Skip to main content

Author: Mike Listman

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

Every drop of water matters: Leading global research institutes ally to aid farmers in dry and saline ecosystems

CIMMYT and ICBA sign a memorandum of understanding. (Photo: ICBA)

Dubai/Mexico City, 10 January 2024 – An award-winning not-for-profit agricultural research center recognized for its work on sustainable agriculture in the Middle East and North Africa is joining forces with the global organization whose breeding research has contributed to half the maize and wheat varieties grown in low- and middle-income countries.

The International Center for Biosaline Agriculture (ICBA) and CIMMYT have signed an agreement to jointly advance the ecological and sustainable intensification of cereal and legume cropping systems in semi-arid and dryland areas.

“Farmers in such settings confront enormous risks and variable conditions and often struggle to eke out a livelihood, but they still comprise a critical part of the global food system and their importance and challenges are mounting under climate change,” said Bram Govaerts, director general of CIMMYT. “ICBA brings enormously valuable expertise and partnerships to efforts that will help them.”

The specifics of the two centers’ joint work are yet to be defined but will cover soil health, salinity management approaches, crop productivity and breeding, gender-transformative capacity development, and finding markets for underutilized crops, among other vital topics.

Established in 1999 and headquartered in the United Arab Emirates (UAE), ICBA conducts research and development to increase agricultural productivity, improve food security and nutrition, and enhance the livelihoods of rural farming communities in marginal areas. The center has extensive experience in developing solutions to the problems of salinity, water scarcity and drought, and maintains one of the world’s largest collections of germplasm of drought-, heat- and salt-tolerant plant species.

“We are excited about the synergies our partnership with CIMMYT will create. It will focus on a range of areas, but the priority will be given to developing breeding and cropping system innovations to improve farmers’ food security and nutrition, while enhancing water security and environmental sustainability, and creating jobs and livelihoods in different parts of the world,” said Tarifa Alzaabi, director general of ICBA.

Based in Mexico but with projects in over 80 countries and offices throughout Africa, Asia and Latin America, CIMMYT operates a global seed distribution network that provides 80% of the world’s breeding lines for maize and wheat, including many that offer superior yields and resilience in dry conditions and in the presence of crop diseases and pests.

The center is also conducting breeding and seed system development for dryland crops such as sorghum, millet, groundnut, cowpea, and beans, known for their climate resilience and importance as foods and sources of income for smallholder farm households and their communities.

With global and local partners, CIMMYT is also refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

As part of the new agreement, the centers will also explore research collaborations with universities and research institutions in the UAE to develop and test maize varieties that are suitable for the UAE’s climate and soil conditions, as well as organizing training programs and workshops for farmers, extension workers, and other stakeholders in the UAE to build their capacity in maize production and management.

About ICBA

The International Center for Biosaline Agriculture (ICBA) is a unique applied agricultural research center in the world with a focus on marginal areas where an estimated 1.7 billion people live. It identifies, tests, and introduces resource-efficient, climate-smart crops and technologies that are best suited to different regions affected by salinity, water scarcity, and drought. Through its work, ICBA helps to improve food security and livelihoods for some of the poorest rural communities around the world.

www.biosaline.org

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries. CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

staging.cimmyt.org

For more information or interviews:

CIMMYT

Sarah Fernandes

Head of Communications

s.fernandes@cgiar.org

ICBA

Abdumutalib Begmuratov

Head of Knowledge Management and Communications

a.begmuratov@biosaline.org.ae

Millers in Nigeria laud the release to farmers of co-developed, CIMMYT-derived wheat varieties

Nigerian wheat scientists and millers recently recognized and thanked CIMMYT for its contributions to four new wheat varieties released to farmers, citing the varieties’ exceptional performance in field trials and farmers’ fields across national wheat-growing regions.

“The release of these four wheat varieties, uniquely tailored to suit our local conditions, has marked a significant milestone in enhancing food security and farmer livelihoods,” said Ahamed T. Abdullahi, agronomist for wheat value chains at the Flour Milling Association of Nigeria (FMAN), in a recent message to CIMMYT’s Global Wheat program. “The improved characteristics, such as higher yield potential, enhanced disease resistance, and adaptability to local climatic conditions, have significantly boosted wheat productivity. Moreover, the quality profiles of these varieties, as expressed in Nigeria, comply fully with the standards required by the local industry.”

Two of the varieties are bread wheat and yield up to 7 tons of grain per hectare, according to a recent Nigeria Tribune article. The other two are durum wheat, a species grown to make pasta and foods such as couscous and tabbouleh. One of those, given the name LACRIWHIT 14D in Nigeria, was from a CIMMYT wheat line selected for its novel genetic resistance to leaf rust and high-yield potential under irrigated conditions. It was also released in Mexico under the name CIRNO C2008 and is the country’s number-one durum wheat variety, according to Karim Ammar, a wheat breeder at CIMMYT.

Four new bread and durum wheat varieties based on CIMMYT breeding lines are well adapted to local conditions and offer excellent yields and grain quality. (Photo: FMAN)

“Aside from its high yield potential, it has considerable grain size and an aggressive grain fill that is expressed even under extreme heat,” explained Ammar. “These characteristics have certainly helped its identification as outstanding for Nigerian conditions.”

Writing on behalf of FMAN and the Lake Chad Research Institute (LCRI) of Nigeria’s Federal Ministry of Agriculture and Rural Development, Abdullahi said, “We deeply appreciate the expertise and support provided by CIMMYT throughout the development and release process. Your team’s technical guidance on the access to germplasm has played a crucial role in equipping our farmers and extension agents with the necessary skills and resources for successful wheat cultivation.”

Nigeria has a fast-growing population which, coupled with increasing per capita demand for wheat, has made increasing wheat production a national priority, according to Kevin Pixley, director of the Dryland Crops and Global Wheat programs at CIMMYT.

