Skip to main content

Author: Mike Listman

“Happy Seeder” saves farmers money over burning straw, new study in India shows

Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)
Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)

Compared to conventional tillage practices, sowing wheat directly into just-harvested rice fields without burning or removing straw or other residues will not only reduce pollution in New Delhi and other parts of northern India, but will save over $130 per hectare in farmer expenses, lessen irrigation needs by as much as 25%, and allow early planting of wheat to avoid yield-reducing heat stress, according to a new study published in the International Journal of Agricultural Sustainability.

The practice requires use of a tractor-mounted implement that opens grooves in the soil, drops in wheat seed and fertilizer, and covers the seeded row, all in one pass. This contrasts with the typical method for planting wheat after rice, which involves first burning rice residues, followed by multiple tractor passes to plow, harrow, plank, and sow, according to Harminder S. Sidhu, principal research engineer at the Borlaug Institute for South Asia (BISA) and a co-author of the study.

“There are already some 11,000 of these specialized no-till implements, known as the Happy Seeder, in operation across northern India,” said Sidhu, who with other researchers helped develop, test and refine the implement over 15 years. “In addition to sowing, the Happy Seeder shreds and clears rice residues from the seeder path and deposits them back onto the seeded row as a protective mulch.”

Covering some 13.5 million hectares, the Indo-Gangetic Plain stretches across Bangladesh, India, Nepal and Pakistan and constitutes South Asia’s breadbasket. In India, the northwestern state of Punjab alone produces nearly a third of the country’s rice and wheat.

Some 2.5 million farmers in northern India practice rice-wheat cropping and most burn their rice straw — an estimated 23 million tons of it — after rice harvest, to clear fields for sowing wheat. Straw removal and burning degrades soil fertility and creates a noxious cloud that affects the livelihoods and health of millions in cities and villages downwind. Air pollution is the second leading contributor to disease in India, and studies attribute some 66,000 deaths yearly to breathing in airborne nano-particles produced by agricultural burning.

The central and state governments in northwestern India, as well as universities and think-tanks, have put forth strategies to curtail burning that include conservation tillage technologies such as use of the Happy Seeder. Subsidies for no-burn farming, as well as state directives and fines for straw burning, are in place and extension agencies are promoting no-burn alternatives.

A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

As an aid for policy makers and development practitioners, the present study applied econometrics to compare conventional and zero-tillage in terms of yield, input levels and implications for rice residue burning. The study also compared use of the Happy Seeder versus a simple zero-tillage drill with no straw shredder. Participants included more than 1,000 farm households in 52 villages, encompassing 561 users of conventional tillage, 226 users of simple zero-tillage seeding implements, and 234 Happy Seeder users.

They found that only the Happy Seeder was able to sow wheat directly into large amounts of rice residues, with significant savings for farmers and equal or slightly better wheat yields, over conventional tillage. The Happy Seeder also saves time and water.

“Given the benefits of sowing wheat using the Happy Seeder against the tremendous health and environmental costs of residue burning, the reduction or elimination of straw burning should be pushed forward immediately,” said P.P. Krishnapriya, research scientist at the Sanford School of Public Policy, Duke University, and a co-author of the article. “Investments in social marketing and policies that foster the use of the Happy Seeders, including significant subsidies to purchase these machines, must be accompanied by stricter enforcement of the existing ban on residue burning.”

The study also found that the information sources most widely-available to farmers are currently geared towards conventional agricultural practices, but farmers who use the internet for agricultural information are more likely to be aware of the Happy Seeder.

“Awareness raising campaigns should use both conventional and novel channels,” said Priya Shyamsundar, lead economist at the Nature Conservancy (TNC) and co-author of the article. “As with any innovation that differs significantly from current practices, social and behavioral levers such as frontline demonstrations, good champions, and peer-to-peer networking and training are critical.”

In addition, rather than having most individual farmers own a Happy Seeder — a highly-specialized implement whose cost of $1,900 may be prohibitive for many — researchers are instead promoting the idea of farmers hiring direct-sowing services from larger farmers or other people able to purchase a Happy Seeder and make a business of operating it, explained Alwin Keil, a senior agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the new study.

“We are extremely grateful to the Indian Council of Agricultural Research (ICAR), the Nature Conservancy, and the CGIAR Research Program on Wheat Agri-Food Systems (WHEAT), who supported our research,” said Keil.

International program ushers in a new era of maize farming in Pakistan

A unique consortium of global and Pakistan scientists has helped to drive the country’s recent growth in annual maize output to 6.3 million tons — nearly double the 2010 output — and energized the domestic production of affordable, quality seed of more nutritious and climate-resilient maize varieties.

With funding from the U.S. Agency for International Development (USAID), support from the Pakistan Agricultural Research Council (PARC) and other national experts, and coordination by the International Maize and Wheat Improvement Center (CIMMYT), the seven-year Agricultural Innovation Program (AIP) for Pakistan has contributed to the dramatic growth in national maize productivity that began in the early 2000’s, when more farmers adopted hybrid seed and better management practices.

“A key AIP focus has been to reach smallholder and marginal farmers with affordable maize seed from domestic suppliers, thus reducing maize seed imports that cost Pakistan nearly $80 million in 2018-19,” said AbduRahman Beshir, CIMMYT maize seed system specialist for South Asia. “As part of this, the program has provided dozens of private companies with market-ready maize products and parental seed, as well as training in product marketing and business management and supporting the production and distribution of 175 tons of maize seed for on-farm demonstrations and promotion.”

“The testing of diversified maize products and release of new varieties represent encouraging progress,” said AbduRahman Beshir (foreground), CIMMYT maize seed system specialist, speaking during a traveling seminar, “but only advances in quality seed production and a competitive seed business at scale, with a strong case for investment by the private sector, will allow farmers to benefit.” (Photo: Waheed Anwar/CIMMYT)
“The testing of diversified maize products and release of new varieties represent encouraging progress,” said AbduRahman Beshir (foreground), CIMMYT maize seed system specialist, speaking during a traveling seminar, “but only advances in quality seed production and a competitive seed business at scale, with a strong case for investment by the private sector, will allow farmers to benefit.” (Photo: Waheed Anwar/CIMMYT)

Products from AIP have included more nutritious, diversified maize lines and varieties with tolerance to drought, infertile soils and insect pests, reducing the risk of smallholder farm families for whom losing a crop is catastrophic, according to Syed Khadem Jan, a farmer from Bajaur District of the tribal areas of Pakistan.

“Our area is very fragmented and maize yields have averaged less than 2 tons per hectare, due to the lack of improved varieties and management practices,” Jan said. “The new maize seed with drought-tolerance is what farmers are looking for and will help to secure our food and livelihoods.”

Pakistan farmers sow maize on 1.3 million hectares in diverse ecologies ranging from 30 meters above sea level on the arid plains of Sindh Province to nearly 3,000 meters in the Karakoram mountain range of Gilgit Baltistan Province and as part of complex, irrigated cropping rotations in Punjab Province and small-scale, rain-watered farms in Khyber Pakhtunkhwa Province. Yellow maize is used widely in poultry feed and white maize for various foods including unleavened roti. Despite rising domestic demand for maize, production in Pakistan faces challenges that include a lack of maize varieties for various uses and ecologies, a weak seed delivery system, high seed prices, and unpredictable weather.

Since 2014, AIP has supported the testing by public and private partners in Pakistan of more than 3,000 maize products from breeding programs of CIMMYT and partners such as the International Institute of Tropical Agriculture (IITA). The extensive testing resulted in the identification of 60 new maize hybrids and varieties which CIMMYT handed over, together with their parental lines and breeder seed, to 16 public and private partners, according to Beshir.

“The maize seed distributed through AIP is enough to sow some 9,000 hectares, potentially benefitting nearly 110,000 families,” he said. “Similarly, CIMMYT has shared over 150 elite maize lines that have various preferred traits to foster variety registration, on-farm demonstrations, high-volume seed production, and intensive marketing. These contributions have broadened the genetic diversity and resilience of Pakistan’s maize and, through fast-track testing, saved partners at least eight years and considerable money, over having to develop them on their own from scratch and to pass them through conventional adaptation trials.”

