Skip to main content

Author: mcallejas

How Atubandike dialogues are redefining gender and youth inclusion in Zambian agriculture

Women and youth are essential drivers of agricultural and economic resilience in Zambia’s rural farming communities. However, they frequently encounter significant barriers such as restrictive social norms and inadequate access to vital resources which hinder their ability to participate fully in the economy.

Female youth sharing her views (Photo: Moono Seleketi).

Recognizing the critical roles of women and youth in shaping the present and future of Zambian agriculture, the ‘Atubandike’ approach, under CIMMYT’s USAID-funded Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub project, has been actively engaging with communities to address systemic barriers faced by these groups. This initiative combines digital tools with face-to-face interactions, creating spaces where community members can share their stories, challenges, and questions to co-create solutions.

Atubandike, which means ‘let’s have a conversation’ in the local Tongo language, was launched in Zambia in 2023 as an advisory service. The model represents a scalable, community-led approach that empowers marginalized groups, including women and youth, as active contributors and leaders in agriculture. With each interaction building upon the previous one, this ongoing work advances the broader mission of fostering inclusivity and resilience across Zambia’s agricultural sector.

To uncover and tackle the structural barriers faced by women and youth, the Atubandike team recently engaged over 1,700 farmers across 14 communities in Southern Zambia, gaining critical insights into the biases that persist in rural areas.

Stereotypes and structural barriers

The community conversations highlighted generational divides and deeply rooted stereotypes that cast youth as disengaged or disinterested in farming. Older community members opined that young people are more drawn to urban lifestyles and reluctant to take on the demanding labor associated with agriculture. One elderly farmer said: “Many youths prefer a comfortable lifestyle and quick money. They don’t have the patience for the hard work farming requires.”

In contrast, younger participants shared that this perception overlooks the genuine obstacles they face such as limited access to land, financing, training, and mentorship opportunities. They emphasized that their lack of involvement often stems from these barriers rather than a lack of motivation.

Young male farmer speaking (Photo: Moono Seleketi).

The consultations also underscored pervasive gender norms that limit women’s roles in agriculture. Despite their significant contributions to household food security, female farmers are often relegated to secondary roles, focusing on ‘women’s crops such as groundnuts, while men cultivate staple crops such as maize and cash crops such as soybean. A participant shared, “The community always perceives men as the real farmers because they are considered the heads of the household.” This perception frequently limits women’s access to critical resources and their decision-making power within the agricultural sphere.

However, through Atubandike’s sessions, communities are beginning to confront these entrenched norms, shedding light on the vital contributions of women and youth in agriculture. This shift is laying the groundwork for a more equitable approach, where both men and women, young and old, are recognized as essential to farming success and household resilience. As these conversations grow, Atubandike is paving the way for solutions that promise meaningful and lasting change for both women and youth in agriculture.

Community-driven solutions

  • Building youth capacity through skills and leadership: Many community members expressed a strong desire to see more youth involved in agricultural activities, emphasizing the importance of hands-on training. “We need to get the youth involved in actual farming [tasks] such as irrigation and crop management. It keeps them busy and teaches them valuable skills,” shared one local leader.

To support this vision, Atubandike is training young community members as digital champions, equipping them with both technical expertise and leadership skills that allow them to mentor their peers and encourage youth participation in agriculture. These digital champions not only extend the reach of Atubandike’s initiatives but also serve as relatable role models, inspiring other young people to engage in agriculture as well as see it as a viable and rewarding path.

  •  Towards a more inclusive future for Zambian agriculture
    The Atubandike initiative – by fostering open community dialogue, empowering digital champions, and promoting household-level collaboration – lays the foundation for a more inclusive future for Zambian agriculture. As each community engagement builds momentum, CIMMYT, through the AID-I project, creates a cycle of empowerment and growth that ensures women and youth are not only heard but also empowered to lead.
Women celebrating at community meeting (Photo: Moono Seleketi).