“Until recently, Nigeria produced only 2% of the wheat it consumes, but potential exists to double the current average yield and expand wheat production by perhaps 10-times its current area,” said Pixley. “New wheat varieties will be essential and must be grown using sustainable production practices that improve farmers’ livelihoods while safeguarding long-term food security and natural resources.”

Abdullahi said the release of the varieties demonstrated the power of collaborative research and highlighted the potential for future collaborations. “We look forward to continued collaborations and success in the pursuit of sustainable food systems.”

Sorghum seed sales profit and empower rural women in Tanzania

After years of struggles, a group of women farmers in a remote rural area of Tanzania are finally profiting and forging an enterprise based on local farmers’ high demand for certified seed of sorghum, a dryland crop first domesticated in Africa and used in food and drink, livestock feed and even building materials.

Based in Usoche village, Momba District, Songwe Region, Tanzania, the Jitegemee womens group formed in 2018 to improve their livelihoods through sorghum production. In 2022 the group produced and marketed over 3 tons of certified seed, benefiting from access to foundation and certified seed with support from project partnerships and linkages to global and local initiatives.

“Through us, many women are now educated and motivated to engage in seed production,” said Rodha Daudi Tuja, a representative of the Jitegemee group. “I think in the next season we are going to have many women seed entrepreneurs.”

Based on seed companies’ inability to fully satisfy farmers’ high demand for quality seed of sorghum, the social and behavior change interventions component of the Dryland Crops program of CIMMYT, an international research organization with longstanding partnerships and impacts in eastern and southern Africa, worked with Tanzania’s Centre for Behaviour Change and Communication (CBCC) to encourage youth and women to engage in the seed business, including marketing. Banking on previous experience, the initiative helped the women raise awareness among farmers about the value of quality, improved seed, using fliers, posters, t-shirts and caps.

“The CIMMYT behavior change interventions and CBCC reached us through youth champions who trained us on the features and benefits of improved sorghum seed,” explained Tuja.

Jitegemee women’s group members proudly showcase the sorghum seeds they offer for sale. (Photo: CBCC)

Especially important was training the women received to grow “quality declared seed” (QDS) at an event for 18 women and youth in Mbozi district conducted by The Tanzania Official Seed Certification Institute (TOSCI). QDS offers reliable quality in seed at an affordable price to farmers but is not formally inspected by official seed certification systems.

Immediately after the training, the group purchased 12 kilograms of foundation seed—genetically uniform seed that, when grown under controlled results, produces seed of ensured genetic purity and varietal identity—of the popular Macia sorghum variety from the Tanzania Agricultural Research Institute (TARI) at Hombolo. They multiplied that seed following meticulous quality protocols on a leased, 1.6-hectare farm.

A previous arrangement to grow seed for a local company had fallen through after one cropping season, and the Jitegemee group ended up recycling the seed and growing it for grain for sale. Still, the group realized that selling seed could be a lucrative business, if they could only gain access to foundation seed or certified seed. As part of growing pains during that period, the group lost half its members.

“Before our contact with the CIMMYT project we had a lot of challenges,” Tuja said. “First, we did not know about improved seed, we couldn’t access information about new farming technologies, and we were doing subsistence agriculture. However, after the project we were able to access seed and information at the Youth Quality Centres and through radio programs.”

“I advise youth and my fellow women to join us because, before, we had no hope in sorghum production but now we are prospering. The demand for sorghum seed is very high, a lot of farmers are now demanding improved seeds, and our group alone cannot meet the growing demand for seed.”

We gratefully acknowledge Florian Ndyamukama, Centre for Behaviour Change and Communication (CBCC), Tanzania, for contributing this story. 

Extension capacity-building leverages Nepal soil, seed and science for rice farming

Workshop participants. (Photo: CIMMYT)

Staff of the Nepal Seed and Fertilizer (NSAF) project conducted a three-day “training of trainers” workshop on integrated soil fertility management and related practices for commercial rice farming, for 50 agricultural technicians from 50 farm cooperatives in districts of mountainous midwestern Nepal and its lowland Terai Region.

Held in Nepalgunj, midwestern Nepal, the workshop focused on the “4Rs” for soil fertilization—right source, right rate, right time, and right place—along with other best farming and soil nutrient stewardship practices for rice-based farming systems.

“Subject matter was comprehensive, covering variety selection, transplanting, weeding, management of nursery beds, fertilizer, irrigation, controlling pests and diseases and proper handling of rice grain after harvest,” said Dyutiman Choudhary, NSAF project coordinator and scientist at CIMMYT. “Topics relating to the integrated management of soil fertility included judicious application of organic and inorganic fertilizer, composting and the cultivation of green manure crops such as mungbean and dhaincha, a leguminous shrub, were also included.”

Support to sustainably boost Nepal’s crop yields

With funding from the United States Agency for International Development (USAID), the NSAF project promotes the use of improved seeds and integrated soil fertility management technologies, along with effective extension, including the use of digital and information and communication technologies.

Agriculture provides livelihoods for two-thirds of Nepal’s predominantly rural population, largely at a subsistence-level. Rice is the nation’s staple food, but yields are relatively low, requiring annual imports worth some $300 million, to satisfy domestic demand.

Workshop participants attended sessions on digital agri-advisories using the Geokrishi and PlantSat platforms and received orientation regarding gender and social inclusion concerns and approaches—crucial in a nation where 70% of smallholder farmers are women and exclusion of specific social groups remains prevalent.

“Topics in that area included beneficiary selection, identifying training and farmer field day participants, and support for access to and selection of improved seed and small-scale farm equipment,” explained Choudhary. “The participants will now go back to their cooperatives and train farmers, local governments and agrovets on improved rice production.”

Nepal scientists and national research programs have partnered with CIMMYT for more than three decades to breed and spread improved varieties of maize and wheat and test and promote more productive, resource-conserving cropping systems, including rotations involving rice.

India transforms wheat for the world

India can applaud a hallmark in national food production: in 2023, the harvest of wheat—India’s second most important food crop—will surpass 110 million tons for the first time.