Syed Khadam Jan, maize farmer from Bajaur District, Pakistan, holds a box of seed of a new climate-resilient maize variety from CIMMYT and the Pakistan Maize and Millet Research Institute. (Photo: Khashif Syed/CIMMYT)
Syed Khadam Jan, maize farmer from Bajaur District, Pakistan, holds a box of seed of a new climate-resilient maize variety from CIMMYT and the Pakistan Maize and Millet Research Institute. (Photo: Khashif Syed/CIMMYT)

Biofortified varieties provide better nutrition

Through AIP and national partners such as the University of Agriculture Faisalabad, farmers are testing pro-vitamin-A-enriched maize hybrids that are also remarkably high-yielding, helping to address one of the country’s chronic nutritional deficiencies. With the same aim, in 2017 the national variety evaluation committee approved the release of two “quality protein maize” hybrids, whose grain has enhanced levels of the amino-acid building blocks for protein in humans and other monogastric animals.

Thanking USAID and the government of Pakistan, as well as 22 public and private partners across the maize value chain, Muhammed Imtiaz, CIMMYT country representative for Pakistan and AIP project leader, underscored the importance of specialty maize products for vulnerable communities.

“Strengthening ‘Agriculture-to-Nutrition Pathways’ is a centerpiece of AIP and part of CIMMYT efforts to provide nutritious food for the needy,” Imtiaz said. “The introduction and evaluation of quality protein, Provitamin A and zinc enriched maize products represent a significant contribution both for the maize seed sector and Pakistan’s agricultural transformation.”

Addressing a 2020 AIP meeting, Muhammad Azeem Khan, PARC Chairman, urged stakeholders to use the new maize varieties. “I want to reiterate the importance of collaboration among public and private stakeholders to produce seed at scale, so that the diverse maize varieties can make it to the farmers’ fields as quickly as possible,” he said.

Maize seed producers acknowledge the value of AIP training and support in new business models. “We are grateful to CIMMYT for reviving and helping the crawling maize seed industry to walk,” said Aslam Yousuf, Managing Director of HiSell Seeds Private Ltd. Company. “Now we need to learn to run.”

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices. Norman Borlaug, Nobel Peace laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers.

Cover photo: Participants at a February 2020 maize working group meeting of the Pakistan Agricultural Innovation Program (AIP) with seed of maize parental lines shared by CIMMYT. (Photo: Awais Yaqub)

New Publications: Cropping pattern zonation of Pakistan

The tremendous diversity of crops in Pakistan has been documented in a new publication that will foster more effective and targeted policies for national agriculture.

Using official records and geospatial modeling to describe the location, extent, and management of 25 major and minor crops grown in 144 districts of Pakistan, the publication “Cropping Pattern Zonation of Pakistan” offers an invaluable tool for resource planning and policymaking to address opportunities, challenges and risks for farm productivity and profitability, according to Muhammad Imtiaz, crop scientist and country representative in Pakistan for the International Maize and Wheat Improvement Center (CIMMYT).

“With rising temperatures, more erratic rainfall and frequent weather extremes, cropping pattern decisions are of the utmost importance for risk mitigation and adaptation,” said Imtiaz, a co-author of the new publication.

Featuring full-color maps for Pakistan’s two main agricultural seasons, based on area sown to individual crops, the publication was put together by CIMMYT and the Climate, Energy and Water Research Institute (CEWRI) of the Pakistan Agricultural Research Council (PARC), with technical and financial support from the Agricultural Innovation Program (AIP) for Pakistan, which is funded by the U.S. Agency for International Development (USAID).

Pakistan’s main crops–wheat, rice, cotton and sugarcane—account for nearly three-quarters of national crop production. Various food and non-food crops are grown in “Rabi,” the dry winter season, October-March, and “Kharif,” the summer season characterized by high temperatures and monsoon rains.

Typically, more than one crop is grown in succession on a single field each year; however, despite its intensity, farming in Pakistan is largely traditional or subsistence agriculture dominated by the food grains, according to Ms. Rozina Naz, Principal Scientific Officer, CEWRI-PARC.

“Farmers face increasing aridity and unpredictable weather conditions and energy shortage challenges that impact on their decisions regarding the type and extent of crops to grow,” said the scientist, who is involved in executing the whole study. “Crop pattern zoning is a pre-requisite for the best use of land, water and capital resources.”

The study used 5 years (2013-14 to 2017-18) of data from the Department of Agricultural Statistics, Economics Wing, Ministry of National Food Security and Research, Islamabad. “We greatly appreciate the contributions of scientists and technical experts of Crop Science Institute (CSI) and CIMMYT,” Imtiaz added.

View or download the publication:
Cropping Pattern Zonation of Pakistan. Climate, Energy and Water Research Institute, National Agricultural Research Centre, Pakistan Agricultural Research Council, and the International Maize and Wheat Improvement Center. 2020. CDMX: CEWRI, PARC, and CIMMYT.

See more recent publications from CIMMYT researchers:

1. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. 2019. Barba‐Escoto, L., Ponce-Mendoza, A., García-Romero, A., Calvillo-Medina, R.P. In: Journal of Vegetation Science v. 30, no. 2, pag. 375-385.

2. New QTL for resistance to Puccinia polysora Underw in maize. 2019. Ce Deng, Huimin Li, Zhimin Li, Zhiqiang Tian, Jiafa Chen, Gengshen Chen, Zhang, X, Junqiang Ding, Yuxiao Chang In: Journal of Applied Genetics v. 60, no. 2, pag. 147-150.

3. Hybrid wheat: past, present and future. 2019. Pushpendra Kumar Gupta, Balyan, H.S., Vijay Gahlaut, Pal, B., Basnet, B.R., Joshi, A.K. In: Theoretical and Applied Genetics v. 132, no. 9, pag. 2463-2483.

4. Influence of tillage, fertiliser regime and weeding frequency on germinable weed seed bank in a subhumid environment in Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K., Svotwa, E.In: South African Journal of Plant and Soil v. 36, no. 5, pag. 319-327.

5.  Identification and mapping of two adult plant leaf rust resistance genes in durum. 2019. Caixia Lan, Zhikang Li, Herrera-Foessel, S., Huerta-Espino, J., Basnet, B.R., In: Molecular Breeding v. 39, no. 8, art. 118.

6. Genetic mapping reveals large-effect QTL for anther extrusion in CIMMYT spring wheat. 2019. Muqaddasi, Q.H., Reif, J.C., Roder, M.S., Basnet, B.R., Dreisigacker, S. In: Agronomy v. 9 no. 7, art. 407.

7. Growth analysis of brachiariagrasses and ‘tifton 85’ bermudagrass as affected by harvest interval. 2019. Silva, V. J. da., Faria, A.F.G., Pequeno, D.N.L., Silva, L.S., Sollenberger, L.E., Pedreira, C. G. S. In: Crop Science v. 59, no. 4, pag. 1808-1814.

8. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. 2019. Chunqin Zou, Yunfei Du, Rashid, A., Ram, H., Savasli, E., Pieterse, P.J., Ortiz-Monasterio, I., Yazici, A., Kaur, C., Mahmood, K., Singh, S., Le Roux, M.R., Kuang, W., Onder, O., Kalayci, M., Cakmak, I. In: Journal of Agricultural and Food Chemistry v. 67, no. 29, pag. 8096-8106.

9. Economic impact of maize stem borer (Chilo partellus) attack on livelihood of maize farmers in Pakistan. 2019. Ali, A., Issa, A.B. In: Asian Journal of Agriculture and Biology v. 7, no. 2, pag. 311-319.

10. How much does climate change add to the challenge of feeding the planet this century?. 2019. Aggarwal, P.K., Vyas, S., Thornton, P.K., Campbell, B.M. In: Environmental Research Letters v. 14 no. 4, art. 043001.

11. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. 2019. Ming Hao, Lianquan Zhang, Laibin Zhao, Shoufen Dai, Aili Li, Wuyun Yang, Die Xie, Qingcheng Li, Shunzong Ning, Zehong Yan, Bihua Wu, Xiujin Lan, Zhongwei Yuan, Lin Huang, Jirui Wang, Ke Zheng, Wenshuai Chen, Ma Yu, Xuejiao Chen, Mengping Chen, Yuming Wei, Huaigang Zhang, Kishii, M, Hawkesford, M.J, Long Mao, Youliang Zheng, Dengcai Liu In: Theoretical and Applied Genetics v. 132, no. 8, pag. 2285-2294.

12. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. 2019. Hassine, M., Siah, A., Hellin, P., Cadalen, T., Halama, P., Hilbert, J.L., Hamada, W., Baraket, M., Yahyaoui, A.H., Legreve, A., Duvivier, M. In: Fungal Biology v. 123, no. 10, pag. 763-772.

13. Influence of variety and nitrogen fertilizer on productivity and trait association of malting barley. 2019. Kassie, M., Fantaye, K. T. In: Journal of Plant Nutrition v. 42, no. 10, pag. 1254-1267.

14. A robust Bayesian genome-based median regression model. 2019. Montesinos-Lopez, A., Montesinos-Lopez, O.A., Villa-Diharce, E.R., Gianola, D., Crossa, J. In: Theoretical and Applied Genetics v. 132, no. 5, pag. 1587-1606.

15. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. 2019. Jin Sun, Poland, J.A., Mondal, S., Crossa, J., Juliana, P., Singh, R.P., Rutkoski, J., Jannink, J.L., Crespo-Herrera, L.A., Velu, G., Huerta-Espino, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 132, no. 6, pag. 1705-1720.

16. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. 2019. Varshney, R.K., Thudi, M., Roorkiwal, M., Weiming He, Upadhyaya, H., Wei Yang, Bajaj, P., Cubry, P., Abhishek Rathore, Jianbo Jian, Doddamani, D., Khan, A.W., Vanika Garg, Annapurna Chitikineni, Dawen Xu, Pooran M. Gaur, Singh, N.P., Chaturvedi, S.K., Nadigatla, G.V.P.R., Krishnamurthy, L., Dixit, G.P., Fikre, A., Kimurto, P.K., Sreeman, S.M., Chellapilla Bharadwaj, Shailesh Tripathi, Jun Wang, Suk-Ha Lee, Edwards, D., Kavi Kishor Bilhan Polavarapu, Penmetsa, R.V., Crossa, J., Nguyen, H.T., Siddique, K.H.M., Colmer, T.D., Sutton, T., Von Wettberg, E., Vigouroux, Y., Xun Xu, Xin Liu In: Nature Genetics v. 51, pag. 857-864.

17. Farm typology analysis and technology assessment: an application in an arid region of South Asia. 2019. Shalander Kumar, Craufurd, P., Amare Haileslassie, Ramilan, T., Abhishek Rathore, Whitbread, A. In: Land Use Policy v. 88, art. 104149.

18. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. 2019. Radhakrishnan, G.V., Cook, N.M., Bueno-Sancho, V., Lewis, C.M., Persoons, A., Debebe, A., Heaton, M., Davey, P.E., Abeyo Bekele Geleta, Alemayehu, Y., Badebo, A., Barnett, M., Bryant, R., Chatelain, J., Xianming Chen, Suomeng Dong, Henriksson, T., Holdgate, S., Justesen, A.F., Kalous, J., Zhensheng Kang, Laczny, S., Legoff, J.P., Lesch, D., Richards, T., Randhawa, H. S., Thach, T., Meinan Wang, Hovmoller, M.S., Hodson, D.P., Saunders, D.G.O. In: BMC Biology v. 17, no. 1, art. 65.

19. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. 2019. Bhatta, M.R., Morgounov, A.I., Belamkar, V., Wegulo, S.N., Dababat, A.A., Erginbas-Orakci, G., Moustapha El Bouhssini, Gautam, P., Poland, J.A., Akci, N., Demir, L., Wanyera, R., Baenziger, P.S. In: International Journal of Molecular Sciences v. 20, no. 15, art. 3667.

20.  Genetic diversity and population structure analysis of synthetic and bread wheat accessions in Western Siberia. 2019. Bhatta, M.R., Shamanin, V., Shepelev, S.S., Baenziger, P.S., Pozherukova, V.E., Pototskaya, I.V., Morgounov, A.I. In: Journal of Applied Genetics v. 60, no. 3-4, pag. 283-289.

21. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. 2019. Jing Li, Gou-Bo Chen, Rasheed, A., Delin Li, Sonder, K., Zavala Espinosa, C., Jiankang Wang, Costich, D.E., Schnable, P.S., Hearne, S., Huihui Li In: Molecular Ecology v. 28, no. 15, pag. 3544-3560.

22. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: evidence from Uganda. 2019. Simtowe, F.P., Amondo, E., Marenya, P. P., Rahut, D.B., Sonder, K., Erenstein, O. In: Land Use Policy v. 88, art. 104091.

23. Do market shocks generate gender-differentiated impacts?: policy implications from a quasi-natural experiment in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Women’s Studies International Forum v. 76, art. 102272.

24. Gender differences in the adoption of agricultural technology: the case of improved maize varieties in southern Ethiopia. 2019. Gebre, G.G., Hiroshi Isoda, Rahut, D.B., Yuichiro Amekawa, Hisako Nomura In: Women’s Studies International Forum v. 76, art. 102264.

25. Tracking the adoption of bread wheat varieties in Afghanistan using DNA fingerprinting. 2019. Dreisigacker, S., Sharma, R.K., Huttner, E., Karimov, A. A., Obaidi, M.Q., Singh, P.K., Sansaloni, C.P., Shrestha, R., Sonder, K., Braun, H.J. In: BMC Genomics v. 20, no. 1, art. 660.

Breaking Ground: Maria Itria Ibba and the lab that bakes bread

The rising and shifting demand for wheat, with rapid urbanization and increasingly globalized food markets, is pushing farmers more than ever to produce high-quality grain, according to the scientist who leads wheat quality research in the world’s foremost publicly-funded wheat breeding program.

“Wheat quality is becoming more and more important, as the industrial production of bread and other wheat-based foods increases to meet the demands of city dwellers, working women, and wheat consumers in wheat-importing countries,” said Maria Itria Ibba, head of the Wheat Chemistry and Quality Laboratory at the International Maize and Wheat Improvement Center (CIMMYT).

“Companies that produce and market food for such consumers demand high, consistent quality in grain they purchase and we have to help wheat farmers to meet stringent requirements.”

This is so important that CIMMYT’s Global Wheat Program — whose contributions figure in more than half of the wheat varieties released worldwide — directly uses lab data on milling, processing and end-use quality to decide which bread and durum wheat lines to move forward in its breeding programs, according to Ibba.

“Assessing quality is a huge task, because wheat is used to make hundreds of different foods, including all kinds of leavened bread, flat breads, pastas, noodles and steamed bread,” said Ibba. “Our lab is an integral part of breeding, analyzing thousands of grain samples from thousands of wheat lines each year for nearly a dozen quality parameters.”

Cut out for quality

A native of Viterbo, Italy, Ibba has led the Wheat Chemistry and Quality Laboratory since 2019 and is uniquely qualified for the job, with a bachelor’s degree in biotechnology, a master’s degree in biotechnology for the safety and quality of agricultural products — both from the University of Tuscia, Viterbo — and a doctorate in crop science from the Washington State University. Her Ph.D. dissertation addressed “low-molecular-weight glutenin subunit gene family members and their relationship with wheat end-use quality parameters.”

With a mother who studied medicine and a father who worked at the Italian Space Agency, Ibba said that in school she always enjoyed science subjects such as biology and chemistry. “They were easy for me to understand and I really liked how, after studying them, I was able to explain and understand many things around me.”

Ibba said the biggest challenges for her and her lab team are to understand wheat quality needs and conduct faster and better analyses.

“Several of the tests we do are expensive, time-consuming, and require skilled personnel and significant amounts of grain,” she explained, citing the use of exotically named devices such as the “Quadrumat Senior mill,” the “mixograph,” and the “alveograph,” to list a few. “We’re continuously looking for novel methods that are quicker, use smaller samples of grain, and with lower costs.”

Understanding the biochemical and genetic bases of wheat grain and flour quality traits is key to this, according to Ibba, but wheat quality traits are so complex genetically that DNA markers are of little help in breeding. “We’ve begun to explore whole genome selection for wheat quality traits, in collaboration with Kansas State University, but this will never completely replace the laboratory tests.”