Amidst the challenges of erratic weather patterns and economic constraints, building resilience through cross-generational and gender-inclusive collaboration is crucial. Atubandike is addressing these geographic and social challenges and paving the way for a future where every farmer, regardless of age or gender, plays a pivotal role in Zambia’s agricultural success.

Enhancing agricultural research with FAO’s AGRIS and AGROVOC programs: A conversation with CIMMYT’s knowledge management team

Farmer examines wheat seed (Photo: CIMMYT).

In a recent series of conversations with CGIAR knowledge management teams, Sara Jani and Valentina De Col interviewed Jesús Herrera de la Cruz, CIMMYT’s Deputy Director of Knowledge Management and Information Technologies. They discussed CGIAR’s collaboration with the Food and Agriculture Organization of the United Nations (FAO) on AGRIS and AGROVOC – two key resources in agricultural research. AGRIS is a comprehensive bibliographic database focusing on agriculture and nutrition, while AGROVOC is a multilingual thesaurus covering a wide range of agricultural terms.

Benefits of being in AGRIS

CIMMYT has shared its knowledge products with AGRIS and plans to do so more. What are the benefits of your center’s participation in AGRIS?

Jesús: When I think about it, there’s one clear benefit: projection. AGRIS allows CIMMYT to be part of one of the most important databases in our field, if not the most important. This link allows us to showcase our work on a global scale. Another critical benefit is trust. AGRIS is a trusted source of accurate and reliable information. In today’s age, where the internet is flooded with information, having a trusted source like AGRIS is invaluable. It ensures that CIMMYT’s contributions are part of a verifiable and respected database, which is crucial to maintaining the integrity and credibility of our work.

Importance for CGIAR of sharing research results through AGRIS

From a broader perspective, do you think it is important for CGIAR to share its research results with a wider community and global users through AGRIS? If so, why?

Jesús: Absolutely, and it’s not just important—it’s our mandate. As part of our commitment to make our public goods as accessible as possible, AGRIS is one of the main channels we use to fulfill this mandate. The more we share our scientific outputs, the better we fulfil our mission. This sharing aligns with our goals and enhances our ability to collaborate and fulfil our mission.

CIMMYT’s knowledge content: content types and topics  

How would you describe the knowledge content produced by your center and made available through your repository? In which specific research areas does your center publish?

Jesús: CIMMYT focuses primarily on maize and wheat improvement, genetic resources and conservation agriculture. Recently, CIMMYT has expanded its research into other crops, although these newer projects are not yet strongly reflected in our repository. We expect this to change in the coming years as new research results becomes available. In addition to our scientific content, our repository includes institutional documents, such as financial reports and other forms of historical memory. These items are often overlooked, but they provide a richer understanding of the history of our work by offering insights into the context in which our research took place.

Importance of AGRIS for agricultural research institutions such as CGIAR

Do you think it is important for agricultural research institutions or networks such as CGIAR, to have access to a comprehensive bibliographic database such as AGRIS? If so, what are the specific benefits of having access to such a database?

Jesús: As I mentioned earlier, having access to AGRIS is more than important— it is essential. AGRIS is a cornerstone for ensuring we remain compliant with our mandate. It’s a trusted source that provides control and guarantees the credibility of the content within it. This reliability is invaluable to researchers and readers alike. AGRIS is a source of truth and its role in maintaining the integrity of our scientific output cannot be overstated.

Improving searchability and interoperability with AGROVOC

CGIAR contributes to and uses AGROVOC as a common vocabulary. How does this collaboration affect the discoverability and interoperability of your data?

Jesús: Absolutely. AGROVOC significantly enhances the discoverability and interoperability of our data. By using controlled vocabularies such as AGROVOC, we can ensure consistent and accurate data exchange across platforms. AGROVOC is the definitive controlled vocabulary in our field, and it plays a crucial role in maintaining the standardization necessary for seamless interoperability. For us, it’s not just a tool, it’s a cornerstone of our data management strategy, and it’s essential that it continues to be the standard.

