitating rural community economic development. The data collected by Gonzalez in Mexico’s Yaqui Valley and in the state of Tabasco contributes to a system that combines earth observation satellite data with captured farm data to create a site-specific decision support tool for farmers. The project will help farmers to make better use of natural resources while monitoring crop health.

Improving smallholder farmer capacity and ability to make informed farming decisions is key to ending hunger and improving livelihoods, said Gonzalez.

Gonzalez’s work with CIMMYT’s Sustainable Intensification Program on the Mexico COMPASS project is funded by the UK Space Agency and has as partners: Rezatec, The University of Nottingham, Booker Tate and Colegio de Postgraduados (COLPOS).

https://staging.cimmyt.org/cimmytnews-subscription/

New guides help agricultural scientists think gender in research design

EL BATAN, Mexico (CIMMYT) – A new set of resources has been released to aid agricultural researchers integrating gender sensitivities into their research for development projects. The guidance notes are based on findings from GENNOVATE, a global comparative gender norms research initiative, funded by the Bill & Melinda Gates Foundation.

“Integrating gender into research is challenging,” said the project leader Lone Badstue. “The purpose of these GENNOVATE resources is to inspire and help scientists who are not gender experts to think gender into their own work.”

Agricultural research often fails to use gender analysis, which provides important information on women’s and men’s different needs and opportunities in agriculture, Badstue said.

(Photo: CIMMYT)
(Photo: CIMMYT)

In a bid to turn the tide, GENNOVATE initiated a series of tools and guides to give evidence about gender roles in agriculture, challenge assumptions and provide gender-inclusive data collection instruments that are easily accessible to researchers.

“These resources provide evidence-based inputs and recommendations on how to integrate gender considerations in research on, for example, climate-smart-agriculture, conservation agriculture, mechanization, farmer training events and more,” said Badstue. “Some of the tools have broad geographical relevance, while others have a regional or even country-level focus.”

The resources draw on GENNOVATE research, which focuses on how gender norms influence women’s and men’s abilities to learn about, adopt and adapt innovations in agriculture and natural resource management. This research initiative runs across multiple CGIAR research programs to provide contextually grounded evidence on how gender interacts with access to information, resources and decision-making processes.

Access the GENNOVATE resources below:

Entry points for enabling gender equality in agricultural and environmental innovation

Enhancing the gender-responsiveness of your project’s technical farmer training events

Embedding gender in Conservation Agriculture R4D in sub-Saharan Africa

Integration of gender considerations in Climate-Smart Agriculture R4D in South Asia

Challenging gender myths: Promoting inclusive wheat and maize research for development in Nepal

LADDER OF POWER AND FREEDOM: Qualitative data collection tool to understand local perceptions of agency and decision making

These and additional upcoming resources can be found on the GENNOVATE website.

Deadly strain of wheat stem rust disease surfaces in Europe

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina
Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops.
Photo: CIMMYT/Petr Kosina

As reported today in Communications Biology, an international team of researchers led by the John Innes Centre, U.K., found that 80 percent of U.K. wheat varieties are susceptible to the deadly stem rust strain. The group also confirmed for the first time in many decades that the stem rust fungus was growing on barberry bush, the pathogen’s alternate host, in the UK.

“This signals the rising threat of stem rust disease for wheat and barley production in Europe,” said Dave Hodson, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author on the study.

A scourge of wheat since biblical times, stem rust caused major losses to North American wheat crops in the early 20th century. Stem rust disease was controlled for decades through the use of resistant wheat varieties bred in the 1950s by scientist Norman Borlaug and his colleagues. Widespread adoption of those varieties sparked the Green Revolution of the 1960s and 70s.

In 1999 a new, highly-virulent strain of the stem rust fungus emerged in eastern Africa. Spores of that strain and variants have spread rapidly and are threatening or overcoming the genetic resistance of many currently sown wheat varieties. Scientists worldwide joined forces in the early 2000s to develop new, resistant varieties and to monitor and control outbreaks of stem rust and yellow rust, as part of collaborations such as the Borlaug Global Rust Initiative led by Cornell University.

Barberry is a shrub found throughout the temperate and subtropical regions. Photo: CIMMYT archives
Barberry is a shrub found throughout the temperate and subtropical regions. Photo: John Innes Centre

The Communications Biology study shows that 2013 U.K. stem rust strain is related to TKTTF, a fungal race first detected in Turkey that spread across the Middle East and recently into Europe. It was the dominant race in the 2013 stem rust outbreak in Germany and infected 10,000 hectares of wheat in Ethiopia’s breadbasket the same year.

Because disease organisms mutate quickly to overcome crop resistance controlled by single genes, researchers are rushing to identify new resistance genes and to incorporate multiple genes into high-yielding varieties, according to Ravi Singh, CIMMYT wheat scientist who participated in the reported study.

“The greatest hope for achieving durable resistance to rust diseases is to make wheat’s resistance genetically complex, combining several genes and resistance mechanisms,” Singh explained.

Barberry, which serves as a spawning ground for the stem rust fungus, was largely eradicated from the U.K. and U.S. last century, greatly reducing the spread and genetic diversification of rust disease races. Now barberry is being grown again in the U.K. over the last decade, according to Diane G.O. Saunders, John Innes Centre scientist and co-author of the study.

“The late Nobel laureate Norman Borlaug said that the greatest ally of the pathogen is our short memory,” Saunders stated. “We recommend continued, intensive resistance breeding. We would also welcome work with conservationists of endangered, barberry-dependent insect species to ensure that planting of common barberry occurs away from arable land, thus safeguarding European cereals from a large-scale re-emergence of wheat stem rust.”

Click here to read the John Innes Centre media release about the Communications Biology report and view the report.