Let’s talk health and nutrition

A staple of tours for the hundreds of visitors that come each year to CIMMYT in Mexico, the wheat quality laboratory combines the razzle-dazzle of high-tech devices with hands-on, sensory attractions such as inflating dough balls and freshly baked test loaves.

Ibba’s work includes talking to visitors about wheat, its important history and role in human nutrition and food, and concerns in the popular media regarding wheat and health.

“I think people know more now about what gluten is and its importance, but there is still the need to talk about gluten and wheat so that people can make informed decisions based on scientific facts,” she said. “I was happy to see the recent article from CIMMYT on a review study which, among many other things, showed there was no scientific evidence for the idea that eating refined flour is bad for your health.”

“Wheat provides about 20 percent of calories and protein for more than 4.5 billion people in developing countries,” Ibba pointed out. “There’s an increasing focus on understanding and improving the nutritional quality of wheat and its products because of the greater overall interest in diets and in the nutritional value of diverse foods.”

Ethiopian wheat farmers adopt quality seed and a vision for a more profitable future

Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)
Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)

High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.

These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.

“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”

Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.

“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”

The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.

Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.

A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.

Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).

Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.

“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”

RELATED RESEARCH PUBLICATIONS:

Achievements in fast-track variety testing, seed multiplication and scaling of rust resistant varieties: Lessons from the wheat seed scaling project, Ethiopia.

INTERVIEW OPPORTUNITIES:

Bekele Abeyo, Senior Scientist, CIMMYT.

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Simret Yasabu, Communications officer, CIMMYT. s.yasabu@cgiar.org, +251 911662511 (cell).

PHOTOS AVAILABLE:

Seed scaling in Ethiopia

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

CIMMYT and Pakistan: 60 years of collaboration

A new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

Cover photo: A wheat field in Pakistan, ready for harvest. (Photo: Kashif Syed/CIMMYT)

Concerned experts ask world leaders to head off a global food security crisis from COVID-19

A farmer weeds a maize field in Pusa, Bihar state, India. (Photo: M. DeFreese/CIMMYT)
A farmer weeds a maize field in Pusa, Bihar state, India. The productivity and food security of small-scale farmers requires their presence and activity in the field and in markets, both of which could be off-limits under the COVID-19 pandemic. (Photo: M. DeFreese/CIMMYT)

Alarmed by the risk of global and regional food shortages triggered by the COVID-19 pandemic, a coalition of businesses, farmers’ groups, industry, non-governmental organizations, and academia has called on world leaders urgently to maintain open trade of their surplus food products.

Published by the Food and Land Use Coalition (FOLU) on April 9, 2020, and signed by 60 experts, the call to action urges world leaders to keep food supplies flowing, specially support vulnerable people, and finance sustainable, resilient food systems.

Covered by major world media, the declaration encourages governments to treat food production, processing, and distribution as an essential sector — similar to public health care — and thus to support continued, safe, and healthy activities by farmers and others who contribute to the sector, according to Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT) and a signatory of the call to action.

“Consumers in low-income countries face the greatest threat of food insecurity,” said Kropff. “Their tenuous access to nutritious food is jeopardized when surplus food-producing nations choose to close trade as a defensive measure.”

Kropff added that many households in low-income countries depend on agriculture or related activities for their food and livelihoods. Their productivity and food security are compromised by illness or restrictions on movement or working.

“The call to action resonates with the findings of a landmark 2015 study by Lloyd’s of London,” he explained. “That work highlighted the fragility of global food systems in the event of coinciding shocks, an outcome that seems entirely possible now, given the health, cultural, and economic impacts of the COVID-19 pandemic.”

At the same time, the work of CIMMYT, other CGIAR centers, and their partners worldwide helps to stabilize food systems, according to Kropff.

“Our research outputs include high-yielding, climate-resilient crop varieties and more productive, profitable and sustainable farming methods,” he said. “These give farmers — and especially smallholders — the ingredients for more efficient and effective farming. They are grounded in reality through feedback from farmers and local partners, as well as socioeconomic studies on markets and value chains for food production, processing, and distribution.”

Agricultural solutions to tackle humanity’s climate crisis

More than 11,000 scientists signed on to a recent report showing that planet Earth is facing a climate emergency and the United Nations warned that the world is on course for a 3.2 degree spike by 2100, even if 2015 Paris Agreement commitments are met.

Agriculture, forestry, and land-use change are implicated in roughly a quarter of global greenhouse gas emissions.

Agriculture also offers opportunities to mitigate climate change and to help farmers — particularly smallholders in developing and emerging economies who have been hardest hit by hot weather and reduced, more erratic rainfall.

Most of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while meeting the rising demand for food and, where possible, reducing emissions.

Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Climate-resilient crops and farming practices

53 million people are benefiting from drought-tolerant maize. Drought-tolerant maize varieties developed using conventional breeding provide at least 25% more grain than other varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average. These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people in the continent. One study shows that drought-tolerant maize can provide farming families in Zimbabwe an extra 9 months of food at no additional cost. The greatest productivity results when these varieties are used with reduced or zero tillage and keeping crop residues on the soil, as was demonstrated in southern Africa during the 2015-16 El Niño drought. Finally, tolerance in maize to high temperatures in combination with drought tolerance has a benefit at least twice that of either trait alone.

Wheat yields rise in difficult environments. Nearly two decades of data from 740 locations in more than 60 countries shows that CIMMYT breeding is pushing up wheat yields by almost 2% each year — that’s some 38 kilograms per hectare more annually over almost 20 years — under dry or otherwise challenging conditions. This is partly through use of drought-tolerant lines and crosses with wild grasses that boost wheat’s resilience. An international consortium is applying cutting-edge science to develop climate-resilient wheat. Three widely-adopted heat and drought-tolerant wheat lines from this work are helping farmers in Pakistan, a wheat powerhouse facing rising temperatures and drier conditions; the most popular was grown on an estimated 40,000 hectares in 2018.

Climate-smart soil and fertilizer management. Rice-wheat rotations are the predominant farming system on more than 13 million hectares in the Indo-Gangetic Plains of South Asia, providing food and livelihoods for hundreds of millions. If farmers in India alone fine-tuned crop fertilizer dosages using available technologies such as cellphones and photosynthesis sensors, each year they could produce nearly 14 million tons more grain, save 1.4 million tons of fertilizer, and cut CO2-equivalent greenhouse gas emissions by 5.3 million tons. Scientists have been studying and widely promoting such practices, as well as the use of direct seeding without tillage and keeping crop residues on the soil, farming methods that help capture and hold carbon and can save up to a ton of CO2 emissions per hectare, each crop cycle. Informed by CIMMYT researchers, India state officials seeking to reduce seasonal pollution in New Delhi and other cities have implemented policy measures to curb the burning of rice straw in northern India through widespread use of zero tillage.

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

Measuring climate change impacts and savings

In a landmark study involving CIMMYT wheat physiologists and underlining nutritional impacts of climate change, it was found that increased atmospheric CO2 reduces wheat grain protein content. Given wheat’s role as a key source of protein in the diets of millions of the poor, the results show the need for breeding and other measures to address this effect.

CIMMYT scientists are devising approaches to gauge organic carbon stocks in soils. The stored carbon improves soil resilience and fertility and reduces its emissions of greenhouse gases. Their research also provides the basis for a new global soil information system and to assess the effectiveness of resource-conserving crop management practices.

CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT's experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Managing pests and diseases

Rising temperatures and shifting precipitation are causing the emergence and spread of deadly new crop diseases and insect pests. Research partners worldwide are helping farmers to gain an upper hand by monitoring and sharing information about pathogen and pest movements, by spreading control measures and fostering timely access to fungicides and pesticides, and by developing maize and wheat varieties that feature genetic resistance to these organisms.

Viruses and moth larvae assail maize. Rapid and coordinated action among public and private institutions across sub-Saharan Africa has averted a food security disaster by containing the spread of maize lethal necrosis, a viral disease which appeared in Kenya in 2011 and quickly moved to maize fields regionwide. Measures have included capacity development with seed companies, extension workers, and farmers the development of new disease-resilient maize hybrids.