The discussion focused on the role of AGRIS in increasing the visibility and accessibility of CIMMYT’s research results. By continuing to strengthen links with the AGRIS and AGROVOC programs, the CGIAR is well placed to increase the global impact of its research and ensure that vital agricultural knowledge reaches those who need it most around the world.

For more info on the CGIAR and FAO collaboration:

Report: https://hdl.handle.net/10568/116236

Brief: https://hdl.handle.net/10568/116448

Webinar: https://youtu.be/0klZSY1c0UU?si=mlVvEQSpF1KNFSvG

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

CIMMYT and Novo Nordisk Foundation expand collaboration to drive sustainable agriculture

Building on the success of their initial project, CropSustaiN, CIMMYT and the Novo Nordisk Foundation are proud to announce an expanded partnership aimed at tackling agriculture’s biggest challenges. This enhanced collaboration will broaden efforts to transform farming practices, reduce environmental impacts, and support farmers worldwide.

From specific solutions to a broader vision:
The initial partnership focused on developing innovative wheat varieties through Biological Nitrification Inhibition (BNI), significantly reducing the need for nitrogen fertilizers. Now, this expanded collaboration sets a foundation for exploring a wider range of initiatives, including:

  • Climate-smart crop systems with reduced greenhouse gas emissions.
  • Advanced agricultural technologies for greater resilience and sustainability.
  • Inclusive tools to empower farmers globally.

Bram Govaerts, CIMMYT’s director general, said:
“This partnership exemplifies how collaboration and science can transform agriculture, addressing both food security and environmental sustainability on a global scale.”
This next phase reflects a shared commitment to creating a sustainable future by turning scientific innovation into actionable, real-world impact for millions of farmers worldwide.

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

Mexico, a lab from which solutions are generated to address global challenges

Directors from Excellence in Agronomy visit modules and platforms at CIMMYT’s South Pacific Hub in Oaxaca, Mexico (Photo: CIMMYT)

“It was a stunning experience for me to understand the operation of a hub and see farmers interact directly with field technicians, applying the principles of Conservation Agriculture. I remember a lady from Oaxaca telling us how productive she has become using la matraca, a simple, manual seeder and fertilizer,” says Mandla Nkomo during his recent visit to the Mixteca oaxaqueña in southern Mexico.

Mandla is the chief growth officer for the Excellence in Agronomy Initiative (EiA) which, “gathers more than 10 CGIAR Research Centers whose goal is to create solutions to problems that farmers face globally. EiA works on a foundation that is driven by demand to understand the challenges farmers are dealing with, and bring forth a development system for innovation that is capable of coping with those challenges and finding solutions that can be tested, validated, and scaled,” he mentions.

His searching for a system that triggers and diffuses innovation for farmers motivated Mandla to visit the hubs in Oaxaca, Mexico. “We are here because we wanted to study all the hubs and the projects based on the methods CIMMYT and its collaborators have developed in Mexico. One of the things we consider at EiA is the successful and sustainable transition from individual use to working within a partner network.”

“What we have seen here is the work of our colleagues from CIMMYT. For the last decade, they have come up with these hubs or innovation centers situated across different agroecological regions in Mexico. What is unique about the hubs is the ecosystem they are creating, which in my opinion, is what brings excellence in agronomy,” says Mandla.

The hubs are a management approach for innovation that was developed in Mexico based on initiatives like MasAgro-Cultivos para México. Due to its big impact, it’s being replicated in Asia, Africa, and in other Latin America countries. In addition, it lies in the heart of CGIAR initiatives.

About this methodology, Mandla says those who participate in it, are trying to understand the challenges that farmers truly face. Then a platform is developed to do proper research that responds to farmers’ needs. Subsequently, they test it in modules which provides proof of the impact these solutions are having as compared to conventional farming. Finally, these solutions are transferred to areas called extension, from which large-scale innovations are implemented.

