Skip to main content

Author: Marcia MacNeil

East Africa partners welcome “new era” in wheat breeding collaboration

Representatives from ministries of agriculture and national agricultural research systems (NARS) in Ethiopia and Kenya recently joined funder representatives and technical experts from the International Maize and Wheat Improvement Center (CIMMYT) to renew a long-standing collaboration under the auspices of an ambitious new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG).

AGG is a 5-year project that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops. Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth, and Development Office (FCDO), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

Ethiopia and Kenya: CIMMYT’s longstanding partners

The inception meeting for the wheat component of AGG in East Africa drew more than 70 stakeholders from Ethiopia and Kenya: the region’s primary target countries for wheat breeding. These two countries have long-standing relationships with CIMMYT that continue to deliver important impacts. Ninety percent of all wheat in Ethiopia is derived from CIMMYT varieties, and CIMMYT is a key supporter of the Ethiopian government’s goal for wheat self-sufficiency. Kenya has worked with CIMMYT for more than 40 years, and hosts the world’s biggest screening facilities for wheat rust diseases, with up to 40,000 accessions tested each year.

AGG builds on these successes and on the foundations built by previous projects, notably Delivering Genetic Gain in Wheat, led by Cornell University. The wheat component of AGG works in parallel with a USAID-funded “zinc mainstreaming” project, meeting the demand for increased nutritional quality as well as yield and resilience.

CIMMYT Director General Martin Kropff gave key remarks at the stakeholder gathering, which took place Thursday, August 20.

“Cooperation between CIMMYT and Ethiopia and Kenya – as in all the countries where CIMMYT works – has had tremendous impact,” he said. “We are proud, not for ourselves, but for the people we work for: the hundreds of millions of poor people and smallholders who rely on wheat and maize for their daily food and incomes.”

“AGG will raise this spirit of global cooperation to a new level.”

AGG Project Leader and CIMMYT Interim Deputy Director General for Research Kevin Pixley introduced the new project as a “unique and important” project that challenges every stakeholder to grow.

“What we would like to achieve is a step change for all of us, he told the stakeholders. “Each of us has the opportunity and the challenge to make a difference and that’s what we’re striving to do.”

Representatives from the agricultural research communities of both target countries emphasized the significance of their long collaboration with CIMMYT and their support for the project.

The Honorable Mandefro Nigussie, Ethiopia’s State Minister of Agriculture, confirmed the ongoing achievements of CIMMYT collaboration in his country.

“Our partnership with CIMMYT […] has yielded several improved varieties that increased productivity twofold over the last 20 years. He referred to Ethiopia’s campaign to achieve self-sufficiency in wheat. “AGG will make an immense contribution to this. The immediate and intermediate results can help achieve the country’s ambitious targets.”

A holistic and gender-informed approach

Deputy Director of Crops at the Kenya Agriculture and Livestock Organization (KALRO) Felister Makini, representing the KALRO Director General Eliud Kireger, noted the project’s strong emphasis on gender-intentional variety development and gender-informed analysis to ensure female farmers have access to varieties that meet their needs and the information to successfully adopt them.

“The goal of this new project will indeed address KALRO’s objective of enhancing food security and nutrition in Kenya,” she said. “This is because AGG not only brings together wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, which will be pivotal to our envisaged strategy to achieve socioeconomic change.”

Funding partners keen for AGG to address future threats

Before CIMMYT wheat experts took the virtual floor to describe specific workplans and opportunities for partner involvement, a number of funder representatives shared candid and inspiring thoughts.

“We are interested in delivery,” said Alan Tollervey of FCDO, formerly the UK Department for International Development. “That is why we support AGG, because it is about streamlining and modernizing the delivery of products […] directly relevant to both the immediate demands of poor farmers in developing countries and the global demand for food – but also addressing the future threats that we see coming.”

Hailu Wordofa, Agricultural Technology Specialist at the Bureau for Resilience and Food Security at USAID highlighted the importance of global partnerships for past success and reiterated the ambitious targets of the current project.

“We expect to see genetic gains increase and varieties […] replaced by farmer-preferred varieties,” he reminded stakeholders. “To make this happen, we expect CIMMYT’s global breeding program to use optimal breeding approaches and develop strong and truly collaborative relationships with NARS partners throughout the entire process.”

“Wheat continues to be a critical staple crop for global food security and supporting CIMMYT’s wheat breeding program remains a high priority for USAID,” he assured the attendees.

He also expressed hope that AGG would collaborate other projects working in parallel, including the Feed the Future Innovation Lab for Applied Wheat Genomics at Kansas State University, and the International Wheat Yield Partnership.

FFAR Scientific Program Director Jeff Rosichan called AGG a “really ambitious project that takes a comprehensive look at the research gaps and challenges and how to translate that research into farmers’ fields.”

Agriculture prevails even under COVID-19

The global COVID-19 pandemic was not ignored as one of several challenges during this time of change and transition.

“As we speak today, despite the challenge that we have with the COVID-19, I am proud to say that work on the nurseries is on-going. We are able to apply [our] skills and deliver world-class science,” said Godwin Macharia, center director at KALRO-Njoro.

“This COVID-19 pandemic has shown us that there is a great need globally to focus on food equity. I think this project allows that to happen,” said Jeff Rosichan from FFAR.

Transformations are also happening at the research organization and funding level. CIMMYT Director General Martin Kropff noted that “demand-driven solutions” for “affordable, efficient and healthy diets produced within planetary boundaries” are an important part of the strategy for One CGIAR, the ongoing transformation of CGIAR, the world’s largest public research network on food systems, of which CIMMYT is a member.

Hans Braun, director of CIMMYT’s Global Wheat Program reminded attendees that, despite these changes, one important fact remains. “The demand for wheat will continue to grow for many years to come, and we must meet it.”

Cover photo: Harvesting golden spikes of wheat in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Reaching women with improved maize and wheat

By 2050, global demand for wheat is predicted to increase by 50 percent from today’s levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions – with climate change as a constant pressure exacerbating all these stresses.

Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.

Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.

“Until recently, investments in seed improvement work have not actively looked in this area,” said Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, “it has been built in as a primary objective of AGG to focus on […] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.”

In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.

Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.

“It is a primary objective of AGG to ensure gender intentionality,” said Kevin Pixley, Director of CIMMYT’s Genetic Resources Program and AGG project leader. “Often women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.”

Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)

“Better, faster, equitable, sustainable” – wheat research community partners join to kick off new breeding project

Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

More than 100 scientists, crop breeders, researchers, and representatives from funding and national government agencies gathered virtually to initiate the wheat component of a groundbreaking and ambitious collaborative new crop breeding project led by the International Maize and Wheat Improvement Center (CIMMYT).

The new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods, or AGG, brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Funded by the Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR), the project specifically focuses on supporting smallholder farmers in low- and middle-income countries. The international team uses innovative methods — such as rapid cycling and molecular breeding approaches — that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest and disease resistant and highly nutritious, targeted to farmers’ specific needs.

The wheat component of AGG builds on breeding and variety adoption work that has its roots with Norman Borlaug’s Nobel Prize winning work developing high yielding and disease resistance dwarf wheat more than 50 years ago. Most recently, AGG builds on Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year.