This maintains India as the world’s number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolution—the modernization of India’s agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.

“Newer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,” said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. “More than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Center’s international yield trials and nurseries or developed locally using CIMMYT parents.”

Wheat grain yield in Indian farmers’ fields rose yearly by more than 1.8 percent—some 54 kilograms per hectare—in the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.

“The emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,” Singh explained. “This both protected their crops and delivered breeding gains for yield and climate resilience.”

CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.

Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.

Farm innovations for changing climates and resource scarcities

Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.

New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.

Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.

Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)

“This ‘zero tillage’ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,” said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). “Also, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.”

Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.

Science and policies ensure future wheat harvests and better nutrition

Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. “Added to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.”

To safeguard India’s wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladesh’s wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.

“More than a dozen wheat blast resistant varieties have been deployed in eastern India to block the disease’s entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,” said Pawan Singh, head of wheat pathology at CIMMYT.

Building on wheat’s use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.

“At least 10 such ‘biofortified’ wheat varieties have been released and are grown on over 2 million hectares in India,” said Velu Govindan, CIMMYT breeder who leads the Center’s wheat biofortification research. “It is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.”

A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.

Celebrating joint achievements and committing for continued success

The April-June 2018 edition of the “ICAR Reporter” newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research “…one of the longest and most productive in the world…” and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.

Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts,  Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of India’s Ministry of Agriculture and Farmers Welfare and Director General of ICAR, “reaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.”

“The ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,” said Gyanendra Singh, director, ICAR-IIWBR. “This in turn advances global peace and prosperity.”

India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)

According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. “The way forward to the next milestone — say, harvesting 125 million tons of wheat from the same or less land area — is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,” he said.

Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workers’ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.

Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UK’s Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).

Former CIMMYT wheat scientist, Mohan Kohli, receives Paraguay’s National Order of Merit award

Paraguay’s Minister of Foreign Affairs, Ambassador Julio César Arriola, recently bestowed on Man Mohan Kohli, retired wheat geneticist of CIMMYT the “Comendador” award of the country’s National Order of Merit, highlighting the scientist’s “…exceptional contribution to Paraguayan agriculture and economy.”

A dedicated field specialist, on 2 August 2023 retired CIMMYT wheat geneticist Man Mohan Kohli was recognized as “Comendador” of the Paraguay’s National Order of Merit. In his acceptance speech, Kohli cited the benefits of public-private partnerships to profit farmers and catalyze food grain value chains. (Photo: CIMMYT)

A native of India, where he completed schooling including a Ph.D. in wheat genetics, Kohli worked at CIMMYT during 1971-2004 on topics including spring x winter wheat crosses, resistance in wheat to the rust and other diseases, and the improvement and promotion of triticale, a wheat x rye hybrid.

In 1978 he was assigned to a CIMMYT regional program involving wheat breeding, development and training in collaboration with countries of the Southern Cone of South America, which included facilitating the regional testing and exchange of wheat breeding lines and selection data.

As of 2004, Kohli has been an active part-time consultant with Paraguay’s national wheat program and the Bioceres Group in Argentina.

“Funding ended for CIMMYT wheat research in Paraguay in 1993,” Kohli said. “In 2003 we started direct cooperation again through a joint venture including the Ministry of Agriculture and Livestock, the Paraguayan Chamber of Cereals and Oilseeds Exporters, and CIMMYT.”

“Back in 2003, Paraguay was producing about 320,000 tons of wheat each year and importing over 200,000 tons. Now, yearly output is around 1 million tons and the country exports almost a third of that.”

Kohli said the joint initiative had promoted higher-yielding wheat varieties and farming methods, lowered the costs of agrochemicals, and helped form associations involving farmers and millers—the complete cycle from sowing to marketing for wheat.

Paraguayans eat an average of over 85 kilograms of wheat each year as pasta, bread and other bakery products.

Kohli’s career has led him to work with science luminaries such as M.S. Swaminathan, Glenn Anderson, Joe Rupert, Cal Qualset, Warren Kronstad, Frank Zillinsky, and Sanjaya Rajaram, among others.

“I met CIMMYT scientist and eventual Nobel Peace laureate, Dr. Norman E. Borlaug, in 1967,” Kohli said. “We continued to meet every year on his visits to India and, when I was about to finish my Ph.D. in 1970, he invited me to join the team at CIMMYT.”

“It has been a privilege and honor to have worked alongside many dedicated colleagues at CIMMYT and national programs who have contributed significantly to building research capacities and global food security over the last 50 years. This award is dedicated to all of them and the farmers who have been the primary source of inspiration for our work”.

For more information in Spanish, see:

Paraguay le otorga la Orden Nacional del Mérito a Mohan Kohli, respetada figura del sector agrario

Catalyzing smallholder farming in Mexico

Scientists from CIMMYT, founded in Mexico in 1966, have pursued decades of participatory research with Mexico’s smallholder maize farmers to improve their local varieties for traits like yield and insect resistance, while preserving their special grain quality, as well as testing and promoting zero-tillage and other resource-conserving farming practices.

Farmer Maria Luisa Gordillo Mendoza harvests a plot of maize grown with conservation agriculture techniques in her field in Nuevo México, Chiapas. (Photo: Peter Lowe/CIMMYT)

Smallholder farm operations account for more than 80% of all farms worldwide and produce roughly 35% of the world’s food, according to FAO census data and follow-up studies.

An estimated two-thirds of the Mexico’s farmers are smallholders, typically working challenging agroecologies scattered across the country’s mountainous terrain and applying generations-old subsistence practices to grow low-yielding local maize varieties.

Ancient milpa multicropping systems can lift up the present and future

The milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — has a millennial history in the Americas and can furnish a vital supply of food and nutrients for marginalized, resource-poor communities.

One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to a CIMMYT-led study in the western highlands of Guatemala, an isolated and impoverished region, reported in Nature Scientific Reports in 2021.

But milpas are typically grown on much smaller areas than a hectare, so households cannot depend on this intercrop alone to satisfy their needs. A solution? Customized milpas that merge farmers’ age-old wisdom and practices with science-based innovation.

