Skip to main content

Author: mcallejas

Afriseed: How improved legume seed can help transform Zambia’s agrifood systems

Certified soyabean seed from Afriseed. (Photo: AFRI archives)

In Zambia, smallholder farmers obtain their seed from a variety of sources. Over 75 percent of farmers in Zambia have adopted certified maize seed and about 30 percent in southern Africa, overall. The private sector has been instrumental in creating demand for certified and timely delivery of seed to remote areas, and the Government of Zambia’s Farmer Input Support Programme (FISP) has largely contributed to better accessibility to certified seed for farmers. In 2022–2023, of the three million registered smallholder farmers in Zambia, more than one million accessed certified seed through FISP.

Afriseed is a seed company in Zambia that has been gaining ground in local seed markets. It has emerged as a catalyst for helping smallholder farmers transition to new, high-yielding legume varieties. Afriseed provides solutions to help smallholders increase their agricultural productivity with improved seed varieties of cereals and legumes and assist them with technology transfer. The company aims to increase the food security and incomes of Zambia’s smallholder farming community, which accounts for 90 percent of agricultural output in the country. During the 2022–2023 farming season, a critical turning point was reached when Afriseed became a partner in the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, a two-year project under CIMMYT, with the aim of scaling-up production of certified seed varieties of soybean and common bean.

Under the partnership, Afriseed promotes the cultivation of improved legume seed through a smallholder farmer seed multiplication approach. By engaging with practicing smallholder farmers and signing grower contracts, basic seeds are multiplied into certified seed for soybean and common bean. Certified seed is a known variety produced under strict seed certification standards to support varietal purity. In collaboration with the Seed Control and Certification Institute (SCCI), the country’s national seed authority, contracted farmers received training on climate-smart agricultural techniques and seed production guidelines. Through extension services to seed growers, smallholder farmers can adhere to the seed production guidelines set out in the National Seed Act to ensure the quality of certified seed produced.

Smallholder farmers hold improved, certified seed. (Photo: AFRI archives)

Afriseed has invested more than USD 335,000 toward supporting the production, aggregation, and processing of 317 t of certified climate-smart legume seeds—265 metric tonnes (MT) for soybean and 52 MT for common bean. Data have shown that the seeds were aggregated from 313 smallholder seed growers, 40 percent of whom were women, in Zambia’s Eastern Muchinga, Copperbelt and the Northern provinces. Seed aggregation improves access to quality seed varieties, increases crop yields and incomes, enhances integration into value chains, and creates market links for smallholder farmers.

Notable progress has been made with the contracted farmers, who have applied improved crop management practices and technologies on more than 600 ha of land to produce the seed. With this encouraging progress, Afriseed intends to scale up its last-mile seed distribution strategy to reach and directly help an estimated 35,000 underserved rural smallholder farming households with improved legume seeds in the 2023–2024 cropping season.

AID-I is one of the ways in which Feed the Future, the U.S. Government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. One of the project’s initial actions is to strengthen local seed systems so that agribusinesses can reach smallholder farmers with a diversity of improved seeds varieties, including climate-resilient and more nutritious varieties for maize and legumes.

Why we need to go beyond technology

To combat food loss and waste, Sylvanus Odjo post-harvest specialist at CIMMYT and Heike Ostermann post-harvest expert at Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) argue for a comprehensive approach that goes beyond single solutions such as storage technologies.

Read the full story.

CIMMYT wheat varieties help Ethiopia’s farmers mitigate devastating rust diseases

Ethiopia is the largest wheat producer in East Africa, with about 65% share of the total wheat production in sub-Saharan Africa. The area under wheat increased from about 1.5 million hectares in 2010 to 2.5 million hectares in 2023. More importantly, the productivity increased from 1.8 tons per hectare to about 3 tons per hectare in the same period, implying an increase of about 5% per annum in productivity (See Figure 1).

Several factors have contributed to this spectacular increase in productivity, including better farm practices implemented through clustering farmers land to reduce production costs, and introducing new, improved varieties which enable farmers to withstand challenges of crop diseases.

Figure 1: Wheat grain yield trends in Ethiopia by decade, 1960 to 2022 (USDA data).

A DNA finger printing study found that about 87% of the wheat area in Ethiopia comprises of varieties developed by the International Maize and Wheat Improvement Center (CIMMYT). In 2023, the Ethiopian Institute of Agricultural Research (EIAR) released six new wheat varieties of CIMMYT origin aimed for the mid to highlands (> 1800 meters above sea level) and lowlands (< 1800 masl) of the country. “These newly released varieties provide options for farmers to face devastating rust diseases and at the same time obtain higher productivity,” said wheat breeder Leonardo Crespo.

Gadisa Alemu, wheat breeder based in EIAR, Kulumsa, added that the CIMMYT varieties were tested in farmers’ fields prior to release. “This allows participating farmers to have quicker access to seed of selected varieties,” he said.

Wheat breeders . The aim was to obtain additional insights into the activities of CIMMYT’s partners and co-design a strategy that allows early evaluation and access to CIMMYT germplasm by national partners in Ethiopia. The team visited research centers in Holetta (highlands), Debre Zeit and, Kulumsa (midlands), and Arsi Negele (lowlands). Kulumsa, together with the highlands of Meraro and Asasa plains, represent about 60-70% of the wheat area in Ethiopia.  “These are important sites for wheat breeding activities in Ethiopia. Given that Holetta and Debre Zeit are hot spots for diseases, there is an increased interest in the Arsi Negele region to expand wheat production under irrigated conditions,” said Bekele Abeyo, wheat breeder and CIMMYT’s Ethiopia Country Representative.