“AGG challenges us to build on this foundation and make it better, faster, equitable and sustainable,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

At the virtual gathering on July 17, donors and partner representatives from target countries in South Asia joined CIMMYT scientists to describe both the technical objectives of the project and its overall significance.

“This program is probably the world’s single most impactful plant breeding program. Its products are used throughout the world on many millions of hectares,” said Gary Atlin from the Bill & Melinda Gates Foundation. “The AGG project moves this work even farther, with an emphasis on constant technological improvement and an explicit focus on improved capacity and poverty alleviation.”

Alan Tollervey from DFID spoke about the significance of the project in demonstrating the relevance and impact of wheat research.

“The AGG project helps build a case for funding wheat research based on wheat’s future,” he said.

Nora Lapitan from the USAID Bureau for Resilience and Food Security listed the high expectations AGG brings: increased genetic gains, variety replacement, optimal breeding approaches, and strong collaboration with national agricultural research systems in partner countries.

India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)

Reconnecting with trusted partners

The virtual meeting allowed agricultural scientists and wheat breeding experts from AGG target countries in South Asia, many of whom have been working collaboratively with CIMMYT for years, to reconnect and learn how the AGG project both challenges them to a new level of collaboration and supports their national wheat production ambitions.

“With wheat blast and wheat rust problems evolving in Bangladesh, we welcome the partnership with international partners, especially CIMMYT and the funders to help us overcome these challenges,” said Director General of the Bangladesh Wheat and Maize Research Institute Md. Israil Hossain.

Director of the Indian Institute for Wheat and Barley Research Gyanendra P. Singh praised CIMMYT’s role in developing better wheat varieties for farmers in India.

“Most of the recent varieties which have been developed and released by India are recommended for cultivation on over 20 million hectares. They are not only stress tolerant and high yielding but also fortified with nutritional qualities. I appreciate CIMMYT’s support on this,” he said.

Executive Director of the National Agricultural Research Council of Nepal Deepak K. Bhandari said he was impressed with the variety of activities of the project, which would be integral to the development of Nepal’s wheat program.

“Nepal envisions increased wheat productivity from 2.84 to 3.5 tons per hectare within five years. I hope this project will help us to achieve this goal. Fast tracking the replacement of seed to more recent varieties will certainly improve productivity and resilience of the wheat sector,” he said.

The National Wheat Coordinator at the National Agricultural Research Center of Pakistan, Atiq Ur-Rehman, told attendees that his government had recently launched a “mega project” to reduce poverty and hunger and to respond to climate change through sustainable intensification. He noted that the support of AGG would help the country increase its capacity in “vertical production” of wheat through speed breeding. “AGG will help us save 3 to 4 years” in breeding time,” he said.

For CIMMYT Global Wheat Program Director Hans Braun, the gathering was personal as well as professional.

“I have met many of you over the last decades,” he told attendees, mentioning his first CIMMYT trip to see wheat programs in India in 1985. “Together we have achieved a lot — wheat self-sufficiency for South Asia has been secured now for 50 years. This would not be possible without your close collaboration, your trust and your willingness to share germplasm and information, and I hope this will stay. “

Braun pointed out that in this project, many national partners will gain the tools and capacity to implement their own state of the art breeding strategies such as genomic selection.

“We are at the beginning of a new era in breeding,” Braun noted. “We are also initiating a new era of collaboration.”

The wheat component of AGG serves more than 30 million wheat farming households in Bangladesh, Ethiopia, India, Kenya, Nepal and Pakistan. A separate inception meeting for stakeholders in sub-Saharan Africa is planned for next month.

Conservation agriculture for sustainable intensification in Eastern India

A new policy brief produced by the Indian Council of Agricultural Research (ICAR) lays out a clear case for the benefits and importance of conservation agriculture, and a road map for accelerating its adoption in Eastern India.

A collaborative effort by research and policy partners including ICAR, the National Academy of Agricultural Sciences (NAAS), The International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), and national academic and policy institutions, the brief represents the outputs of years of both rigorous scientific research and stakeholder consultations.

Eastern India — an area comprising seven states — is one of the world’s most densely populated areas, and a crucial agricultural zone, feeding more than a third of India’s population. The vast majority — more than 80% — of its farmers are smallholders, earning on average, just over half the national per capita income.

Conservation agriculture (CA) consists of farming practices that aim to maintain and boost yields and increase profits while reversing land degradation, protecting the environment and responding to climate change. These practices include minimal mechanical soil disturbance, permanent soil cover with living or dead plant material, and crop diversification through rotation or intercropping. A number of studies have shown the success of conservation agriculture in combatting declining factor productivity, deteriorating soil health, water scarcity, labor shortages, and climate change in India.

The road map lists recommended steps for regional and national policy makers, including

  • establishing a database repository on conservation agriculture for eastern India,
  • setting up common learning platform and sites for science-based evidence on CA,
  • developing an effective and productive supply chain system for CA machinery,
  • offering subsidies for CA machinery as incentives to farmers,
  • adopting pricing strategies to encourage market demand for sustained adoption of CA,
  • developing synergies for effective coordination between NARS and CGIAR institutions, and
  • building capacity among stakeholders.

Read the full policy brief here:

Conservation Agriculture for Sustainable Intensification in Eastern India

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Partners include the Indian Council of Agricultural Research (ICAR), the National Academy of Agricultural Sciences (NAAS), the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI), the Trust for Advancement of Agricultural Sciences (TAAS), the Borlaug Institute for South Asia (BISA), Dr. Rajendra Prasad Central Agricultural University, Bihar Agricultural University, and the Department of Agriculture of the state of Bihar.

 

Breeder friendly phenotyping

In crop research fields, drones and other high-tech sensing tools are now a common sight. They collect high-resolution data on a wide range of traits — from simple measurement of canopy temperature to complex 3D reconstruction of photosynthetic canopies.

This technological approach to collecting precise plant trait information, known as phenotyping, is becoming ubiquitous. According to experts at the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions, breeders can profit much more from these tools, when used judiciously.

Examples of different classes and applications of breeder friendly phenotyping. (Image: M. Reynolds et al.)
Examples of different classes and applications of breeder friendly phenotyping. (Image: M. Reynolds et al.)

In a new article in the journal Plant Science, CIMMYT Wheat Physiologist Matthew Reynolds and colleagues explain the different ways that phenotyping can assist breeding — from simple to use, “handy” approaches for large scale screening, to detailed physiological characterization of key traits to identify new parental sources — and why this methodology is crucial for crop improvement. The authors make the case for breeders to invest in phenotyping, particularly in light of the imperative to breed crops for warmer and harsher climates.

Read the full article: 
Breeder friendly phenotyping.

This article was originally published on WHEAT.

Cover photo: Remote sensing specialist Francisco Pinto operates a UAV at CIMMYT’s research station in Ciudad Obregón, in Mexico’s Sonora state.

New international partnership to identify and develop resistance to dangerous wheat disease

CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.
CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.

