Skip to main content

Author: Jérôme Bossuet

International research-for-development coalition against fall armyworm, the not-so-nice, very hungry caterpillar

ADDIS ABABA, Ethiopia (CIMMYT) — African farmers have lost millions of dollars in earnings since 2016 due to the loss of crops to the voracious fall armyworm.

Since the initial shock, farmers, researchers, extension officers, agribusinesses, governments and donors have reacted quickly to fight the invasive pest in various ways, including with pesticides, agroecological approaches and new seeds.

Yet the situation is far from under control. A more coordinated research-for-development (R4D) action plan is urgently needed to ensure that effective and affordable solutions reach smallholder farmers in sub-Saharan Africa so they can sustainably combat the devastating pest.

Smallholder farm socioeconomics are highly complex, which makes adoption of any new technology or practice a challenge. “We must look at the big picture to design safer, accessible, effective and sustainable solutions against fall armyworm,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT), which jointly coordinated “Fall Armyworm Research for Development: Status and priorities for Africa,” an international conference held from Oct. 29 to 31 at the African Union Commission in Addis Ababa, Ethiopia.

Hosted by the Fall Armyworm R4D International Consortium, the conference was aimed at drawing a science-based roadmap to combat the hungry caterpillar. The partners organizing the conference were the African Union Commission (AUC), the Alliance for a Green Revolution in Africa (AGRA), the Centre for Agriculture and Biosciences International (CABI), CIMMYT, the Food and Agriculture Organization of the United Nations (FAO), the International Centre of Insect Physiology and Ecology (icipe), the International Institute of Tropical Agriculture (IITA), and the United States Agency for International Development (USAID).

Vulnerable smallholder farmers

African leaders consider the invasive fall armyworm “a big threat for African food security,” said Amira Elfadil, African Union Commissioner for Social Affairs, at the opening of the conference.

The caterpillar has munched through thousands of hectares of maize, sorghum and a few other commercial crops across Africa and is causing severe concerns among food and agriculture experts and policymakers. Since it was first detected in Nigeria and São Tomé, the moth has spread across more than 40 African countries and has been seen in India since July 2018. It could also invade Europe and other continents.

“Fall armyworm has been the fastest pest to expand across the continent,” said Eyasu Abraha, Ethiopia’s state minister for agriculture development.

The pest is a familiar foe to agricultural experts and farmers in the Americas who have fought against it for several decades. However, the pest has found an ideal environment to flourish in Africa, with diverse agro-ecologies and a warmer climate all year round amplifying its persistent threat.

It has a host range of more than 80 plant species, including maize, a staple food on which millions of people throughout sub-Saharan Africa depend for food and income security. It can cause total crop losses, and at advanced larval development stages can be difficult to control even with synthetic pesticides. The female fall armyworm can lay up to a thousand eggs at a time and produce multiple generations very quickly without pause in tropical environments. The moth can fly 100 km (62 miles) a night, and some moth populations have even been reported to fly distances of up to 1,600 kilometers in 30 hours, according to experts.

Entomologists are trying to fill a knowledge gap on how the fall armyworm behaves and migrates throughout Africa.

Solutions that may work to combat the pest in Brazil or North America may not be applicable for the agricultural context in Africa where most farmers are low-resource smallholders, struggling to access new knowledge and technologies.

The conference organized by the Fall Armyworm R4D International Consortium attracted the interest of a large group of participants. (Photo: African Union Commission)
The conference organized by the Fall Armyworm R4D International Consortium attracted the interest of a large group of participants. (Photo: African Union Commission)

High cost of ineffective collaboration

Hans Dreyer, director of FAO’s plant protection division, listed many collaborative initiatives, including national task forces and expert working groups, which contributed to document and inform the current state of knowledge.

There are still many knowledge and technical gaps. Some resourceful information platforms are already available for the farmers and extension workers, including the fall armyworm web portal created by CABI, the mobile farmer Q&A service PlantVillage, or Precision Agriculture for Development’s text messaging advisory service MoA-Info.

“The cost of not collaborating is pretty severe,” said Regina Eddy, who leads the Fall Armyworm Task Force at the USAID Bureau for Food Security. The real gamechanger will be that “all experts in the room agree on a common and concrete research-for-development agenda and how to organize ourselves to implement it effectively,” she added.

During the conference, the experts debated intensely on the technical gaps and the best ways to combat the pest through an integrated pest management strategy, including how to scout the caterpillar in the crop field, establish monitoring and surveillance systems, pest control innovations and appropriate policy support to accelerate introduction of relevant innovations.