During his visit to the research platform in Santo Domingo Yanhuitlan and to modules for innovation, extension areas, seed warehouses, post-harvest modules and machinery locations at different towns in Oaxaca, Mandla Nkomo and other visitors from EiA had the opportunity of learning not only how the South Pacific Hub operates but also witnessed how this management approach for innovation is socially and culturally relevant to one of the most diverse regions in the country.

“These days have been truly amazing. They have been very useful in refining the picture of what’s possible to do and scale. Mexico is a megadiverse country with varied agroecology. Our approach can be replicated in many parts of the world. I’m very excited with what we have seen. The country that gave us corn is now providing the world with solutions that will have major impacts on global food security. So, it is now our task (me and the whole EiA team) to find ways to pass this on to other latitudes”.

Bridging gender gaps by nurturing women scientists

Lourine Bii, 33, is a pioneer as the first female technician at the Kiboko Plant Breeding Station. Moving from KALRO to CIMMYT, she is independently managing trials and breaking gender barriers in agricultural research. Her journey illustrates the importance of inclusivity and empowerment in shaping the future of agriculture.

Read the full story.

Empowering communities through sustainable agriculture

Miriam Torres conducts field activities in eastern Honduras. (Photo: Mirian Torres)

In the eastern region of Honduras, Mirian Lizeth Torres, an agroindustrial engineer who graduated from the National Autonomous University of Honduras, is making a difference. Her commitment to agricultural sustainability and the empowerment of local communities through sustainable agriculture is evident in her work with the Eastern Regional Farmers Association (ARSAGRO, for its acronym in Spanish) and with her participation in the InnovaHub Oriente, set within the framework of the AgriLAC Resiliente initiative.

“In 2023, I volunteered at ARSAGRO, addressing crucial issues with producers, from events and extension to projects with CIAT that focused on the assessment of plots, water, soil, forest, pests and diseases, bean nutrition, grain quality, among others,” said Mirian, highlighting the breadth of her experience.

Her participation in the InnovaHub Oriente has been key to integrating theory and practice in the field. “I am a student of the conservation agriculture course, where I have explored agronomic practices that improve the sustainability of crops, creating more resilient systems,” she highlights. “These practices are shared with producers through innovation modules, which are plots where conservation agriculture innovations are implemented and compared, side by side, with conventional methods.”

Mirian knows the importance of communicating this knowledge to communities. “At events held on these plots, we shared practices and knowledge, reaching producers who were not familiar with these technologies,” she explains. “Thanks to AgriLAC, in 2023 we contributed significantly to the empowerment of producers and organized groups in eastern Honduras.”

Additionally, Mirian is proud of her role as an inspiration for the inclusion of youth and women in agriculture. “At every event we organize, we see increasing participation of young people and women,” she states. “The empowerment of women in agricultural activities has been notable, with many resuming activities in the field through the transfer of knowledge.”

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field; it is that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

In a world where sustainable agriculture is essential, Mirian Lizeth Torres has assumed solid leadership from the field, helping her community move towards a more sustainable and equitable agricultural future.

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field, but rather that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

Why we need to go beyond technology

To combat food loss and waste, Sylvanus Odjo post-harvest specialist at CIMMYT and Heike Ostermann post-harvest expert at Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) argue for a comprehensive approach that goes beyond single solutions such as storage technologies.

Read the full story.

CIMMYT wheat varieties help Ethiopia’s farmers mitigate devastating rust diseases

Ethiopia is the largest wheat producer in East Africa, with about 65% share of the total wheat production in sub-Saharan Africa. The area under wheat increased from about 1.5 million hectares in 2010 to 2.5 million hectares in 2023. More importantly, the productivity increased from 1.8 tons per hectare to about 3 tons per hectare in the same period, implying an increase of about 5% per annum in productivity (See Figure 1).

Several factors have contributed to this spectacular increase in productivity, including better farm practices implemented through clustering farmers land to reduce production costs, and introducing new, improved varieties which enable farmers to withstand challenges of crop diseases.