The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA), recently announced a partnership with the Jiangsu Academy of Agricultural Sciences (JAAS) in China to open a new screening facility for the deadly and fast-spreading fungal wheat disease Fusarium head blight, or FHB.

The new facility, based near the JAAS headquarters in Nanjing, aims to capitalize on CIMMYT’s world-class collection of disease-resistant wheat materials and the diversity of the more than 150,000 wheat germplasm in its Wheat Germplasm Bank to identify and characterize genetics of sources of resistance to FHB and, ultimately, develop new FHB-resistant wheat varieties that can be sown in vulnerable areas around the world.

“The participation of JAAS in the global FHB breeding network will significantly contribute to the development of elite germplasm with good FHB resistance,” said Pawan Singh, head of wheat pathology for CIMMYT.

“We expect that in 5 to 7 years, promising lines with FHB resistance will be available for deployment by both CIMMYT and China to vulnerable farmers, thanks to this new station.”

Fusarium head blight is one of the most dangerous wheat diseases. It can cause up to 50% yield loss and produce severe mycotoxin contamination in food and feed, which affects farmers in the form of increased health care and veterinary care costs, and reduced livestock production.

Even consuming low to moderate amounts of Fusarium mycotoxins may impair intestinal health, immune function and fitness. Deoxynivalenol (DON), a mycotoxin the fungus inducing FHB produces, has been linked to symptoms including nausea, vomiting, and diarrhea. In livestock, Fusarium mycotoxin consumption exacerbates infections with parasites, bacteria and viruses — such as occidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry and swine respiratory disease.

In China, the world’s largest wheat producer, Fusarium head blight is the most important biotic constraint to production.

The disease is extending quickly beyond its traditionally vulnerable wheat growing areas in East Asia, North America, the southern cone of South America, Europe and South Africa — partly as a result of global warming, and partly due to otherwise beneficial, soil-conserving farming practices such as wheat-maize rotation and reduced tillage.

“Through CIMMYT’s connections with national agricultural research systems in developing countries, we can create a global impact for JAAS research, reaching the countries that are expected to be affected the expansion of FHB epidemic area,” said Xu Zhang, head of Triticeae crops research group at the Institute of Food Crops of the Jiangsu Academy of Agricultural Sciences.

The new collaborative effort will target Fusarium head blight research but could potentially expand to research on other wheat diseases as well. Wheat blast, for example, is a devastating disease that spread from South America to Bangladesh in 2016. Considering the geographical closeness of Bangladesh and China, a collaboration with CIMMYT, as one of the leading institutes working on wheat blast, could have a strong impact.

Although the platform is new, the two institutions have a longstanding relationship. The bilateral collaboration between JAAS and CIMMYT began in early 1980s with a shuttle breeding program between China and Mexico to speed up breeding for Fusarium head blight resistance. The two institutions also conducted extensive germplasm exchanges in the 1980s and 1990s, which helped CIMMYT improve resistance to Fusarium head blight, and helped JAAS improve wheat rust resistance.

Currently, JAAS and CIMMYT are working on Fusarium head blight under a project funded by the National Natural Science Foundation of China called “Elite and Durable Resistance to Wheat Fusarium Head Blight” that aims to deploy resistance genes/QTL in Chinese and CIMMYT germplasm and for use in wheat breeding.

This research is supported by CGIAR Fund Donors.


INTERVIEW OPPORTUNITIES:

Xinyao He, Wheat Pathologist and Geneticist, Global Wheat Program, CIMMYT. x.he@cgiar.org, +52 55 5804 2004 ext. 2218

FOR MORE INFORMATION, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat. m.macneil@cgiar.org, +52 55 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 55 5804 2004 ext. 1167.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT JAAS:

Jiangsu Academy of Agricultural Sciences (JAAS), a comprehensive agricultural research institution since 1931, strives to make agriculture more productive and sustainable through technology innovation. JAAS endeavors to carry out the Plan for Rural Vitalization Strategy and our innovation serves agriculture, farmers and the rural areas. JAAS provide more than 80% of new varieties, products and techniques in Jiangsu Province, teach farmers not only to increase yield and quality, but also to challenge conventional practices in pursuit of original ideas in agro-environment protection. For more information, visit home.jaas.ac.cn/.

CIMMYT wheat scientists receive top honors from US agricultural scientists

CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)
CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)

Two scientists working in the world’s leading public wheat breeding program at the International Maize and Wheat Improvement Center (CIMMYT) have been recognized with awards and fellowships this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, has been honored with the American Society of Agronomy’s International Agronomy Award.

Alexey Morgunov, CIMMYT principal scientist and head of the Turkey-based International Winter Wheat Improvement Program (IWWIP) received the distinction of Fellow from the Crop Science Society of America. Braun was also distinguished with this fellowship.

Excellence in agronomy

The American Society of Agronomy’s International Agronomy Award recognizes outstanding contributions in research, teaching, extension, or administration made outside of the United States by a current agronomist. Braun received the distinction during an awards ceremony and lecture on November 12, 2019. The award committee made its selection based on criteria including degrees, professional positions, and contributions and service to the profession such as publications, patents, and efforts to develop or improve programs, practices, and products.

The award recognizes Braun’s achievements developing and promoting improved wheat varieties and cropping practices that have benefited hundreds of millions of farmers throughout Central Asia, South Asia and North Africa. Nearly half the world’s wheat lands overall — as well as 70 to 80% of all wheat varieties released in Central Asia, South Asia, West Asia, and North Africa — are derived from the research of CIMMYT and its partners.

“I am honored to be recognized by my fellow agronomists,” Braun said. “This award highlights the importance of international research collaboration, because the food security challenges we face do not stop at national borders.”

Braun began his 36-year CIMMYT career in Mexico in 1983. From 1985 to 2005, he led the International Winter Wheat Improvement Program in Turkey, implemented by CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA). As director of CIMMYT’s Global Wheat Program since 2004 and the CGIAR Research Program on Wheat since 2014, he is responsible for the technical direction and implementation of a program that develops and distributes wheat germplasm to more than 200 collaborators in more than 100 countries, grown on over half the spring wheat area in developing countries.

Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (center) receives the Crop Science Society of America Fellow certificate onstage. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (center) receives the Crop Science Society of America Fellow certificate onstage. (Photo: Johanna Franziska Braun/CIMMYT)
Detail of the Crop Science Society of America Fellow certificate for Hans-Joachim Braun. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)

Crop fellows

Braun and Morgunov were also chosen as Fellows, the highest recognition bestowed by the Crop Science Society of America. Members of the society nominate worthy colleagues based on their professional achievements and meritorious service. Fellows are a select group: only three out of every 1,000 of the society’s more than 4,000 active and emeritus members receive the honor.

Morgunov joined CIMMYT in 1991 as a spring wheat breeder, working with former Global Wheat Program Director and World Food Prize laureate Sanjaya Rajaram. In 1994, he moved to Turkey to work as winter wheat breeder, and then to Kazakhstan, where he worked to develop and promote new wheat varieties for the Central Asia and the Caucasus region. He has led the International Winter Wheat Improvement Program in Turkey since 2006. In this role, he has been responsible for the release of more than 80 varieties in the region. He also completed a national inventory for wheat landraces in Turkey.