AGG Maize and Wheat Improvement Teams Meet with Partners to Develop CG-NARES Breeding Strategy

In the first fortnight of September 2023, researchers from the International Maize and Wheat Improvement Center (CIMMYT) and National Agriculture Research and Extension System (NARES) met in Nairobi, Kenya to create high-level strategies and guiding principles for CG-NARES breeding activities. This is in alignment with the ‘Genetic Innovations’ initiative of the One CGIAR strategy. CIMMYT representation included breeding teams from the wheat, maize, and dryland crops. The meetings were organized by Bill & Melinda Gates Foundation and CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project team.

It was recognized that the aforesaid strategies and principles need to be based on the biology of the crops and the context of each breeding program; incorporate the logistics of the breeding operations; and implement data driven tools for decision making such as genomic selection.

Participants shared how the application of novel and innovative technologies shortens the breeding cycles, accelerates the rate of genetic gain, and provides tools to enable the evaluation of plant materials (future variety candidates) and future target environments where these varieties will be grown.

It was concluded that effective breeding networks can be a strong instrument to enable faster delivery of improved germplasm to farmers. For this to happen efficiently, the networks require a high degree of coordination, organizational structure, governance, and clarity of roles. “It is fundamental for network members to agree the objectives, vision and expected outcomes of collaborative activities. This forms the basis for co-design and co-implementation of crop improvement plans” said Kevin Pixley, Interim Director of the Global Wheat Program and Director of the Dryland Crops Program.

The meeting also served as a platform for AGG’s and dryland crop’s breeding teams to exchange ideas and experiences. For instance, the Maize team shared their experience and learnings from on-farm-testing activities. The Wheat team shared the evolution and path of breeding modernization and implementation of new technologies. The Dryland Crops team shared their experience with co-designing and co-implementing breeding networks with NARES partners in Africa.

Viewpoint: Hunger crisis — The number of countries unable to feed their populations has soared 400% since 2000. Here’s why crop biotechnology is a key solution

Global concerns are escalating as population growth, climate challenges and regional conflicts contribute to a food crisis. CIMMYT, in collaboration with 13 countries, is registering 160 drought-tolerant maize varieties to address changing climatic conditions, underscoring the need for unified efforts in global agricultural organizations.

Read the full story.

How K-State research feeds the world

Jared Crain, a research assistant professor of plant pathology, collaborates with CIMMYT on wheat genomics. Leading the Feed the Future Innovation Lab for Applied Wheat Genomics at K-State, Crain and his team annually analyze DNA from 19,000 plants.

Read the full story.

 

Early maturity products popular among farmers in Kenya

Across all production environments in Kenya, early-maturity products demonstrate strong sales. This was revealed in a recent study by the CGIAR Initiative on Market Intelligence. During the long-rains season, farmers in higher rainfall production environments—wet, mid and high altitudes—purchased early-maturity seed products despite potentially lower yields. Also, the short-rains season, which represents almost one-fourth of total maize seed sales, was dominated by early-maturity products.

These insights were obtained through a panel of maize-seed sales data from 722 agrodealers in Kenya during two short-rains seasons and three long-rains seasons in 2020–2022. The study also offers insights into the extent the maturity level of seed products, purchased by farmers in Kenya, aligns with the production environment where they were sold. Market Intelligence applies eight criteria to identify seed product market segments (SPMSs) for CGIAR crop breeding. In the application of these criteria to maize in East Africa, two conditions distinguish the segments: production environment and maturity level. The other criteria do not vary. A key indicator for prioritizing breeding investments across segments is the relative size of SPMSs. In the case of maize, and other crops, teams generally use geospatial data to identify the area of production environments, with the assumption that farmers in each production environment would use the seed product with the maturity level designed for that environment.

The paper contends that a stronger focus on using sales data to inform breeding decisions in maize, and potentially other crops where retailers play an important role in seed distribution, should become a priority for market intelligence. Future work will engage stakeholders in maize seed systems in other countries of East Africa about the changes in demand for earlier-maturing products and the implications for segmentation.

This article is adapted from Market Intelligence Brief 5: Maize Farmers Acquire Early-Maturity Seed Across Production Environmentsthe fifth paper in the ongoing peer-reviewed series published inMarket Intelligence Briefs.

*About Market Intelligence Briefs

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop-breeding teams, and others to work together toward the design and implementation of a demand-led breeding approach. In 2022, the Market Intelligence Brief (MIB) series was created as a valuable communication tool to support informed decision making by crop breeders, seed-system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector, and non-governmental organizations (NGOs).

The author would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund. This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by Bill & Melinda Gates Foundation; Foundation for Food & Agriculture Research (FFAR); United States Agency for International Development (USAID); and United Kingdom’s Foreign, Commonwealth & Development Office (FCDO).

Gov. Little’s Mexico trade mission strengthens trade opportunities for Idaho businesses

During his visit to the CIMMYT, Governor Little initiated conversations between the center, the University of Idaho College of Agriculture and Life Sciences, and various Idaho commodity groups. These discussions aim to explore potential collaborations in wheat breeding, sustainability initiatives, and the advancement of bean seed development.

Read the full story.

Sequestering carbon in soils: what agriculture can do

In Zimbabwe, CIMMYT is studying the long-term effectiveness of integrated farming practices, including tillage, no-tillage, mulching with maize residues, and cowpea rotation. This experiment in a distinct agricultural context provides insights into sustainable strategies and soil carbon stocks.

Read the full story.