An example is planting fruit trees — guava, avocado, mango, peaches, or lime among others — among milpa crops in lines perpendicular to hill slopes. The practice was tested and promoted in the Los Tuxtlas region of the state of Veracruz by Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) and the Colegio de Postgraduados (ColPos) and has been refined by farmers in other areas through CIMMYT-led innovation networks.

Planted milpa crops in lines perpendicular to the slope on a steep hillside in Chiapas, Mexico. (Photo: Peter Lowe/CIMMYT)

In Los Tuxtlas the practice provided added income and nutrition, dramatically reduced erosion, improved land and water-use efficiency by around 50%, and boosted soil health and fertility.

In the state of Puebla and other parts of South and southwestern Mexico, milpa-fruit tree intercrops have worked well on steep hillsides. In the state of Oaxaca, for example, versions of the practice have notably improved farming by indigenous communities in the Mixe and Mazateca regions, supported by outreach of the Mexican Agency for the Sustainable Development of Hillsides (AMDSL), a partner in a CIMMYT research hub in the region.

Research by AMDSL and CIMMYT on smallholder plots in two Oaxaca municipalities where farmers have been combining milpas with peach and avocado production and conservation agriculture practices for more than a decade found that cropping diversification, together with use of zero tillage and keeping crop residues on the soil rather than removing or burning them, raised total yearly crop outputs by as much as 1.7 tons per hectare and reduced farmers’ risk of catastrophic crop losses due to droughts or other climate extremes.

Blue maize pleases diners and delivers profits

Farmers’ local maize varieties yield less than hybrids but are still grown because they provide ideal grain quality for traditional foods, as well as marketable stalks and leaves to feed farm animals and maize husks for wrapping tamales, to name a few products.

Building on longstanding partnerships with INIFAP and the Autonomous University of Chapingo (UACh) to improve local varieties and preserve maize genetic diversity in Mexico, CIMMYT breeders have recently developed improved blue maize hybrids and open-pollinated varieties.

Sought by restauranteurs worldwide for its flavor and beauty, blue maize grain normally comes from native varieties grown by smallholder farmers on small plots with low yields and variable quality.

The new CIMMYT varieties are derived from traditional Guatemalan, Mexican, and Peruvian landraces and feature higher yields, more consistent grain quality, and enhanced resistance to common maize diseases, offering smallholders and other Mexican farmers a profitable product for the country’s booming restaurant industry and for export chains.

Selection of corn varieties for the state of Morelos, Mexico. (Photo: ACCIMMYT)

Parental inbred lines of the new hybrids have been distributed to private and public partners, who are developing their own hybrids and OPVs in Mexico. CIMMYT continues to test the new hybrids under various farming systems to ensure they produce stable yields when grown in farmers’ fields.

Data driven extension

Using cutting-edge data systems, CIMMYT has leveraged information from nearly 200,000 plots representing more than 26,000 hectares across diverse agroecologies to offer Mexican farmers — including smallholders — site-specific recommendations that make their farming systems more productive, resilient, and sustainable. The initiative was supported by MasAgro, an integrated development partnership of Mexico and CIMMYT during 2010-21 and funded by Mexico’s Secretariat of Agriculture and Rural Development (SADER).

Smallholder Mexican farmers adopt resource-conserving innovations: slowly and in bits

Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.

Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.

“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”

Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)

Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.

They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.

“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”

Advancing more sustainable farming in Mexico

Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.

CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El Batán, Mexico. (Photo credit: CIMMYT)

CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.

  • Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. “We’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
  • With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil beds…. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
  • Farmers in the Milpa Sustentable project in the Yucatán Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of Yucatán. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
  • CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer María Martínez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
  • With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario Guzmán Manuel of San Francisco Chindúa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”

A Mexican farm research program gains praise and interest for use abroad

Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known asMasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Tlaltizapan Experimental Station in Morelos, Mexico is used through the winter for drought and heat trials and through the summer for yield-trials and biofortification. (Photo: Alfonso Cortés/CIMMYT)

As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.

The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.

MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.

State-level partners sign on to MasAgro

Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.

MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)

CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.

An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.

Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.

Acclaim and interest abroad for MasAgro

MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:

Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
  • The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
  • The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
  • The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
  • During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
  • Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgro’s farmer outreach component.
  • MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.

Moving out and beyond

In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.

Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.

Farmer Marilu Meza Morales harvests her maize in Comitán, Mexico. (Photo: Peter Lowe/CIMMYT)

As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.

“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.

The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “…is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”

CIMMYT director general and cropping system scientist to receive the 2023 Glenn Anderson Lectureship Award

The Canadian Phytopathological Society (CPS) will bestow on Bram Govaerts, director general of CIMMYT, the 2023 Glenn Anderson Lectureship Award, during the upcoming International Congress of Plant Pathology (ICPP2023) in Lyon, France, on August 21, 2023.

Bram Govaerts, CIMMYT director general, participates in the World Food Prize and Borlaug Dialogue. (Photo: CIMMYT)

The award honors the legacy of Robert Glenn Anderson (1924-81), eminent Canadian agricultural scientist and former CIMMYT wheat research director who helped ignite in India the “green revolution,” a rapid modernization of agriculture during the 1960s-70s and by which that nation went from grain shortages and hunger to becoming a leading grain exporter.

A bioscience engineer and soil scientist who is a PhD graduate from Belgium’s Katholieke Universiteit Leuven and has worked in Africa, Asia, and Latin America, Govaerts will give the keynote address “Agrifood system for a food and nutrition secure world: From efficiency to resilience,” describing in part the relevance of CIMMYT and its partners’ work.

“Early warning and surveillance systems are key to building resilience in food insecure communities and regions,” said Govaerts. “Supporting this, in concert with national agricultural research systems and private partners, CIMMYT crop breeding programs yearly disseminate dozens of disease resistant, climate resilient varieties of maize, wheat, and dryland cereals, where they are most needed.”