The insect known as fall armyworm hit Africa in 2016, quickly ranged across nearly all the continent’s maize lands and is now spreading in Asia. Regional and international consortia are combating the pest with guidance on integrated pest management, organized trainings and videos to support smallholder farmers, and breeding maize varieties that can at least partly resist fall armyworm.

New fungal diseases threaten world wheat harvests. The Ug99 race of wheat stem rust emerged in eastern Africa in the late 1990s and spawned 13 new strains that eventually appeared in 13 countries of Africa and beyond. Adding to wheat’s adversity, a devastating malady from the Americas known as “wheat blast” suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area and threatening to move quickly throughout South Asia’s vast wheat lands.

In both cases, quick international responses such as the Borlaug Global Rust Initiative, have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)
A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)

Partners and funders of CIMMYT’s climate research

A global leader in publicly-funded maize and wheat research and related farming systems, CIMMYT is a member of CGIAR and leads the South Asia Regional Program of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

CIMMYT receives support for research relating to climate change from national governments, foundations, development banks and other public and private agencies. Top funders include CGIAR Research Programs and Platforms, the Bill & Melinda Gates Foundation, Mexico’s Secretary of Agriculture and Rural Development (SADER), the United States Agency for International Development (USAID), the UK Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Cornell University, the German aid agency GIZ, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors to Window 1 &2.

Kanwarpal Dhugga awarded top honor in science

Kanwarpal S. Dhugga, a Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT) who specializes in biotechnology, has been elected a Fellow of the American Association for the Advancement of Science (AAAS), Section on Biological Sciences, in recognition of his invaluable contributions to science and technology.

Announced by AAAS on November 26, 2019, the honor acknowledges among other things Dhugga’s leading research on plant cell wall formation, with applications including their role in lodging resistance and in producing high-value industrial polymers in maize and soybean, and the assimilation, transport, and metabolism of nitrogen in plants.

“I consider this a special honor,” said Dhugga, who leads CIMMYT’s research in biotechnology with a focus on editing genes for disease resistance in maize and wheat. He has published in high-impact scientific journals including Science, the Proceedings of the National Academy of Sciences (USA), Plant Cell, Molecular Plant, Plant Biotechnology Journal, Plant Physiology and others.

AAAS Fellows are elected each year by their peers serving on the Council of AAAS, the organization’s member-run governing body. Scientists who have received this recognition include the inventor Thomas Edison (1878), anthropologist Margaret Mead (1934), and popular science author Jared Diamond (2000), as well as numerous Nobel laureates. The election of Dhugga doubles the tally of AAAS fellows at CIMMYT, the other one being Ravi P. Singh, Distinguished Scientist and Head of Global Wheat Improvement.

“Kanwarpal merits CIMMYT’s wholehearted congratulations for this prestigious recognition of his standing in science,” said Kevin Pixley, director of CIMMYT’s Genetics Resources program, to which Dhugga belongs. “I’m humbled and grateful to count him as a member of our team.”

Dhugga identified the gene for an enzyme that propels the chemical reactions to produce guar gum, a cell wall polymer that is a dominant component of the edible kernel of the coconut. (Photo: Allen Wen/CIMMYT)
Dhugga identified the gene for an enzyme that propels the chemical reactions to produce guar gum, a cell wall polymer that is a dominant component of the edible kernel of the coconut. (Photo: Allen Wen/CIMMYT)

A native of Punjab in India, Dhugga has a M.Sc. in Plant Breeding from Punjab Agricultural University and a Ph.D. in Botany (Plant Genetics) from the University of California, Riverside. He was introduced to membrane protein biochemistry and cell wall synthesis during his postdoctoral research at Stanford University in the laboratory of Peter Ray. Prior to joining CIMMYT in 2015, Dhugga worked at DuPont Pioneer (now Corteva) from 1996 to 2014.

In addition to scientific excellence, Dhugga counts among his achievements prominent international, public-private partnerships, such as the one he led between DuPont Pioneer and the Australian Centre for Plant Functional Genomics to explore new avenues to improve plant nitrogen use efficiency and reduce culm (stalk) lodging in cereals from 2004 to 2014. He continues to explore opportunities to secure funds for undertaking joint work with the collaborators from that period, thanks to the relationships fostered then. One of the scientists in his current group actually completed his Ph.D. under that collaboration.

As part of science outreach he has guided the research of many graduate students in Australia, Canada, India, and the US, a country of which he is also a citizen, and helped make high-quality education accessible to the underprivileged, including establishing a private school in his ancestral village in the state of Punjab in India.

The 2019 Fellows will receive rosette pins in gold and blue, colors symbolizing science and engineering. (Photo: AAAS)
The 2019 Fellows will receive rosette pins in gold and blue, colors symbolizing science and engineering. (Photo: AAAS)

Dhugga has also been successful as a principal or co-principal investigator in attracting significant funding for scientific research from public agencies such as the US Department of Energy, the US National Science Foundation, USAID, and the Australian Research Council. Part of his current research is supported by a grant from the Bill & Melinda Gates Foundation. At DuPont Pioneer he was the recipient of two separate, highly competitive research grants to carry out high-risk, discovery research outside of the area of the assigned company goals.

Among his research endeavors, Dhugga highlights a breakthrough he made in the area of cell wall biosynthesis under a discovery research grant from DuPont Pioneer. He identified the gene for an enzyme that propels the chemical reactions to produce guar gum, a cell wall polymer that is also used in industrial products from shampoos to ice cream and is a dominant component of the coconut kernel. The results were published in Science. On a basic level, this provided biochemical evidence for the first time for the involvement of any of the genes from the large plant cellulose synthase gene family in the formation of a cell wall polymer. Dhugga also confides that whenever he flies over coconut plantations anywhere, he gets butterflies in his stomach at the thought that he was the first one to know how simple molecules made a complex matrix that became the edible kernel of the coconut.

“That study constituted a prime example of the power of cross-disciplinary research in answering a longstanding fundamental question in plant biology,” he said. “Assaying enzymes involved in the formation of cell wall polymers is extremely difficult. The approach we used — identify a candidate gene by combining genomics with biochemistry and then express it in a related species lacking the product of the resulting enzyme to demonstrate its function — was subsequently applied by other scientists to identify genes involved in the formation of other key plant cell wall polymers.”

Dhugga will receive a pin as a token of his election as Fellow in an AAAS ceremony in Seattle, Washington, USA, on February 15, 2020.

Ten things you should know about maize and wheat

As the calendar turns to October 16, it is time to celebrate World Food Day. At the International Maize and Wheat Improvement Center (CIMMYT), we are bringing you a few facts you should know about maize and wheat, two of the world’s most important crops.

Subscribe to our email updates to stay in the loop about the latest research and news.

1. Billions of people eat maize and wheat.

Wheat is eaten by 2.5 billion people in 89 countries. About 1 billion of them live on less than $1.90 a day and depend on wheat as their main food.

Maize is the preferred staple food for 900 million poor consumers and the most important food crop in sub-Saharan Africa.

According to 2017 figures, maize is grown on 197 million hectares. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these two crops amounts to about 1.9 billion tons of grain.

A little girl eats a freshly-made roti while the women of her family prepare more, at her home in the village of Chapor, in the district of Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
A little girl eats a freshly-made roti while the women of her family prepare more, at her home in the village of Chapor, in the district of Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

2. Of the 300,000 known edible plant species, only 3 account for around 60% of our calories and proteins: maize, wheat and rice.

About 300,000 of the plant species on Earth could be eaten, but humans eat a mere 200 species globally.

Approximately 75% of the world’s food is generated from only 12 plants and 5 animal species. In fact, more than half of our plant-sourced protein and calories come from just three species: maize, rice and wheat.

Farmers Kanchimaya Pakhrin and her neighbor Phulmaya Lobshan weed rice seedling bed sown by machine in Purnabas, Kanchanpur, Nepal. (Photo: P. Lowe/CIMMYT)
Farmers Kanchimaya Pakhrin and her neighbor Phulmaya Lobshan weed rice seedling bed sown by machine in Purnabas, Kanchanpur, Nepal. (Photo: P. Lowe/CIMMYT)

3. CIMMYT manages humankind’s most diverse maize and wheat collections.

The organization’s germplasm bank, also known as a seed bank, is at the center of its crop-breeding research. This remarkable, living catalog of genetic diversity is comprised of over 28,000 unique seed collections of maize and 150,000 of wheat.