Figure 1: Wheat grain yield trends in Ethiopia by decade, 1960 to 2022 (USDA data).

A DNA finger printing study found that about 87% of the wheat area in Ethiopia comprises of varieties developed by the International Maize and Wheat Improvement Center (CIMMYT). In 2023, the Ethiopian Institute of Agricultural Research (EIAR) released six new wheat varieties of CIMMYT origin aimed for the mid to highlands (> 1800 meters above sea level) and lowlands (< 1800 masl) of the country. “These newly released varieties provide options for farmers to face devastating rust diseases and at the same time obtain higher productivity,” said wheat breeder Leonardo Crespo.

Gadisa Alemu, wheat breeder based in EIAR, Kulumsa, added that the CIMMYT varieties were tested in farmers’ fields prior to release. “This allows participating farmers to have quicker access to seed of selected varieties,” he said.

Wheat breeders . The aim was to obtain additional insights into the activities of CIMMYT’s partners and co-design a strategy that allows early evaluation and access to CIMMYT germplasm by national partners in Ethiopia. The team visited research centers in Holetta (highlands), Debre Zeit and, Kulumsa (midlands), and Arsi Negele (lowlands). Kulumsa, together with the highlands of Meraro and Asasa plains, represent about 60-70% of the wheat area in Ethiopia.  “These are important sites for wheat breeding activities in Ethiopia. Given that Holetta and Debre Zeit are hot spots for diseases, there is an increased interest in the Arsi Negele region to expand wheat production under irrigated conditions,” said Bekele Abeyo, wheat breeder and CIMMYT’s Ethiopia Country Representative.

AGG Maize and Wheat Improvement Teams Meet with Partners to Develop CG-NARES Breeding Strategy

In the first fortnight of September 2023, researchers from the International Maize and Wheat Improvement Center (CIMMYT) and National Agriculture Research and Extension System (NARES) met in Nairobi, Kenya to create high-level strategies and guiding principles for CG-NARES breeding activities. This is in alignment with the ‘Genetic Innovations’ initiative of the One CGIAR strategy. CIMMYT representation included breeding teams from the wheat, maize, and dryland crops. The meetings were organized by Bill & Melinda Gates Foundation and CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project team.

It was recognized that the aforesaid strategies and principles need to be based on the biology of the crops and the context of each breeding program; incorporate the logistics of the breeding operations; and implement data driven tools for decision making such as genomic selection.

Participants shared how the application of novel and innovative technologies shortens the breeding cycles, accelerates the rate of genetic gain, and provides tools to enable the evaluation of plant materials (future variety candidates) and future target environments where these varieties will be grown.

It was concluded that effective breeding networks can be a strong instrument to enable faster delivery of improved germplasm to farmers. For this to happen efficiently, the networks require a high degree of coordination, organizational structure, governance, and clarity of roles. “It is fundamental for network members to agree the objectives, vision and expected outcomes of collaborative activities. This forms the basis for co-design and co-implementation of crop improvement plans” said Kevin Pixley, Interim Director of the Global Wheat Program and Director of the Dryland Crops Program.

The meeting also served as a platform for AGG’s and dryland crop’s breeding teams to exchange ideas and experiences. For instance, the Maize team shared their experience and learnings from on-farm-testing activities. The Wheat team shared the evolution and path of breeding modernization and implementation of new technologies. The Dryland Crops team shared their experience with co-designing and co-implementing breeding networks with NARES partners in Africa.

Viewpoint: Hunger crisis — The number of countries unable to feed their populations has soared 400% since 2000. Here’s why crop biotechnology is a key solution

Global concerns are escalating as population growth, climate challenges and regional conflicts contribute to a food crisis. CIMMYT, in collaboration with 13 countries, is registering 160 drought-tolerant maize varieties to address changing climatic conditions, underscoring the need for unified efforts in global agricultural organizations.

Read the full story.