“The Center’s science and partnerships have helped prevent the spread of deadly crop pests and diseases in sub-Saharan Africa and South Asia,” he added, “and we have new ‘Glenn Andersons’ who are doing exactly what is needed to strengthen global food security, with plant health innovations and systemic thinking.”

Borlaug’s wish: Take it to the farmer

Working with scientists, training specialists, extension agents, farmers, and communications and technology experts, a CIMMYT program led by Govaerts for over a decade in Mexico applied the admonition of Norman E. Borlaug, Nobel laureate and colleague of Anderson, to “take it to the farmer,” combining the right seed with the right conservation agriculture production practices embedded in integrated markets, while recognizing and incorporating farmer knowledge.

“Ongoing efforts of the Center and national and local partners are promoting the adoption of conservation agriculture-based sustainable intensification to transform food systems throughout the Global South” Govaerts explained. “The training offered, and the advisory systems supported by CIMMYT’s work aim to empower women and disadvantaged social groups, while offering opportunities for fulfilling livelihoods to a new generation of farmers who will grow nutritious food for all.”

A CIMMYT scientist since 2007 as a Post-doctoral Fellow, Maize and Wheat based Cropping Systems Management, and current director general, in 2014 Govaerts received the World Food Prize’s “Norman Borlaug Award for Field Research and Application from the World Food Prize” for the development and spread of sustainable agricultural systems. He is A.D. White Professor-at-Large at Cornell University and, in 2020, was elected a Fellow of the American Society of Agronomy (ASA) for outstanding contributions to the field of agronomy.

The Robert Glenn Anderson lecture series on the security of the world food supply was first given at joint meetings of the Canadian Phytopathological Society (CPS) and American Phytopathological Society (APS) in 1986 and an endowment fund was then established by the CPS. More recently, the Lecture has been given at the International Congresses of Plant Pathology (ICPP1998 to 2018).

As a Robert Glenn Anderson lecturer, Govaerts enters the hallowed company of other distinguished scientists who have been invited to give the address, including Norman E. Borlaug (1992); Per Pinstrup-Andersen, Emeritus Professor of Cornell University (2000), South African researcher Jennifer A. Thomson (2015); and late World Food Prize laureate and CIMMYT wheat director, Sanjaya Rajaram (2019).

For more information or interviews:

Ricardo Curiel
Communications manager to the director general
CIMMYT
r.curiel@cgiar.org

Scientists urge shifting more nitrogen to low-input farms and better use on high-yield farms

Integrated management of organic and inorganic nitrogen sources in high- to low-yield cereal production could bring yearly savings in nitrogen fertilizer of over 1 million tons in India, some 90,000 tons in Ethiopia, and more than 20,000 tons in Malawi, according to a new scientific paper, “Spatially differentiated nitrogen supply is key in a global food-fertilizer price crisis.”

“Global policies and governments should prioritize nitrogen supplies to low-yield, low-fertility cropping systems, such as smallholder maize and rice farms in Malawi, which are representative of the highly N-deficient cereal systems relied upon by over 100 million people in sub-Saharan Africa,” said Sieglinde Snapp, director of the Sustainable Agrifood Systems Program at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the paper. “Those farmers should also ramp up organic nitrogen inputs, such as manure and legume crops.”

In the intensive, high-yield cropping systems of India, farmers generally over-apply N fertilizer on 90% of the rice and wheat crops and more than half of maize crops. Less than half the nitrogen is taken up and used by the crops and the rest is lost into the environment, contaminating water, land, and the atmosphere. “Simply saving the excess fertilizer from over-fertilized areas and shifting it to low-application areas could increase global crop yields by 30%, with huge reductions in greenhouse gas emissions,” said Tek Sapkota, co-author of the paper and climate change leader at CIMMYT.

This study is based on evidence of achievable shifts in nitrogen management over 1-2 years, for a modest proportion of cropped area (10%). “We did not assess interventions with longer time horizons or large investment requirements such as precision agriculture, mechanization, or deep placement of fertilizer,” Snapp explained.

Snapp and her colleagues used evidence from the scientific literature to estimate N-fertilizer savings from the above interventions for maize, wheat, and rice cropping systems in India, Ethiopia, and Malawi. Integrated organic and inorganic nitrogen management was estimated by considering manure and legume N inputs along with N fertilizers. The effect of reallocating public subsidies to more cost-effective, high-N fertilizer was calculated as the extra nitrogen that could be made available through a lower unit cost of nitrogen.

Food production vs healthy environment?

According to Snapp, humanity is caught in a bind. Food crops grown using synthetic nitrogen fertilizer have fed expanding world populations since the 1960s, fertilizer use has increased nearly 10-fold since then, and significantly higher food demands lie ahead to mid-century. At the same time, poor use of N fertilizer is hurting the environment and, most recently, geopolitical conflicts have disrupted N fertilizer supplies and exposed the vulnerabilities of the global fuel-fertilizer-food nexus.

“In regions where cropping systems are highly deficient in nitrogen, investment is needed in policies and extension education to promote the use of organic nitrogen residues and legume crops,” Snapp said.

Extension agencies, she suggests, can extend their reach using digital tools and bi-directional communication approaches that engage local knowledge and farmers, including advisories regarding local soils and crop and fertilization requirements.

Science and partnerships are critical to reach G7 food security goals

Miguel Ezequiel May Ic, San Felipe Orient, Quintana Roo (Photo: Peter Lowe/CIMMYT)

In a world where more than 800 million women, men, and children still go hungry, the International Maize and Wheat Improvement Center (CIMMYT) offers proven science and formidable partnerships to help achieve the recently stated ambitions of prosperous nations for global food security and nutrition.

Meeting in Hiroshima, Japan, the weekend of 19 May 2023, the grouping of seven wealthy nations known as the G7 released a public statement recognizing that the world faces the highest risk of famine in a generation and the need of working together to build more resilient, sustainable, and inclusive agriculture and food systems.