From its breeding programs, CIMMYT sends half a million seed packages to 800 partners in 100 countries each year. With researchers and farmers, the center also develops and promotes more productive and precise maize and wheat farming methods and tools that save money and resources such as soil, water, and fertilizer.

Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT's global headquarters in Texcoco, Mexico. Disaster-proof features of the bank include thick concrete walls and back-up power systems. (Photo: Xochiquetzal Fonseca/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s global headquarters in Texcoco, Mexico. Disaster-proof features of the bank include thick concrete walls and back-up power systems. (Photo: Xochiquetzal Fonseca/CIMMYT)

4. Maize and wheat are critical to a global food system makeover.

In 2010, agriculture accounted for about one-quarter of global greenhouse gas emissions.

High-yield and climate-resilient maize and wheat varieties, together with a more efficient use of resources, are a key component of the sustainable intensification of food production needed to transform the global food system.

Miguel Ku Balam (left), from Mexico's Quintana Roo state, cultivates the traditional Mesoamerican milpa system. "My family name Ku Balam means 'Jaguar God'. I come from the Mayan culture," he explains. "We the Mayans cultivate the milpa for subsistence. We don't do it as a business, but rather as part of our culture — something we inherited from our parents." (Photo: Peter Lowe/CIMMYT)
Miguel Ku Balam (left), from Mexico’s Quintana Roo state, cultivates the traditional Mesoamerican milpa system. “My family name Ku Balam means ‘Jaguar God’. I come from the Mayan culture,” he explains. “We the Mayans cultivate the milpa for subsistence. We don’t do it as a business, but rather as part of our culture — something we inherited from our parents.” (Photo: Peter Lowe/CIMMYT)

5. We must increase maize and wheat yields to keep feeding the world.

By the year 2050, there will be some 9.7 billion people living on Earth. To meet the growing demand from an increasing population and changing diets, maize yields must go up at least 18% and wheat yields 15% by 2030, despite hotter climates and more erratic precipitation.

Farmers walk through a wheat field in Lemo district, Ethiopia. (Photo: P. Lowe/CIMMYT)
Farmers walk through a wheat field in Lemo district, Ethiopia. (Photo: P. Lowe/CIMMYT)

6. Climate-smart farming allows higher yields with fewer greenhouse gas emissions.

Decades of research and application by scientists, extension workers, machinery specialists, and farmers have perfected practices that conserve soil and water resources, improve yields under hotter and dryer conditions, and reduce the greenhouse gas emissions and pollution associated with maize and wheat farming in Africa, Asia, and Latin America.

Kumbirai Chimbadzwa (left) and Lilian Chimbadzwa stand on their field growing green manure cover crops. (Photo: Shiela Chikulo/CIMMYT)
Kumbirai Chimbadzwa (left) and Lilian Chimbadzwa stand on their field growing green manure cover crops. (Photo: Shiela Chikulo/CIMMYT)

7. Wholegrain wheat is good for your health.

An exhaustive review of research on cereal grains and health has shown that eating whole grains, such as whole-wheat bread and other exceptional sources of dietary fiber, is beneficial for human health and associated with a reduced risk of cancer and other non-communicable diseases.

According to this study, consumption of whole grains is associated with a lower risk of coronary disease, diabetes, hypertension, obesity and overall mortality. Eating whole and refined grains is beneficial for brain health and associated with reduced risk for diverse types of cancer. Evidence also shows that, for the general population, gluten- or wheat-free diets are not inherently healthier and may actually put individuals at risk of dietary deficiencies.

Whole wheat bread. (Photo: Rebecca Siegel/Flickr)
Whole wheat bread. (Photo: Rebecca Siegel/Flickr)

8. Biofortified maize and wheat are combating “hidden hunger.”

Hidden hunger” is a lack of vitamins and minerals. More than 2 billion people worldwide are too poor to afford diverse diets and cannot obtain enough critical nutrients from their staple foods.

To help address this, CIMMYT — along with HarvestPlus and partners in 18 countries — is promoting more than 60 maize and wheat varieties whose grain contains more of the essential micronutrients zinc and provitamin A. These biofortified varieties are essential in the fight against “hidden hunger.”

A 2015 study published in The Journal of Nutrition found that vitamin A-biofortified orange maize significantly improves visual functions in children, like night vision. (Photo: Libby Edwards/HarvestPlus)
A 2015 study published in The Journal of Nutrition found that vitamin A-biofortified orange maize significantly improves visual functions in children, like night vision. (Photo: Libby Edwards/HarvestPlus)

9. 53 million people are benefiting from drought-tolerant maize.

Drought-tolerant maize developed by CIMMYT and partners using conventional breeding provides at least 25% more grain than conventional varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average.

These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people.

One study shows that drought-tolerant maize varieties can provide farming families in Zimbabwe an extra 9 months of food at no additional cost.

 

10. Quality protein maize is helping reduce child malnutrition.

Developed by CIMMYT during the 1970s and 1980s and honored by the 2000 World Food Prize, quality protein maize features enhanced levels of lysine and tryptophan, essential amino acids that can help reduce malnutrition in children whose diets rely heavily on maize.

Two girls eat biofortified maize in Mukushi, Zambia. (Photo: Silke Seco/DFID)
Two girls eat biofortified maize in Mukushi, Zambia. (Photo: Silke Seco/DFID)

Did you enjoy this? Subscribe to our email updates to stay in the loop about the latest research and news related to maize and wheat agriculture.

Large-scale genomics will improve the yield, climate-resilience, and quality of bread wheat, new study shows

Bread wheat improvement using genomic tools will be critical to accelerate genetic gains in the crop's yield, disease resistance, and climate resilience. (Photo: Apollo Habtamu/CIMMYT)
Bread wheat improvement using genomic tools will be critical to accelerate genetic gains in the crop’s yield, disease resistance, and climate resilience. (Photo: Apollo Habtamu/CIMMYT)

Using the full wheat genome map published in 2018, combined with data from field testing of wheat breeding lines in multiple countries, an international team of scientists has identified significant new chromosomal regions for wheat yield and disease resistance and created a freely-available collection of genetic information and markers for more than 40,000 wheat lines.

Reported today in Nature Genetics, the results will speed up global efforts to breed more productive and climate-resilient varieties of bread wheat, a critical crop for world food security that is under threat from rising temperatures, rapidly-evolving fungal pathogens, and more frequent droughts, according to Philomin Juliana, wheat scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new study.

“This work directly connects the wheat genome reference map with wheat lines and extensive field data from CIMMYT’s global wheat breeding network,” said Juliana. “That network in turn links to over 200 breeding programs and research centers worldwide and contributes to yield and other key traits in varieties sown on nearly half the world’s wheat lands.”

The staple food for more than 2.5 billion people, wheat provides 20% of human dietary calories and protein worldwide and is critical for the nutrition and food security of hundreds of millions of poor persons in regions such as North Africa and South Asia.

“Farmers and societies today face new challenges to feed rising and rapidly-urbanizing populations, and wheat epitomizes the issues,” said Ravi Singh, CIMMYT wheat breeder and corresponding author of the study. “Higher temperatures are holding back yields in major wheat-growing areas, extreme weather events are common, crop diseases are spreading and becoming more virulent, and soil and water are being depleted.”

Juliana said the study results help pave the way to apply genomic selection, an approach that has transformed dairy cow husbandry, for more efficient wheat breeding.

“Molecular markers are getting cheaper to use; meanwhile, it’s very costly to do field testing and selection involving many thousands of wheat plants over successive generations,” Juliana said. “Genome-wide marker-based selection can help breeders to precisely identify good lines in early breeding generations and to test plantlets in greenhouses, thereby complementing and streamlining field testing.”

The new study found that genomic selection could be particularly effective in breeding for wheat end-use quality and for resistance to stem rust disease, whose causal pathogen has been evolving and spreading in the form of highly-virulent new races.

The new study also documents the effectiveness of the global public breeding efforts by CIMMYT and partners, showing that improved wheat varieties from this work have accumulated multiple gene variants that favor higher yields, according to Hans-Joachim Braun, director of CIMMYT’s global wheat program.