“I am pleased to be recognized as [a Crop Science Society of America] Fellow,” Morgunov said. “I hope this award brings more attention to the importance of finding, saving and using the vast diversity of crop varieties in the world, for resilient crops and healthy food for all.”

Braun and Morgunov were formally recognized as Fellows on November 13.

The annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field. This year’s meeting was held in San Antonio, Texas.

Thomas Payne honored at gathering of crop science peers

The Frank N. Meyer Medal for Plant Genetic Resources. (Photo: Kevin Pixley/CIMMYT)
The Frank N. Meyer Medal for Plant Genetic Resources. (Photo: Kevin Pixley/CIMMYT)

Thomas Payne, head of the Wheat Germplasm Bank at the International Maize and Wheat Improvement Center (CIMMYT), was awarded the Frank N. Meyer Medal for Plant Genetic Resources this morning at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America, held in San Antonio, Texas.

The Frank N. Meyer Medal recognizes contributions to plant germplasm collection and use, as well as dedication and service to humanity through the collection, evaluation or conservation of earth’s genetic resources. The award was presented by Clare Clarice Coyne, U.S. Department of Agriculture (USDA) research geneticist.

As an award recipient, Payne delivered a lecture that touched on the philosophy, history and culture surrounding plant genetic diversity and its collectors, and CIMMYT’s important role in conserving and sharing crop diversity.

The scientist has focused his career on wheat improvement and conservation. In addition to leading CIMMYT’s Wellhausen-Anderson Wheat Genetic Resources Collection, one of the world’s largest collection of wheat and maize germplasm, he manages the CIMMYT International Wheat Improvement Network. He is the current Chair of the Article 15 Group of CGIAR Genebank Managers, and has served as Secretary to the CIMMYT Board of Trustees. His association with CIMMYT began immediately after obtaining a PhD at the University of Nebraska–Lincoln in 1988, and he has held positions for CIMMYT in Ethiopia, Mexico, Syria, Turkey and Zimbabwe.

Thomas Payne delivers a presentation at the Crop Science Society of America’s annual Genetic Resources breakfast, where he received the award. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne delivers a presentation at the Crop Science Society of America’s annual Genetic Resources breakfast, where he received the award. (Photo: Kevin Pixley/CIMMYT)

“CIMMYT is the largest distributor of maize and wheat germplasm worldwide, with materials emanating from its research and breeding programs, as well as held in-trust in the germplasm bank. The Meyer Medal is a reflection of the impact CIMMYT makes in the international research community — and in farmers’ fields throughout the developing world,” Payne said.

Located at CIMMYT headquarters outside Mexico City, the CIMMYT Wheat Germplasm Bank contains nearly 150,000 collections of seed of wheat and related species from more than 100 countries. Collections preserve the diversity of unique native varieties and wild relatives of wheat and are held under long-term storage for the benefit of humanity, in accordance with the 2007 International Treaty on Plant Genetic Resources for Food and Agriculture. The collections are also studied and used as a source of diversity to breed for crucial traits such as heat and drought tolerance, resistance to crop diseases and pests, grain yield productivity, and grain quality. Seed is freely shared on request to researchers, students, and academic and development institutions worldwide.

In his remarks, Payne also highlighted the story of Frank N. Meyer, after whom the award is named. Meyer, an agricultural explorer for the USDA in the 1900s, spent a decade traveling under harsh conditions through China to collect new plant species suitable for production on the United States’s expanding farmland. Among more than 2,500 plants that he introduced to the U.S. — including varieties of soybeans, oats, wild pears, and asparagus — the Meyer lemon was named in his honor. As he pointed out, Meyer worked during a historical period of great scientific discoveries, including those by his contemporaries Marie Curie and the Wright brothers.

Among those attending the ceremony were Payne’s sister, Susan Payne, and CIMMYT colleagues Kevin Pixley, director of Genetic Resources; Denise Costich, head of the CIMMYT Maize Germplasm Bank; and Alexey Morgunov, head of the Turkey-based International Winter Wheat Improvement Program.

The head of CIMMYT’s Global Wheat Program Hans-Joachim Braun and CIMMYT scientist Alexey Morgunov are also receiving honors or awards this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. The meeting convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field.

Thomas Payne (right) celebrates the award with his sister Susan Payne (center) and CIMMYT scientist Alexey Morgunov. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne (left) stands for a photo with CIMMYT’s Director of Genetic Resources Kevin Pixley.
Thomas Payne (left) stands for a photo with CIMMYT’s Director of Genetic Resources Kevin Pixley.
Thomas Payne (left) with Head of CIMMYT’s Maize Germplasm Bank Denise Costich. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne (left) with Head of CIMMYT’s Maize Germplasm Bank Denise Costich. (Photo: Kevin Pixley/CIMMYT)

A fresh look at the genes behind grain weight in spring bread wheat

Guillermo Garcia Barrios, a co-author of the study and student at Colegio de Postgraduados in Montecillo, Mexico, with a PHERAstar machine used to validate genetic markers. (Photo: Marcia MacNeil/CIMMYT)
Guillermo Garcia Barrios, a co-author of the study and student at Colegio de Postgraduados in Montecillo, Mexico, with a PHERAstar machine used to validate genetic markers. (Photo: Marcia MacNeil/CIMMYT)

To meet the demand for wheat from a rising and quickly urbanizing population, wheat yields in farmers’ fields must increase by an estimated 1.5% each year through 2030.

Of all the factors that influence yield, grain weight is the trait that is most stable and heritable for use in breeding improved wheat varieties. Breeders measure this by thousand grain weight (TGW).

Over the years, molecular scientists have made efforts to identify genes related to increased TGW, in order to speed up breeding through marker-assisted selection (MAS). Using MAS, breeders can select parents that contain genes related to the traits they are looking for, increasing the likelihood they will be passed on and incorporated in a new variety.

There have been some limited successes in these efforts: in the past years, a few genes related to increased TGW have been cloned, and a set of genetic markers have been determined to be used for MAS. However, the effects of most of these candidate genes have not yet been validated in diverse sets of wheat germplasm throughout the world that represent the full range of global wheat growing environments.

A group of wheat geneticists and molecular breeders from the International Maize and Wheat Improvement Center (CIMMYT) has recently conducted a thorough study to confirm the effects of the favorable alleles reported for these genes on TGW in CIMMYT wheat, and to identify new genetic determinants of this desired trait.

They found some good news and some bad news.

First, the good news: focusing on more than 4,000 lines of CIMMYT wheat germplasm they found 15 haplotype blocks significantly associated with TGW. Four haplotype blocks associated with TGW were also associated with grain yield — a grand prize for breeders, because in general the positive association of grain yield with TGW is less profound and sometimes even negative. However, of the 14 genes that had been previously reported to increase TGW, only one in CIMMYT’s 2015-2016 Elite Yield Trial and two in Wheat Associative Mapping Initiative panel were shown to have significant TGW associations.