“Realizing resilient global food security and nutrition for all is our shared goal for a better future for each human being,” reaffirmed the leaders of Japan, Australia, Brazil, Canada, Comoros, the Cook Islands, France, Germany, India, Indonesia, Italy, the Republic of Korea, the United Kingdom, the United States of America, Vietnam, and the European Union, in a joint statement.

The six-page statement lays out detailed actions, policy goals, and partnerships to respond to the immediate food security crisis, in which more than 250 million persons in 58 countries need emergency food assistance, as well as preparing for and preventing future crises.

Research with impacts for marginalized, small-scale farmers

Recognizing the key role of applied research to boost food production while addressing climate shocks, the leaders advocated promoting climate-smart agriculture, including “…agro-ecological, nature-based solutions and ecosystem based approaches and other innovative approaches as appropriate, drawing on the knowledge and evidence base developed by the FAO, IFAD and CGIAR.”

Established in 1971, CGIAR is a global partnership dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources. A founding member and leader in CGIAR, CIMMYT is responsible for major impacts in the productivity of two key food crops, according to Bram Govaerts, director general of CIMMYT.

Celia Agustina Magaña Magaña in her milpa field (Photo: Peter Lowe/CIMMYT)

“Maize and wheat together sustain billions of people worldwide, providing around a fifth of humanity’s nutritional protein and carbohydrates, generating nearly $50 billion in trade each year, and covering 400 million hectares of land — that’s approximately one quarter of the world’s farmland,” said Govaerts. “We stand ready to support G7 efforts.”

“Fully half of the maize and wheat varieties grown in low- and middle-income countries carry CIMMYT breeding contributions,” Govaerts explained. “This and our research on more productive and efficient farming methods for those crops generate approximately $3.5-4 billion each year in enhanced benefits to farmers and consumers.”

As part of its decades-long cropping systems research, CIMMYT has studied and promoted conservation agriculture, a soil- and water-saving approach involving reduced tillage, keeping a cover of crop residues, and growing multiple crops together or in rotations. This approach has become highly relevant for farmers in places such as South Asia, where rising temperatures and fresh water scarcities threaten more than 13 million hectares of crop production. As part of its “cropping systems” approach, CIMMYT has diversified its expertise to groundnut, pigeon pea, chickpea, pearl millet and sorghum, with a strong focus on nutrition and resilience, while maintaining the Center’s foundational work in seed production and seed marketing systems.

The G7 statement cites the importance of dryland cereal and legume crops in settings such as sub-Saharan Africa and South Asia, and CIMMYT has undertaken initiatives to improve the livelihoods of small-scale producers and consumers of sorghum, groundnut, cowpea, common beans, and millets. Among other things, the work generates and shares data on the performance and the availability of seed of improved varieties of those crops.

CIMMYT is co-leading the CGIAR initiative Digital Innovation, which is working across 13 countries in Africa, Asia, and Latin America to improve the quality of information systems and strengthen local capacities to realize the potential of digital technologies, thereby boosting small-scale farmers’ adoption of better practices, their incomes, and their resilience to climate shocks, while reducing the gender gap and managing food system risks.

Partner connections and funding power success

These impacts would not have been possible without CIMMYT’s longstanding, effective relationships with hundreds of public and private partners worldwide, a number of which are mentioned in the G7 statement, as well as the global reach of the jointly-generated, freely-shared knowledge from those collaborations, according to Govaerts.

Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot (Photo: Shiela Chikulo/CIMMYT)

“A 2022 study in Nature Scientific Reports showed that the Center’s climate science, associated with some 90% of its research, appears on academic and research platforms as well as in social media and government and international organization websites across the Global North and South, contributing to the decolonization of science and the democratization of scientific debates,” he said.

CIMMYT partnerships with and support for private seed producers and dealers have helped fuel the adoption and spread of drought tolerant maize varieties in Africa. A 2021 study shows that, during 1995-2015, nearly 60% of all maize varieties released in 18 African countries came from research by CIMMYT or the International Institute of Tropical Agriculture (IITA), bringing yearly benefits as high as $1.05 billion and gaining mention in a blog by Bill Gates.

Regarding support for CIMMYT’s work from prosperous nations, including several G7 members, the Center receives generous investments on the order of $170 million each year from diverse funders including the Bill & Melinda Gates Foundation, the US Agency for International Development (USAID), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, the government of Mexico, and CGIAR.

Hot, dry climates call for resilient, high-performing wheat varieties

Public and private crop research organizations worldwide have worked behind the scenes for decades, bolstering the resilience of staple crops like maize and wheat to fight what is shaping up to be the battle of our time: feeding humanity in a biosphere increasingly hostile to crop farming.

In the case of wheat — which provides some 20% of carbohydrates and 20% of protein in human diets, not to mention 40% of total cereal exports — harvests spoiled by heat waves, droughts, and crop disease outbreaks can send food prices skyrocketing, driving world hunger, poverty, instability, human migration, political instability, and conflict.

Century-high temperature extremes and the early onset of summer in South Asia in 2022, for example, reduced wheat yields as much as 15% in parts of the Indo-Gangetic Plains, a breadbasket that yearly produces over 100 million tons of wheat from 30 million hectares of crop land.

Around half the world’s wheat crop suffers from heat stress, and each 1 °C increase in temperature reduces wheat yields by an average 6%, according to a 2021 review paper “Harnessing translational research in wheat for climate resilience,” published in the Journal of Experimental Botany, which also outlines nine goals to improve the climate resilience of wheat.

Simulating heat shocks in the field using portable plot-sized ‘heating tents’ (Photo: G Molero/CIMMYT)

Droughts and shrinking aquifers pose equally worrying threats for wheat, said Matthew Reynolds, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “Water availability is the biggest factor influencing potential yield in a majority of wheat environments globally,” Reynolds explained. “Studies predict severe water scarcity events for up to 60% of the world’s wheat-growing areas by the end of this century.”