Safe, sustainable, farmer-centered solutions

Short-term responses to the pest at present include synthetic pesticide use. However, there are public health and environment concerns over some of the toxic pesticides being used in Africa to control the fall armyworm.

Brian Sobel from Catholic Relief Services recalled witnessing a woman in Malawi who, in an effort to combat the pest, sprayed much more chemical pesticide on her maize than necessary.

The rapid increase of the pesticide market in Africa has led to the circulation of plenty of banned or counterfeit products, some very toxic for the farmer, said Steven Haggblade, a professor in the Department of Agricultural, Food and Resource Economics at Michigan State University in the United States. Farmers are often not well trained in the use of such chemicals and do not protect themselves during application, he said.

Pesticide use has many negative trade-offs, said Paul Jepson, a professor of environmental and molecular toxicology in the College of Agricultural Sciences at Oregon State University. Natural enemies like parasitic wasps are also often far more vulnerable to pesticides than fall armyworm larvae, which are hard to reach and hide themselves in the maize whorls for instance.

Continental action plan

A key recommendation made by the Fall Armyworm R4D International Consortium is to develop common methodologies and research protocols to ensure data from various studies across the continent are better used and compared. For example, how best could the true impacts of the fall armyworm on food and seed security, public health and environment be measured? Collaborative research could include multilocation assessment of the relationship between observed crop damages and yield losses, which is key to determine the efficacy of a pest control innovation.

Conference participants also agreed to work on defining economic and action thresholds for fall armyworm interventions, to ensure better recommendations to the farming communities.

Because no one solution can fit all farmers and socioeconomic contexts, advice must include use of environmentally safer pesticides, low-cost agronomic practices and landscape management and fall armyworm-resistant varieties, among other integrated pest management tools.

Enhanced cooperation between countries to access new technologies and manage the transboundary pest is seen as a priority. Consortium experts also urge an integrated pest management approach, initiated based on farmers’ needs. Controlling the fall armyworm in the long run will require important investments into research-for-development for generating and sharing knowledge and addressing technical gaps with farmers.

For more information on fall armyworm, this conference and the Fall Armyworm R4D International Consortium, please contact B.M. Prasanna, Director of CIMMYT’s Global Maize Program and of the CGIAR Research Program on MAIZE, at b.m.prasanna@cgiar.org.

New publications: Does farm structure matter?

Farmland distributions are rapidly evolving in many parts of sub-Saharan Africa, as data from the World Bank’s Tanzanian Living Standards Measurement Study-Integrated Surveys in Agriculture (LSMS-ISA) shows. Between 2009 and 2013, farms under 5 hectares have increased in absolute numbers – from 5.4 to 6.1 million –  as smallholdings became increasingly fragmented due to demographic and land inheritance patterns. But farms greater than 5 hectares also grew in number, and their share in the rural landscape, in terms of land area, grew quickly. The share of total farmland held by “small” farms of less than 5 hectares declined from 62% to 56% over the period while the share of farmland under farms of 10 or more hectares grew by 6%. So, what are the implications of such rapid changes in farm structure and concentration of land under larger farms?

CIMMYT spatial economist Jordan Chamberlin is using household survey data in innovative ways to reveal how changing patterns of land access and farm size distributions are influencing farmers’ livelihoods. He is investigating whether medium- and large-scale farms generate benefits for nearby smallholder farmers. In a case study in Tanzania, Chamberlin and his colleague, T.S. Jayne, estimated how rural incomes are affected by land concentration measures, such as the Gini coefficient, after controlling for other household and geographical factors, including market access, population density, and rainfall.

Lushoto, Tanzania. Photo: Rod Waddington
Lushoto, Tanzania. (Photo: Rod Waddington)

Another important finding was the lack of evidence for positive impacts of farmland concentration when such concentration was measured as the share of land in farms of 10 or more hectares. The intuitive explanation of this result is that the larger the farm, the less likely it is to generate benefits for surrounding smallholders. This may be because medium-scale farms, relative to larger commercial farming enterprises, are more likely to employ labor from surrounding households, and may also provide services such as mechanized traction.

More research is needed to identify these spillover mechanisms, and to understand the conditions under which larger farms generate positive impacts for smaller neighbors. As the farmland landscape is evolving quickly in sub-Saharan Africa, understanding these mechanisms could be instrumental to drive more inclusive rural development. Such research could help to add nuance to the current debate in agricultural and land policy circles about whether the de facto expansion of medium-scale and larger farms are a boon or a threat to the smallholder majority within the region’s agrifood systems.