Wheat grains prepared for placement in a Thousand Grain Weight machine. (Photo: Marcia MacNeil/CIMMYT)
Wheat grains prepared for placement in a Thousand Grain Weight machine. (Photo: Marcia MacNeil/CIMMYT)

The scientists also found that the alleles — pairs of genes on a chromosome that determine heredity — that were supposedly favorable to TGW actually decreased it.  These candidate genes also appear to vary in their TGW effects with genetic background and/or environment.

Thus, these findings also provide a foundation for more detailed investigations, opening the door for more studies on the genetic background dependence and environment sensitivity of the known candidate genes for TGW.

“Our findings indicate that it will be challenging to use MAS based on these existing markers across individual breeding programs,” said Deepmala Sehgal, CIMMYT wheat geneticist and the primary author of the study.

However, efforts to identify new genetic determinants of TGW were promising. The authors’ study of CIMMYT germplasm found one locus on chromosome 6A that showed increases of up to 2.60 grams in TGW and up to 258 kilograms per hectare in grain yield.

Thousand Grain Weight is measured in this machine at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Marcia MacNeil/CIMMYT)
Thousand Grain Weight is measured in this machine at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Marcia MacNeil/CIMMYT)

This discovery expands opportunities for developing diagnostic markers to assist in multi-gene pyramiding — a process that can derive new and complementary allele combinations for enhanced wheat TGW and grain yield.

Most of all, the study highlights the strong need for better and more validation of the genes related to this and other traits, so that breeders can be sure they are using material that is confirmed to increase wheat grain weight and genetic yield.

“Our findings are very promising for future efforts to efficiently develop more productive wheat in both grain weight and grain yield,” said Sehgal. “This ultimately means more bread on household tables throughout the world.”

“Validation of Candidate Gene-Based Markers and Identification of Novel Loci for Thousand-Grain Weight in Spring Bread Wheat” in Frontiers in Plant Science by Deepmala Sehgal, Suchismita Mondal, Carlos Guzman, Guillermo Garcia Barrios, Carolina Franco, Ravi Singh and Susanne Dreisigacker was supported by funding from the CGIAR Research Program on Wheat (WHEAT), the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID), and the US Agency for International Development (USAID) Feed the Future Innovation Lab for Applied Wheat Genomics.

Read the full article here: https://doi.org/10.3389/fpls.2019.01189

Bottlenecks between basic and applied plant science jeopardize life-saving crop improvements

Visitors at CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.
Visitors at CIMMYT’s experimental station in Obregon, Mexico, where elite wheat lines are tested for new traits.

For a number of reasons, including limited interdisciplinary collaboration and a dearth of funding, revolutionary new plant research findings are not being used to improve crops.

“Translational research” — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields. This kind of research is often seen as more complicated and time consuming than basic research and less sexy than working at the “cutting edge” where research is typically divorced from agricultural realities in order to achieve faster and cleaner results; however, modern tools — such as genomics, marker-assisted breeding, high throughput phenotyping of crop traits using drones, and speed breeding techniques — are making it both faster and cost-effective.

In a new article in Crop Breeding, Genetics, and Genomics, wheat physiologist Matthew Reynolds of the International Maize and Wheat Improvement Center (CIMMYT) and co-authors make the case for increasing not only funding for translational research, but the underlying prerequisites: international and interdisciplinary collaboration towards focused objectives and a visionary approach by funding organizations.

“It’s ironic,” said Reynolds. “Many breeding programs have invested in the exact technologies — such as phenomics, genomics and informatics — that can be powerful tools for translational research to make real improvements in yield and adaptation to climate, disease and pest stresses. But funding to integrate these tools in front-line breeding is quite scarce, so they aren’t reaching their potential value for crop improvement.”

Members of the International Wheat Yield Partnership (IWYP) which focuses on translational research to boost wheat yields.
Members of the International Wheat Yield Partnership (IWYP) which focuses on translational research to boost wheat yields.

Many research findings are tested for their implications for wheat improvement by the International Wheat Yield Partnership (IWYP) at the IWYP Hub, a centralized technical platform for evaluating innovations and building them into elite wheat varieties, co-managed by CIMMYT at its experimental station in Obregon, Mexico.

IWYP has its roots with the CGIAR Research Program on Wheat (WHEAT), which in 2010 formalized the need to boost both wheat yield potential as well as its adaptation to heat and drought stress. The network specializes in translational research, harnessing scientific findings from around the world to boost genetic gains in wheat, and capitalizing on the research and pre-breeding outputs of WHEAT and the testing networks of the International Wheat Improvement Network (IWIN). These efforts also led to the establishment of the Heat and Drought Wheat Improvement Consortium (HeDWIC).

“We’ve made extraordinary advances in understanding the genetic basis of important traits,“ said IWYP’s Richard Flavell, a co-author of the article. “But if they aren’t translated into crop production, their societal value is lost.”

The authors, all of whom have proven track records in both science and practical crop improvement, offer examples where exactly this combination of factors led to the impactful application of innovative research findings.

  • Improving the Vitamin A content of maize: A variety of maize with high Vitamin A content has the potential to reduce a deficiency that can cause blindness and a compromised immune system. This development happened as a result of many translational research efforts, including marker-assisted selection for a favorable allele, using DNA extracted from seed of numerous segregating breeding crosses prior to planting, and even findings from gerbil, piglet and chicken models — as well as long-term, community-based, placebo-controlled trials with children — that helped establish that Vitamin A maize is bioavailable and bioefficacious.
  • Flood-tolerant rice: Weather variability due to climate change effects is predicted to include both droughts and floods. Developing rice varieties that can withstand submergence in water due to flooding is an important outcome of translational research which has resulted in important gains for rice agriculture. In this case, the genetic trait for flood tolerance was recognized, but it took a long time to incorporate the trait into elite germplasm breeding programs. In fact, the development of flooding tolerant rice based on a specific SUB 1A allele took over 50 years at the International Rice Research Institute in the Philippines (1960–2010), together with expert molecular analyses by others. The translation program to achieve efficient incorporation into elite high yielding cultivars also required detailed research using molecular marker technologies that were not available at the time when trait introgression started.

Other successes include new approaches for improving the yield potential of spring wheat and the discovery of traits that increase the climate resilience of maize and sorghum.

One way researchers apply academic research to field impact is through phenotyping. Involving the use of cutting edge technologies and tools to measure detailed and hard to recognize plant traits, this area of research has undergone a revolution in the past decade, thanks to more affordable digital measuring tools such as cameras and sensors and more powerful and accessible computing power and accessibility.

Scientists are now able to identify at a detailed scale plant traits that show how efficiently a plant is using the sun’s radiation for growth, how deep its roots are growing to collect water, and more — helping breeders select the best lines to cross and develop.

An Australian pine at CIMMYT’s experimental station in Texoco, Mexico, commemorates the 4th symposium of the International Plant Phenotyping Network.
An Australian pine at CIMMYT’s experimental station in Texoco, Mexico, commemorates the 4th symposium of the International Plant Phenotyping Network.