Science and sources to toughen wheat

Along with modernized, more diverse cropping systems and better farm policies, more resilient varieties are crucial for sustainable wheat production, according to Reynolds and a wheat breeder colleague at CIMMYT, Leo Crespo, who added that breeders have been working for decades to stiffen wheat’s heat and drought tolerance, long before climate change became a buzzword.

“Breeding and selection in diverse environments and at targeted test sites characterized by heat and natural or simulated drought has brought farmers wheat varieties that perform well under both optimal and stressed conditions and we’re implementing new technologies to speed progress and lower costs,” said Crespo, mentioning that the Center’s wheat nurseries SAWYT and HTWYT target semi-arid and heat-stressed environments respectively and are sent yearly to hundreds of public and private breeders worldwide through the International Wheat Improvement Network (IWIN). “Retrospective analysis of IWIN data has shown that heat tolerance has been increasing in recent years, according to a 2021 CIMMYT study.”

“Climate change is a serious driver of potential disease epidemics, since changeable weather can increase selection pressure for new virulent pathotypes to evolve,” said Pawan Singh, a CIMMYT wheat pathologist. “We must be ever vigilant, and the IWIN is an invaluable source of feedback on potential new disease threats and changes in the virulence patterns of wheat pathogens.”

In the quest to improve climate resilience in wheat, CIMMYT “pre-breeding” — accessing desired genetic traits from sources like wheat’s grassy relatives and introducing them into breeding lines that can be crossed with elite varieties — focuses on specific traits. These include strong and healthy roots, early vigor, a cool canopy under stress, and storage of water-soluble carbohydrates in stems that can be used as stress intensifies to complement supplies from photosynthesis, as well as an array of traits that protect photosynthesis including ‘stay-green’ leaves and spikes and pigments that protect the delicate photosynthetic machinery from oxidative damage caused by excess light.

Screening highly diverse lines – identified by DNA fingerprinting – from the World Wheat Collection under heat stress. (Photo: Matthew Reynolds/CIMMYT)

Though elite breeding lines may contain genetic variation for such traits, in pre-breeding researchers look further afield for new and better sources of resilience. The vast wheat seed collections of CIMMYT and other organizations, particularly seed samples of farmer-bred heirloom varieties known as “landraces,” are one potential source of useful diversity that cutting-edge genetic analyses promise to help unlock.

Rich diversity for wheat is still found in farmers’ fields in India, in the northern states of the Himalayan region, the hill regions, and the semi-arid region of Rajasthan, Gujarat, Karnataka. The landraces there show tolerance to drought, heat, and saline soils.

The so-called “synthetic wheats” represent another plentiful source of resilience genes. Synthetics are the progeny of crosses of tetraploid wheat (having four chromosomes, like the durum wheat used for pasta) with wild grass species. CIMMYT and other organizations have been creating these since the 1980s and using them as bridges to transfer wild genes to bread wheat, often for traits such as disease resistance and heat and drought tolerance.

The study, creation, and use of bridging lines, landraces, and seed collections with useful traits as part of pre-breeding is described in the 2021 paper “Progress and prospects of developing climate resilient wheat in South Asia using modern pre-breeding methods,” published in the science journal Current Genomics.

Lines with new sources of heat- and drought-tolerance from CIMMYT’s pre-breeding are also distributed to public and private breeders worldwide via the IWIN for testing as the Stress Adapted Trait Yield Nurseries (SATYNs), according to the paper. These special nurseries are grown by national and private breeders throughout South Asia, for example in Afghanistan, Bangladesh, India, Iran, Nepal, and Pakistan. Lines from the nursery have on occasion been released directly as varieties for use by farmers in Afghanistan, Egypt, and Pakistan.

A critical challenge in pre-breeding is to identify and keep desirable wild genes while culling the undesirable ones that are also transferred in crosses of elite breeding lines with landraces and synthetics. One approach is through physiological pre-breeding, where complementary crosses are made to improve the crop performance under drought and heat stress. The second approach is using genomic prediction, on the basis of seeds, or accessions, in the gene bank collection that have gone through genomic and phenotyping analysis for target traits such as heat and drought tolerance. These approaches can also be combined to boost the speed and effectiveness of selecting strong varieties.

Breeding revolutions

Wheat breeding is being revolutionized by advances in “high-throughput phenotyping.” This refers to rapid and cost-effective ways to measure wheat performance and specific traits in the field, particularly remote sensing — that is, crop images taken from vehicles, drones, or even satellites. Depending on the wavelength of light used, such images can show plant physiochemical and structural properties, such as pigment content, hydration status, photosynthetic area, and vegetative biomass. Similarly, canopy temperature images from infrared photography allow detection for crop water status and plant stomatal conductance.  “Such traits tend to show better association with yield under stress than under favorable conditions”, said Francisco Pinto, a CIMMYT wheat physiologist who is developing methods to measure roots using remote sensing. “A remotely sensed ‘root index’ could potentially revolutionize our ability to breed for root traits, which are critical under heat and drought stress but have not been directly accessible in breeding.”

Innovative statistical analysis has greatly increased the value of field trials and emphasized the power of direct selection for yield and yield stability under diverse environments.

Initial results from genomic selection programs, particularly where combined with improved phenotyping techniques, also show great promise. The potential benefits of combining a range of new technologies constitute a valuable international public good.

New initiatives

Launched in 2012, the Heat and Drought Wheat Improvement Consortium (HeDWIC) facilitates global coordination of wheat research to adapt to a future with more severe weather extremes, specifically heat and drought. It delivers new technologies — especially novel wheat lines  to wheat breeders worldwide via the International Wheat Improvement Network (IWIN), coordinated for more than half a century by CIMMYT.

HeDWIC is supported by the Foundation for Food and Agriculture Research (FFAR) and is part of the Alliance for Wheat Adaption to Heat and Drought (AHEAD), an international umbrella organization set up by the Wheat Initiative to bring the wheat research community together and to exchange new germplasm, technologies and ideas for enhancing tolerance to heat and drought.