“This international collaboration, which is the world’s largest publicly-funded wheat breeding program, benefits farmers worldwide and offers high-quality wheat lines that are released directly to farmers in countries, such as Afghanistan, that are unable to run a full-fledged wheat breeding program,” Braun explained.

The study results are expected to support future gene discovery, molecular breeding, and gene editing in wheat, Braun said.

Together with more resource-efficient cropping systems, high-yielding and climate-resilient wheat varieties will constitute a key component of the sustainable intensification of food production described in Strategy 3 of the recent EAT-Lancet Commission recommendations to transform the global food system. Large-scale genomics will play a key role in developing these varieties and staying ahead of climate- and disease-related threats to food security.

Funders of this work include USAID’s Feed the Future Innovation Lab for Applied Wheat Genomics. Contributing to the research described are research teams engaged in wheat improvement at CIMMYT, and the lab of Jesse Poland, Associate Professor at Kansas State University and Director of the USAID Applied Wheat Genomics Innovation Lab.

For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit?

Ensuring the access of small-scale farmers to products and potential benefits from genetic engineering (GE) technologies for agriculture will require concerted investment and research by public institutions worldwide and particularly in low- and middle-income countries.

This was a key conclusion of a new review paper describing cutting-edge GE applications that offer exciting options to enhance the disease and pest resistance of important food crops and the ecological sustainability of cropping systems.

The technologies include gene editing (site-specific changes to DNA in a genome), gene drives (greatly enhancing or reducing frequency of genes that affect insect or pathogen reproduction), and synthetic biology (re-design or construction of biological devices, for example chromosomes or organelles).

Authored by international experts in policy, socioeconomics, and biological science, the new paper outlines potential uses of the technologies, particularly to address problems that affect resource-poor farmers or consumers, such as the viruses that attack cassava, the Striga weed that is a parasite of maize, or the fungal pathogen of groundnut that produces deadly toxins.

A weak capacity for research and development in many countries, combined with a small and declining public investment, raises questions about those nations’ ability to develop and deliver high-quality GE technologies or realize their benefits.

“The concern is that farmers not served by leading companies, who are developing the technologies, will be unable to obtain new, resistant crop varieties or other products of these technologies,” said Kevin Pixley, director of the genetic resources program of the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new paper.

The technologies have already proven effective for controlling bacterial, fungal, and viral plant pathogens, as well as insects that transmit them. For example, GE approaches to control cassava brown streak disease and cassava bacterial blight—for which there are few or no known sources of resistance in cassava itself—appear on track to produce resistant versions of cassava.

Future gene drive technologies that can be kept within specific areas and reversed if needed may offer ways to control insects that carry plant diseases or weeds that damage crops, and synthetic biology could someday create plants that are immune to invading viruses.

Institutional forces (arrows) alter the balance of (a) research and development (R&D) investments by the public relative to the private sector, (b) R&D emphasis on crops with low-value relative to high-value seed markets, which are often the crops of resource-poor versus resource-wealthy farmers, and therefore (c) who will benefit from the technologies as consumers of the improved crops. Achieving equity in access to the potential benefits of genetically engineered crops (or any technology, e.g., internet, cell phones, or radio) may require policy changes and actions (forces) to counterbalance prevailing trends. (Figure: Nancy Valtierra/CIMMYT)
Institutional forces (arrows) alter the balance of public vs private research / development investments and the relative emphasis on low vs high value crops, factors that help determine who benefits (resource-poor vs wealthy farmers?) from the application of advanced technologies in crop breeding. (Figure: Nancy Valtierra/CIMMYT)

“The private sector is likely to invest mainly in major crops and major traits that will bring them profits, so work on minor, perennial, clonal, or staple food crops of lower-income countries may suffer,” said José Falck-Zepeda, senior research fellow and leader of the policy team in the program for biosafety systems of the International Food Policy Research Institute (IFPRI) and a co-author of the review paper.

Many countries are still deciding whether and how they will regulate new GE products. The new paper explains how key factors including the cost and complexity of complying with biosafety regulations will shape the potential distribution of the technologies and products, determining which institutions undertake the related research and, as a result, which traits and crops are studied.

Civil society concerns regarding GE technologies and how or by whom they are deployed add important considerations to the complex questions surrounding the use of GE products.

“Realizing the potential of GE crops will require investments and policies for research, intellectual property regimes, and regulatory frameworks,” say the authors, “and societies must also address legitimate concerns about their responsible stewardship, agroecological sustainability, and equitable access to associated benefits.”

An open-access version of the full paper is available online:
https://doi.org/10.1146/annurev-phyto-080417-045954
Pixley, K.V., J.B. Falck-Zepeda, K.E. Giller, L.L. Glenna, F. Gould, C.A. Mallory-Smith, D.M. Stelly, and C.N. Stewart. 2019. Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit? Annu. Rev. Phytopathol 57:8.1–8.24.

See also the related feature by the International Food Policy Research Institute (IFPRI):
Will genetic engineering contribute to disease-resistant crops, and who will benefit?

Remembering Max Alcalá, who led CIMMYT’s wheat international nurseries

Maximino Alcalá de Stefano working at CIMMYT's wheat international nurseries. (Photo: CIMMYT)
Maximino Alcalá de Stefano working at CIMMYT’s wheat international nurseries. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) sadly notes the passing of Maximino Alcalá de Stefano, former head of the center’s Wheat International Nurseries service, on August 27. He was 80 years old.

Fondly known as “Max” by friends and colleagues, Alcalá worked at CIMMYT from 1967 to 1992, coordinating wheat international nurseries during the late 1960s and early 1970s. The job included organizing nursery shipments to over 100 partners worldwide each year and collating, analyzing, and sharing results from the nurseries grown.

Maximino Alcalá de Stefano passed away at the age of 80 in Houston, Texas, USA. (Photo: Alcalá family)
Maximino Alcalá de Stefano passed away at the age of 80 in Houston, Texas, USA. (Photo: Alcalá family)

The printed international nursery report featured an introductory section that described the nurseries, the locations, the statistical analyses used, and an overview of the performance of the breeding lines tested, which comprised the best CIMMYT materials but also germplasm from other sources. The report also carried tables with full data from each location as well as summary tables.

“Max was instrumental in preparing and distributing the printed nursery results, now made available online but which continue to provide crucial input for breeding by CIMMYT and partners,” said Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program. “He also helped start the international nursery database.”

A native of Mexico, Alcalá completed a bachelor’s in Science at the Universidad Autónoma Agraria Antonio Narro in 1964 and a master’s at Texas A&M University in 1967. Alcalá pursued doctoral studies in wheat breeding at Oregon State University under the guidance of renowned OSU researcher Warren E. Kronstad, finishing in 1974.

Maximino Alcalá de Stefano (second from right) worked closely with Nobel Prize winner Norman Borlaug (third from left). In the photo, a group of CIMMYT Scientists during a visit to Nepal in 1978. (Photo: CIMMYT)
Maximino Alcalá de Stefano (second from right) worked closely with Nobel Prize winner Norman Borlaug (third from left). In the photo, a group of CIMMYT Scientists during a visit to Nepal in 1978. (Photo: CIMMYT)

His professional experience prior to CIMMYT included appointments at Mexico’s National Institute of Agricultural Research (INIA) and in the national extension services.

Later in his career, Alcalá supported wheat training at CIMMYT and helped coordinate visitors services at CIMMYT’s experimental station near Ciudad Obregón, in Mexico’s Sonora state.

The CIMMYT community sends its deepest sympathies and wishes for peace to the Alcalá family.

Scientists use DNA fingerprinting to gauge the spread of modern wheat in Afghanistan

Wheat is Afghanistan’s number-one staple crop, but the country doesn’t grow enough and must import millions of tons of grain each year to satisfy domestic demand.
Wheat is Afghanistan’s number-one staple crop, but the country does not grow enough and must import millions of tons of grain each year to satisfy domestic demand.

Despite the severe social and political unrest that constrain agriculture in Afghanistan, many farmers are growing high-yielding, disease resistant varieties developed through international, science-based breeding and made available to farmers as part of partnerships with national wheat experts and seed producers.