Phenotyping is key to understanding the physiological and genetic bases of plant growth and adaptation and has wide application in crop improvement programs. Recording trait data through sophisticated non-invasive imaging, spectroscopy, image analysis, robotics, high-performance computing facilities and phenomics databases allows scientists to collect information about traits such as plant development, architecture, plant photosynthesis, growth or biomass productivity from hundreds to thousands of plants in a single day. This revolution was the subject of discussion at a 2016 gathering of more than 200 participants at the International Plant Phenotyping Symposium hosted by CIMMYT in Mexico and documented in a special issue of Plant Science.

There is currently an explosion in plant science. Scientists have uncovered the genetic basis of many traits, identified genetic markers to track them and developed ways to measure them in breeding programs. But most of these new findings and ideas have yet to be tested and used in breeding programs, wasting their potentially enormous societal value.

Establishing systems for generating and testing new hypotheses in agriculturally relevant systems must become a priority, Reynolds states in the article. However, for success, this will require interdisciplinary, and often international, collaboration to enable established breeding programs to retool. Most importantly, scientists and funding organizations alike must factor in the long-term benefits as well as the risks of not taking timely action. Translating a research finding into an improved crop that can save lives takes time and commitment. With these two prerequisites, basic plant research can and should positively impact food security.

Authors would like to acknowledge the following funding organizations for their commitment to translational research.

The International Wheat Yield Partnership (IWYP) is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK; the U. S. Agency for International Development (USAID) in the USA; and the Syngenta Foundation for Sustainable Agriculture (SFSA) in Switzerland.

The Heat and Drought Wheat Improvement Consortium (HeDWIC) is supported by the Sustainable Modernization of Traditional Agriculture (MasAgro) Project by the Ministry of Agriculture and Rural Development (SADER) of the Government of Mexico; previous projects that underpinned HeDWIC were supported by Australia’s Grains Research and Development Corporation (GRDC).

The Queensland Government’s Department of Agriculture and Fisheries in collaboration with The Grains Research and Development Corporation (GRDC) have provided long-term investment for the public sector sorghum pre-breeding program in Australia, including research on the stay-green trait. More recently, this translational research has been led by the Queensland Alliance for Agriculture and Food Innovation (QAAFI) within The University of Queensland.

ASI validation work and ASI translation and extension components with support from the United Nations Development Programme (UNDP) and the Bill and Melinda Gates Foundation, respectively.

Financial support for the maize proVA work was partially provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The CGIAR Research Program MAIZE (CRP-MAIZE) also supported this research.

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR), the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

Global group of journalists find wheat research, comradery in Canada

A diverse group of agriculture, food security, environment and science journalists gathered in Saskatoon, Canada recently for an intensive course in innovative wheat research, interviews with top international scientists and networking with peers.

The occasion was the International Wheat Congress (IWC), which convened more than 900 wheat scientists and researchers in Saskatoon, in Canada’s biggest wheat-growing province, Saskatchewan, to discuss their latest work to boost wheat productivity, resilience and nutrition.

Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

The seven journalists were part of a group of 11 who won a competitive sponsorship offered by the CGIAR Research Program on Wheat (WHEAT). Seven journalists attended the conference, while another four followed the proceedings and activities from home. The ten-day immersive training included multiple daily press briefings with top scientists in climate change modeling and resilience testing, innovative breeding techniques, analysis and protection of wheat diversity and many more topics, on top of a full schedule of scientific presentations.

“The scientists were so eager to talk to us, and patient with our many questions,” said Nkechi Isaac, from the Leadership newspaper group in Nigeria. “Even the director general of [the International Maize and Wheat Improvement Center] CIMMYT spoke with us for almost an hour.”

“It was a pleasant surprise for me.”

The journalists, who come from regions as diverse as sub-Saharan Africa and East Asia, offered support and encouragement from their travel preparations though their time in Saskatoon and beyond — sharing story ideas, interview and site visit opportunities, news clips and photos through a WhatsApp group.

Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)
Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)

“It is really helpful to be connected to colleagues around the world,” said Amit Bhattacharya of the Times of India. “I know we will continue to be a resource and network for each other through our careers.”

The week wasn’t all interviews and note-taking. The journalists were able to experience Saskatchewan culture, from a tour of a wheat quality lab and a First Nations dance performance to a visit to a local wheat farm, and even an opportunity to see Saskatoon’s newest modern art gallery.

The media sponsorship at IWC aimed to encourage informed coverage of the importance of wheat research, especially for farmers and consumers in the Global South, where wheat is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day.

The group also spoke with members of the many coalitions that facilitate the collaboration that makes innovative wheat research possible, including the International Wheat Yield Partnership (IWYP), the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the G20-organized Wheat Initiative.

“This is the first time we’ve invested this heavily in journalist training,” said WHEAT program director Hans Braun. “We think the benefits – for the journalists, who gained a greater understanding of wheat research issues, and for developing country audiences, who will be more aware of the importance of improving wheat –– are worth it.”

Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)
Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)

A roundtable discussion with peers from Canadian news organizations and seasoned science communications professionals and a networking breakfast with CIMMYT scientists provided platforms for a candid exchange on the challenges and opportunities in communicating wheat science in the media.

A common refrain was the importance of building relationships between scientists and media professionals – because wheat science offers dramatic stories for news audiences, and an informed and interested public can in turn lead to greater public investment in wheat science. The journalists and scientists in Saskatoon have laid a solid foundation for these relationships.

The sponsored journalists are:

Amit Bhattacharya: Senior Editor at The Times of India, New Delhi, and a member of the team that produces the front page of India’s largest English daily. He writes on Indian agriculture, climate change, the monsoon, weather, wildlife and science. A 26-year professional journalist in India, he is a Jefferson Fellow on climate change at the East-West Center, Hawaii.

Emmanuelle Landais: Freelance journalist based in Dakar, Senegal, currently reporting for Deutsche Welle’s radio service in English and French on the environment, technology, development and youth in Africa. A former line producer for France 24 in Paris and senior environment reporter for the daily national English newspaper Gulf News in Dubai, she also reports on current affairs for the Africalink news program, contributes to Radio France International’s (RFI) English service, and serves as news producer for the Dakar-based West Africa Democracy Radio.

Julien Chongwang: Deputy Editor, SciDev.Net French edition. He is based in Douala, Cameroon, where he has been a journalist since 2002. Formerly the editor of the The Daily Economy, he worked on the French edition of Voice of America and Morocco economic daily LES ECO, and writes for Forbes Africa, the French edition of Forbes in the United States.

Lominda Afedraru: Science correspondent at the Daily Monitor newspaper, Uganda, part of the Nation Media Group. A journalist since 2004, she also freelances for publications in the United States, UK, Kenya and Nigeria among others and has received fellowships at the World Federation of Science Journalists, Biosciences for Farming in Africa courtesy of University of Cambridge UK and Environmental Journalism Reporting at Sauti University, Tanzania.

Muhammad Amin Ahmed: Senior Correspondent, Daily Dawn in Islamabad, Pakistan. He has been a journalist for more than 40 years. Past experience includes working at the United Nations in New York and Pakistan Press International. He received a UN-21 Award from former U.N. Secretary General Kofi Annan (2003).