Cover photo: Night heaters to increase night temperature in the field, as increasingly warmer nights are diminishing yield in many cropping systems. (Photo: Enrico Yepez/CIMMYT) 

Global science partnership promotes climate-smart pathways to address food security and climate crisis

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) is refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

“Zero-tillage and residue management for cereals — that is, sowing the seed directly into unplowed soils and residues from the preceding rice crop — has been adopted on a significant area in the transact of Indo-Gangetic Plain, with positive impacts on crop yields, profitability, and resource-use efficiencies,” said Tek Sapkota, senior scientist in agricultural systems/climate change, CIMMYT.

Continuous maize plot in El Batán, Mexico (Photo: CIMMYT)

 

The paper “Conservation agriculture for sustainable intensification in South Asia,” published in the science journal Nature Sustainability reported that, compared to the conventional practice, conservation agriculture resulted overall in a 4.6% higher grain yield, a 14.6% improvement in water use efficiency, and a 25.6% greater net economic return. The net economic return was 40.5% higher for full conservation agriculture but, given the benefits of partial adoption of the practices, rigid adherence to an “all or nothing” approach to spread conservation agriculture in South Asia does not seem warranted.

Conservation agriculture also offers several ecosystem services. In the study data, global warming potential was reduced by as much as 33.5% in rice-wheat systems, values that are consistent with other research. Moreover, conservation agriculture-based practices provide an economically feasible alternative to burning rice residues, a serious public health threat in northwestern India given the roughly 23 million tons of residues that are burned each year in the region.

“More widespread adoption of zero-tillage in India has been made possible with the development of next-generation tractor-drawn implements that allow direct seeding into heavy residues, as well as business models whereby implement owners contract out with neighboring farmers to sow their crops and provide other services,” said Sapkota. “National governments in South Asia are actively promoting conservation agriculture to address residue burning and other farming sustainability problems.”

Aerial view of maize and wheat breeding plots (Photo: CIMMYT)

Fitting conservation agriculture to maize farming in Mexico

Efforts to adapt conservation agriculture and promote its adoption by farmers operating highly-diverse, mostly rainfed maize-based cropping systems in Mexico have had mixed results. A recent study assessed soil health in 20 trials in starting between 1991 and 2016 in agro-ecologies ranging from handplanted traditional systems to intensive irrigated systems, contrasting conservation agriculture effects with those of local conventional practices, which commonly involve tillage, residue removal, and continuous maize production.

As reported in the 2021 paper “Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico,” published in the science journal Land Degradation and Development, conservation agriculture increased maize yields at most sites by 0.85 tons per hectare, on average. Organic matter and nitrates were higher in topsoils under conservation agriculture and soil aggregate stability was greater, meaning the soil more effectively moved air and water to plant roots. For other soil health parameters, such as nutrient content, pH, or compaction, most values were determined more by local soil type than by crop management.

Maize plot in El Batán, Mexico (Photo: CIMMYT)

“Given the significant variation across agro-ecologies, local adaptive trials are important to assess the effects of conservation agriculture on soil health and fit it to local conditions,” said Simon Fonteyne, a CIMMYT cropping systems agronomist and first author of the paper.

Emissions control

Several recent studies have assessed the costs and potential of various sustainable intensification technologies for reducing greenhouse gas emissions in India, Bangladesh and Mexico. Their findings can help inform national policies on food security, economic development and environment, including those relating to the Paris Agreement.

In the 2019 study “Cost-effective opportunities for climate change mitigation in Indian agriculture,” published in the journal Science of the Total Environment, CIMMYT and partners found that estimated total emissions from Indian agriculture were 481 tons of CO2 equivalent (MtCO2e) in 2012, with crops contributing over 40% and livestock nearly 60%. Under a business-as-usual scenario, agricultural greenhouse gas emissions in India would be 515 MtCO2e by 2030. This annual emissions could be reduced by 85.5 MtCO2e through adoption of mitigation practices and about 80% of that reduction could be achieved through measures that would actually save money and, in many cases, could be implemented with current technology. The efficient use of fertilizer, zero-tillage, and rice-water management could deliver more than 50% of the technical abatement potential.

“Realization of this mitigation potential will depend largely on the extent adoption by farmers,” said Sapkota, who was lead author of the study. “Large-scale adoption of apparently win-win options is not happening, so the government of India will need to apply appropriate policy measures and incentives, consistent with its food security and emission reduction goals.

A similar study in Bangladesh, reported in the 2021 paper “Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh,” published in the journal Science of the Total Environment, found greenhouse gas emissions from agriculture in Bangladesh of 76.8 MtCO2e for 2014–15. Yearly emissions by 2030 under a business-as-usual approach would approximate 86.9 MtCO2e and, by 2050, about 100 MtCO2e. Adoption of realistic, climate-smart crop and livestock management options to reduce emissions offer mitigation opportunities of 9.51 MtCO2e per year by 2030 and 14.21 MtCO2e by 2050. As much as 75% of this potential can be achieved through cost-saving options that benefit smallholder farmers. As is the case for India, realization of this potential largely depends on the degree to which supportive policies and measures can encourage farmer adoption.

The Walmart Foundation and CIMMYT promote crop diversification in Oaxaca, Chiapas, and Campeche, Mexico. (Photo: CIMMYT)

A similar rapid assessment of costs for to mitigate greenhouse gas emissions from crops, livestock, and forestry in Mexico found a national mitigation potential of 87.9 MtCO2eq per year, fully 72.3 MtCO2eq from livestock. As reported in the 2022 paper, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico,” published in the science journal Carbon Management, implementing mitigation potential on Mexican cropland could bring net benefits, compared to livestock and forestry options, which involve net costs. In the 2021 paper “Reduced Water Use in Barley and Maize Production Through Conservation Agriculture and Drip Irrigation” a reduction of emissions caused by lower fuel use in conservation agriculture of 192 kg CO2 ha−1  was measured in farmers fields, as well as an increase in soil carbon and a reduction in water use.