These and other findings have emerged from the first-ever large-scale use of DNA fingerprinting to assess Afghanistan farmers’ adoption of improved wheat varieties, which are replacing less productive local varieties and landraces, according to a paper published yesterday in the science journal BMC Genomics.

The study is part of an activity supported between 2003 and 2018 by the Australian Department of Foreign Affairs and Trade, through which the Agricultural Research Institute of Afghanistan and the International Maize and Wheat Improvement Center (CIMMYT) introduced, tested, and released improved wheat varieties.

“As part of our study, we established an extensive ‘reference library’ of released varieties, elite breeding lines, and Afghan wheat landraces,” said Susanne Dreisigacker, wheat molecular breeder at CIMMYT and lead author of the new paper.

“We then compared wheat collected on farmers’ fields with the reference library. Of the 560 wheat samples collected in 4 provinces during 2015-16, farmers misidentified more than 40%, saying they were of a different variety from that which our DNA analyses later identified.”

Wheat is the most important staple crop in Afghanistan — more than 20 million of the country’s rural inhabitants depend on it — but wheat production is unstable and Afghanistan has been importing between 2 and 3 million tons of grain each year to meet demand.

Over half of the population lives below the poverty line, with high rates of malnutrition. A key development aim in Afghanistan is to foster improved agronomic practices and the use of high quality seed of improved wheat varieties, which together can raise yields by over 50%.

“Fungal diseases, particularly yellow rust and stem rust, pose grave threats to wheat in the country,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR) and co-author of the present paper. “It’s crucial to know which wheat varieties are being grown where, in order to replace the susceptible ones with high-performing, disease resistant varieties.”

Varietal adoption studies typically rely on questionnaires completed by breeders, extension services, seed producers, seed suppliers, and farmers, but such surveys are complicated, expensive, and often inaccurate.

“DNA fingerprinting resolves uncertainties regarding adoption and improves related socioeconomic research and farm policies,” Huttner explained, adding that for plant breeding this technology has been used mostly to protect intellectual property, such as registered breeding lines and varieties in more developed economies.

This new study was commissioned by ACIAR as a response to a request from the Government of Afghanistan for assistance in characterizing the Afghan wheat gene bank, according to Huttner.

“This provided the reference library against which farmers’ samples could be compared,” he explained. “Accurately identifying the varieties that farmers grow is key evidence on the impact of introducing improved varieties and will shape our future research

Joint research and development efforts involving CIMMYT, ACIAR, the Food and Agriculture Organization (FAO) of the United Nations, the International Centre of Agricultural Research in Dry Areas (ICARDA), French Cooperation, and Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) and Agricultural Research Institute (ARIA) have introduced more than 400 modern, disease-resistant wheat varieties over the last two decades. Nearly 75% of the wheat grown in the areas surveyed for this study comes from these improved varieties.

“New sequencing technologies are increasingly affordable and their cost will continue to fall,” said Dreisigacker. “Expanded use of DNA fingerprinting can easily and accurately identify the wheat cultivars in farmers’ fields, thus helping to target breeding, agronomy, and development efforts for better food security and farmer livelihoods.”


For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 (55) 5804 2004, ext. 1167

About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

About ACIAR
As Australia’s specialist international agricultural research for development agency, the Australian Centre for International Agricultural Research (ACIAR) brokers and funds research partnerships between Australian scientists and their counterparts in developing countries. Since 1982, ACIAR has supported research projects in eastern and southern Africa, East Asia, South and West Asia and the Pacific, focusing on crops, agribusiness, horticulture, forestry, livestock, fisheries, water and climate, social sciences, and soil and land management. ACIAR has commissioned and managed more than 1,500 research projects in 36 countries, partnering with 150 institutions along with more than 50 Australian research organizations.

About Afghanistan’s Ministry of Agriculture, Irrigation and Livestock
The Ministry of Agriculture, Irrigation and Livestock (MAIL) of the Islamic Republic of Afghanistan works on the development and modernization of agriculture, livestock and horticulture. The ministry launches programs to support the farmers, manage natural resources, and strengthen agricultural economics. Its programs include the promotion and introduction of higher-value economic crops, strengthening traditional products, identifying and publishing farm-tailored land technologies, boosting cooperative programs, agricultural economics, and export with marketing.

Breaking Ground: Anani Bruce guards Africa’s maize harvest from insect pests

Anani Bruce, maize entomologist at the International Maize and Wheat Improvement Center (CIMMYT) since 2013, is intensively engaged in an expert partnership supporting African maize farmers’ stand against deadly insect pests, especially fall armyworm and stem borers.

A moth species native to the Americas, fall armyworm was detected in Nigeria in 2016 and in less than three years has overrun sub-Saharan Africa’s maize growing regions. At its larval stage, it feeds on leaves and ears, causing annual harvest losses whose value can exceed $6 billion.

Bruce and his colleagues are rushing to develop maize varieties that feature native genetic resistance to fall armyworm and to arm farmers with locally suited control measures. Finding and strengthening native resistance in maize against the pest is a key pillar of integrated pest management.

“The fall armyworm is so challenging that there’s no single, easy fix,” said Bruce, who earned a PhD in Entomology at the International Centre of Insect Physiology and Ecology (ICIPE) and Kenyatta University, Kenya, in 2008. “We are testing and promoting an integrated management approach which, along with host plant resistance, includes biological control, habitat management, good agronomic practices, safe chemicals, bio-pesticides, and botanical controls.”

“The costs and complexities of such practices are daunting, but farmers can learn if you help them and there is little alternative right now, given that maize is sub-Saharan Africa’s number-one staple food,” Bruce explained.

According to the scientist, breeding is also laborious, because potentially resistant maize plants must be tested under controlled, heavy infestations of insects and this is allowed only in net houses.

“Net houses don’t provide enough room to grow the large number of maize lines needed for rapid and effective breeding progress,” Bruce said. “Even so, we have promising leads on sources of moderate resistance from maize populations developed by CIMMYT in Mexico in the 1980s-90s.”

A case of switching environments and specialties

A native of Togo, a small West African country between Benin and Ghana, Bruce said he was first interested in studying mechanical engineering but did not get the opportunity at the University of Lomé, Togo, where he did his master’s studies in agronomy. A mentor instead suggested he pursue entomology, and he followed this up at the International Institute of Tropical Agriculture (IITA) in Cotonou, Benin, where he undertook research on stem borers as a part of his master’s thesis.

“Surprisingly, I found many parallels with mechanical engineering,” said Bruce, who is based at CIMMYT’s office in Kenya. “There is a vast number and diversity of insect species and their roles and interactions in natural systems are incredibly complex, just as occurs between components in mechanical systems.”

When Bruce moved to ICIPE under the African Regional Postgraduate Program in Insect Science (ARPPIS), he needed to add English to his native French and local languages, but said his first major cultural shock was actually dietary.

“In West Africa we usually eat our maize paste with a sauce,” he explained,” but when I sat down to eat in Kenya, I found that the maize paste called ugali was eaten only with milk or meat, a combination known as nyama choma.”

Despite that and other cultural differences, Bruce said he quickly acclimatized to his new work and study setting in eastern Africa.

Nursing maize’s enemies

At CIMMYT, Bruce provides technical backstopping for national research partners to rear maize stem borers and the fall armyworm, as part of breeding improved maize varieties with insect-pest resistance and other relevant traits.

“Special expertise and conditions are required to raise, transport, and apply the eggs or young larvae properly on experimental maize plants, so that infestation levels are as uniform as possible and breeders can identify genetically resistant plants,” Bruce said.

He has also worked with gene constructs from the bacteria known as Bacillus thurigiensis (Bt). When inserted into maize, the constructs bestow the crop with resistance against stem borer species.

“We have plans to deploy Bt maize in selected countries in eastern and southern Africa, but we are awaiting the resolution of regulatory hurdles,” he explained.

Bruce credits Fritz Schulthess, former IITA and ICIPE entomologist, with providing special inspiration and support for his studies and professional development.

“Fritz believes in sharing his scientific experience with upcoming scientists and in speaking his thoughts in black and white,” Bruce said. “He is a workaholic scientist who will review your paper even past midnight and expects your response before 6 am.”