Muhammad Irtaza: Special Correspondent with Pakistan’s English daily The Nation at Multan. A 10-year veteran journalist and an alumnus of the Reuters Foundation, he also worked as a reporter with the Evansville Courier and Press in Indiana, United States. He is an ICFJ-WHO Safety 2018 Fellow (Bangkok), Asia Europe Foundation Fellow (Brussels), and a U.S.-Pakistan Professional Partnership in Journalism Program Fellow (Washington). He teaches mass communications at Bahauddin Zakariya University Multan.

Nkechi Isaac: Deputy Editor, Leadership Friday in Nigeria. She is also the head, Science and Technology Desk of the Leadership Group Limited, publishers of LEADERSHIP newspapers headquartered in Abuja, Nigeria. She is a Fellow of Cornell University’s Alliance for Science.

Reaz Ahmad: Executive Editor of the Dhaka Tribune, Bangladesh’s national English newspaper. A journalist for 30 years, he is a Cochran Fellow of the U.S. Department of Agriculture and an adjunct professor of University of Dhaka (DU) and Independent University, Bangladesh.

Rehab Abdalmohsen: Freelance science journalist based in Cairo, Egypt who has covered science, health and environment for 10 years for such websites as the Arabic version of Scientific American, SciDev.net, and The Niles.

Tan Yihong: Executive Deputy Editor-in-Chief, High-Tech & Commercialization Magazine, China. Since 2008, she has written about science particularly agriculture innovation and wheat science. She has attended several Borlaug Global Rust Initiative (BGRI) Technical Workshops. In Beijing, she helped organize a BGRI communication workshop and media outreach.

Tony Iyare: Senior Correspondent, Nigerian Democratic Report. For more than 30 years, he has covered environment, international relations, gender, media and public communication. He has worked as a stringer for The New York Times since 1992, and freelanced for the Paris-based magazine, The African Report and the U.N. Development Programme publication Choices. He was columnist at The Punch and co-authored a book: The 11-Day Siege: Gains and Challenges of Women’s Non-Violent Struggles in Niger Delta.

Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)
Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

Using the MARPLE kit to diagnose wheat rust in Ethiopia

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab developed by a team from the John Innes Centre (JIC), the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR). It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields.

Designed to be used without constant electricity and in varying temperatures, the suitcase-sized lab allows researchers to identify wheat rust to strain level in just 48 hours — something that used to take months using other tools.

The MARPLE team was recognized as Innovator of the Year for international impact in 2019 by the UK Biotechnology and Biological Sciences Research Council (BBSRC).

A new video from the John Innes Centre shows how the MARPLE Diagnostics kit will allow Ethiopia to quickly identify wheat rust strains, instead of sending samples to labs abroad.

Modern wheat breeding benefits high- and low-input farmers, study shows

Farmer Gashu Lema’s son harvests improved variety “Kubsa” wheat, Gadulla village, Mojo, Ethiopia. (Photo: P. Lowe/CIMMYT/P. Lowe

A recent article in the journal Nature Plants validates the work of wheat breeders who produce yield-boosting varieties for farmers across a range of incomes and environments.

Based on a rigorous large-scale study spanning five decades of wheat breeding progress under cropping systems with low, medium and high fertilizer and chemical plant protection usage, the authors conclude that modern wheat breeding practices aimed at high-input farming systems have promoted genetic gains and yield stability across a wide range of environments and management conditions.

In other words, wheat breeding benefits not only large-scale and high-input farmers but also resource-poor, smallholder farmers who do not use large amounts of fertilizer, fungicide, and other inputs.

This finding underscores the efficiency of a centralized breeding effort to improve livelihoods across the globe – the philosophy behind the breeding programs of the International Maize and Wheat Improvement Center (CIMMYT) over the past 50 years.

It also contradicts a commonly held belief that breeding for intensive systems is detrimental to performance under more marginal growing environments, and refutes an argument by Green Revolution critics that breeding should be targeted to resource-poor farmers.

In a commentary published in the same Nature Plants issue, two CIMMYT scientists — Hans Braun, director of CIMMYT’s global wheat program and the CGIAR Research Program on Wheat, and Matthew Reynolds, CIMMYT wheat physiologist — note the significance of the study.

“Given that wheat is the most widely grown crop in the world, sown annually on around 220 million ha and providing approximately 20% of human calories and protein, the social and economic implications are large,“ they state.

Among other implications:

  • The study found that modern breeding has reduced groups of genes (haplotypes) with negative or neutral effects – a finding which will help breeders combine positive haplotypes in the future, including for hybrid breeding.
  • The study demonstrates the benefits of breeding for overall yield potential, which — given that wheat is grown over a wider range of environments, altitudes and latitudes than any other crop, with widely ranging agronomic inputs – has significant cost-saving implications.

Braun and Reynolds acknowledge that the longstanding beliefs challenged by this study have a range of influences, from concern about rural livelihoods, to the role of corporate agribusiness and the capacity of Earth’s natural resources to sustain 10 billion people.

While they welcome the conclusions as a validation of their work, they warn against seeing the study as “a rubber stamp for all things ‘high-input’” and encourage openness to new ideas as the need arises.

“If the climate worsens, as it seems destined to, we must certainly be open to new ways of doing business in crop improvement, while having the common sense to embrace proven technologies,” they conclude.

Space data applications for wheat and maize research

In 2017, a call for proposals from Copernicus Climate Change Service Sectoral Information Systems led the International Maize and Wheat Improvement Center (CIMMYT to collaborate with Wageningen University, the European Space Agency (ESA), and other research and meteorological organizations to develop practical applications in agricultural and food security for satellite-sourced weather data.

The project, which recently ended, opened the door to a wide variety of potential uses for this highly detailed data.

ESA collects extremely granular data on weather, churned out at an hourly rate. CIMMYT researchers, including Foresight Specialist Gideon Kruseman, reviewed this data stream, which generates 22 variables of daily and sub-daily weather data at a 30-kilometerlevel of accuracy, and evaluated how it could help generate agriculture-specific weather and climate data sets.

“For most people, the reaction would be, ‘What do we do with this?’ Kruseman said. “For us, this is a gold mine.”

For example, wind speed — an important variable collected by ESA satellites — is key for analyzing plant evaporation rates, and thus their drought tolerance. In addition, to date, information is available on ideal ago-climatic zones for various crop varieties, but there is no data on the actual weather conditions during a particular growing season for most sites.

By incorporating the information from the data sets into field trial data, CIMMYT researchers can specifically analyze maize and wheat cropping systems on a larger scale and create crop models with higher precision, meaning that much more accurate information can be generated from the trials of different crop varieties.

The currently available historic daily and sub-daily data, dating back to 1979, will allow CIMMYT and its partners to conduct “genotype by environment (GxE)” interaction analysis in much higher detail. For example, it will allow researchers to detect side effects related to droughts and heat waves and the tolerance of maize and wheat lines to those stresses. This will help breeders create specific crop varieties for farmers in environments where the impact of climate change is predicted to be more apparent in the near future.

“The data from this project has great potential fix this gap in information so that farmers can eventually receive more targeted assistance,” said Kruseman.

These ideas are just the beginning of the agricultural research and food security potential of the ESA data. For example, Kruseman would like to link the data to household surveys to review the relationship between the weather farmers experience and the farming decisions they make.

By the end of 2019, the data will live on an open access, user-friendly database. Eventually, space agency-sourced weather data from as far back as 1951 to as recent as five days ago will be available to researchers and weather enthusiasts alike.

Already CIMMYT scientists are using this data to understand the potential of a promising wheat line, for seasonal forecasting, to analyze gene-bank accessions and for a statistical analysis of maize trials, with many more high-impact applications expected in the future.

Rebuttal letter sets the record straight on crop breeding for climate change resilience

CIMMYT field workers working on wheat crossing as part of the breeding process. (Photo: CIMMYT)
CIMMYT field workers working on wheat crossing as part of the breeding process. (Photo: CIMMYT)

In early 2019, an article published by European climate researchers in the Proceedings of the National Academy of Science (PNAS) journal questioned the climate resilience of modern wheat varieties. The article suggested that modern wheat varieties showed reduced climate resilience as a direct result of modern breeding methods and practices, a claim that researchers at the International Maize and Wheat Improvement Center (CIMMYT) vehemently rebuke.

In a rebuttal letter published in the June issue of PNAS a group of scientists, including CIMMYT’s  Susanne Dreisigacker and Sarah Hearne, strongly contradict the finding that breeding has reduced climate resilience in European wheat, citing significant flaws in the authors’ methodology, data analyses and interpretation.

“This article discredits European plant breeders and wheat breeders in general, who have been working over many decades to produce a wide range of regionally adapted, stable varieties which perform well under a broad range of climate change conditions,” said CIMMYT wheat molecular geneticist Susanne Dreisigacker.

Among other flaws, they found a number of omissions and inconsistencies.

  • The article shows a lack of understanding of commonly used terms and principles of breeding theory, criticizing newer wheat varieties for demonstrating a decrease in “climatic response diversity.” Less diversity in wheat response — that is, more stable yields despite the influence of climate change — is a benefit, not a threat, to farmers.
  • The article authors contradict the common knowledge among farmers and plant breeders that new elite wheat varieties are generally more productive than older varieties; new cultivars are only approved if they show added value in direct comparison to existing varieties.
  • The article’s claim of long-term losses of climate resilience in “European wheat” is unsubstantiated. The authors extensively used data from three small countries — the Czech Republic, Denmark and Slovakia — which contribute less than five percent of Europe’s wheat supply. Three of the five most important wheat producers in Europe — Russia, Ukraine and the United Kingdom — were not accounted for in the analysis.
  • The authors failed to report the actual wheat yields in their study, neglected to publish the underlying data with the manuscript and have up to now declined requests to make the data available.

Europe is one of the world’s major wheat producers and threats to its wheat production due to climate change would have serious consequences for world’s food security. Luckily, say the scientists who published the rebuttal letter, this fear is unfounded.

“Wheat producers and bread consumers around the world will be relieved to learn that breeders have not ignored climate change after all,” said letter lead-author Rod Snowdon, from the Department of Plant Breeding at Justus Liebig University of Giessen, Germany.

The full rebuttal letter by 19 international plant breeders, agronomists and scientists, is available on the PNAS site and reprinted in its entirety below.


Reduced response diversity does not negatively impact wheat climate resilience

Kahiluoto et al. (1) assert that climate resilience in European wheat has declined due to current breeding practices. To support this alarming claim, the authors report yield variance data indicating increasingly homogeneous responses to climatic fluctuations in modern wheat cultivars. They evaluated “response diversity,” a measure of responses to environmental change among different species jointly contributing to ecosystem functions (2). We question the suitability of this measure to describe agronomic fitness in single-cultivar wheat cropping systems. Conclusions are made about “long-term trends,” which in fact span data from barely a decade, corresponding to the duration of a single wheat breeding cycle. The authors furthermore acknowledge increasing climate variability during the study period, confounding their analysis of climate response in the same time span.

The underlying data are not published with the manuscript. Thus, the assertion that there is “no inherent trade-off between yield potential and diversity in weather responses” (1) cannot be verified. Inexplicably, the analysis and conclusions ignore absolute yields, which increase over time through breeding (3–6). Furthermore, incompatible data from completely different ecogeographical forms and species of wheat are apparently considered together, and the dataset is strongly biased toward a few small countries with minimal wheat production and narrow agroclimatic gradients.

The study assumes that increased response diversity among different cultivars is associated with yield stability.  In contrast, the common, agronomic definition of yield stability refers to the ability of a single cultivar to stably perform well in diverse environments, without excessive responses to fluctuating conditions. Response diversity measures that ignore absolute yield do not support statements about food security or financial returns to farmers.

Cultivar yield potential, stability, and adaptation are enhanced by multienvironment selection over long breeding time frames, encompassing climate fluctuations and a multitude of other relevant environmental variables. Translation to on-farm productivity is promoted by national registration trials and extensive, postregistration regional variety trials in diverse environments. The unsurprising conclusion that planting multiple cultivars enhances overall production stability mirrors longstanding farming recommendations and practice (7). The availability of robust performance data from a broad range of high-performing cultivars enables European farmers to manage their production and income risks.

Kahiluoto et al. (1) speculate about “genetic erosion” of modern cultivars due to a “lack of incentives for breeders to introduce divergent material.” To substantiate these claims, the authors cite inadequate genetic data from non-European durum wheat (8), while explicitly dismissing clearly opposing findings about genetic diversity in European bread wheat (9). Short-term reductions in response diversity in five countries were misleadingly reported as a “long-term decline” in climate resilience in “most European countries,” although six out of seven countries with sufficient data showed no long-term decline. The article from Kahiluoto et al. and the misrepresentation of its results distorts decades of rigorous, successful breeding for yield potential and stability in European wheat and misleads farmers with pronouncements that are not supported by relevant data.

References:

1 H. Kahiluoto et al., Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 116, 123–128 (2019).

2 T. Elmqvist et al., Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

3 S. De Schepper, M. De Loose, E. Van Bockstaele, P. Debergh, Ploidy analysis of azalea flower colour sports. Meded. Rijksuniv. Gent. Fak. Landbouwkd. Toegep. Biol. Wet. 66, 447–449 (2001).

4 I. Mackay et al., Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor. Appl. Genet. 122, 225–238 (2011).

5 F. Laidig et al., Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983-2014. Theor. Appl. Genet. 130, 223–245 (2017).

6 T. Würschum, W. L. Leiser, S. M. Langer, M. R. Tucker, C. F. H. Longin, Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor. Appl. Genet. 131, 2071–2084 (2018).

7 P. Annicchiarico, “Genotype x environment interactions: Challenges and opportunities for plant breeding and cultivar recommendations.” (Food and Agriculture 201 Organisation of the United Nations, Rome, Italy, 2002), FAO Plant Production and Protection Paper 174.

8 F. Henkrar et al., Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci. Agric. 73, 134–141 (2016).

9 M. van de Wouw, T. van Hintum, C. Kik, R. van Treuren, B. Visser, Genetic diversity trends in twentieth century crop cultivars: A meta analysis. Theor. Appl. Genet. 120, 1241–1252 (2010).