Jordan Chamberlin presented results from this study in a webinar on 6 November 2018 hosted by CGIAR’s Policies, Institutions, Markets Research Program.

Read more:
Does Farm Structure Matter? The Effects of Farmland Distribution Patterns on Rural Households Incomes in Tanzania in Food Policy.

This research was carried out in collaboration with T.S. Jayne, Michigan State University, with support from USAID’s Feed the Future Innovation Lab on Food Security Policy, the BMGF-funded Guiding Investments in Sustainable Agricultural Intensification in Africa (GISAIAA) initiative, the CGIAR Research Program on Policies, Institutions, and Markets (PIM).

Check out other recent publications by CIMMYT researchers below:

  1. BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models. 2018. Granato, I., Cuevas, J., Luna-Vazquez, F.J., Crossa, J., Montesinos-Lopez, O.A., Burgueño, J., Fritsche-Neto, R. In: G3: Genes, Genomes, Genetics v. 8, no. 9, p. 3039-3047.
  2. Carotenoid and tocochromanol profiles during kernel tevelopment make consumption of biofortified “fresh” maize an option to improve micronutrient nutrition. 2018. Cabrera-Soto, L., Pixley, K.V., Rosales-Nolasco, A., Galicia-Flores, L.A., Palacios-Rojas, N. In: Journal of Agricultural and Food Chemistry v. 66, no. 36, p. 9391–9398.
  3. Correction to: mapping adult plant stem rust resistance in barley accessions Hietpas-5 and GAW-79. 2018. Case, A.J., Bhavani, S., Macharia, G., Pretorius, Z.A., Coetzee, V., Kloppers, F.J., Tyagi, P., Brown-Guedira, G., Steffenson, B.J. In: Theoretical and Applied Genetics v.131, no. 10, p. 2267–2267.
  4. Registration of spring wheat germplasm ND 735 combining tan spot, Leaf, and stem rusts. 2018. Mergoum, M., Frohberg, R.C., Ali, S., Singh, P.K., Rasmussen, J.B., Miller, J.D. In: Crop Science v. 46, no. 2, p. 1003-1004.

In your seeds I trust: African seed companies test the SeedAssure application

NAIROBI (Kenya) — More than 20 representatives of eastern and southern African seed companies and regulatory agencies recently took part in the demonstration of a new seed certification application that can help get quality seed to market more quickly and curb sales of counterfeit seed.

As part of an event organized by the International Maize and Wheat Improvement Program (CIMMYT) at the Kiboko research station of the Kenya Agricultural & Livestock Research Organization (KALRO) on September 17, 2018, participants field-tested a beta version of SeedAssure, a digital platform that gives automatic feedback on compliance and seed production management, along with remedy options.

SeedAssure was developed by Cellsoft, a supply chain management software company, with input from the Alliance for a Green Revolution in Africa (AGRA), the Qualibasic Seed Company, the Kenya Plant Health Inspectorate Service (KEPHIS) and CIMMYT.

“This is very useful for companies like ours, spread as we are over different countries, to manage at a distance our seed growers,” said Andy Watt of QualiBasic Seed Company, who has been testing SeedAssure on the company’s farms. “The application’s dashboard will point out which farms to visit quickly for corrections.”

Mobile innovations enhance quality and speed

For over a decade, the region’s seed sector has sought fast, cost-effective and transparent seed quality control and certification approaches for use across the value chain and the region. Seed companies often rely on under-staffed national certification agencies that may miss critical inspections or give inaccurate reports. Registration of new varieties can take many years, discouraging investment in improved seed and impeding regional trade.

Worse, by some estimates as much as 40 percent of the seed sold in eastern and southern Africa is falsely labelled or not what farmers are told they are buying. KEPHIS recently confiscated over 13 tons of “fake” seeds.

The seed sector has sought mobile innovations such as tablet-based field inspections whose data load to centralized, cloud-based dashboards.

With SeedAssure’s “traffic light” system, field inspection results for factors such as plant population will score green (complied – good quality), amber (needs improvement) or red (reject) and be readily visible to key actors in the seed certification and supply chain, according to David Laurence-Brown, SeedAssure co-developer.

“This quality assurance system can help seed companies get licenses faster, speeding product to market and greatly reducing the financial risk of getting new varieties to farmers,” said Laurence-Brown. “The vision is that all actors have access to timely and accurate data on products, licensing and trade movements, with quality control checks along the value chain.”

He said that SeedAssure features 260 critical questions in 13 seed production checklists. “Putting the right questions in the right order is crucial to determine how sustainable your seed production is,” Laurence-Brown explained.

Partners test the SeedAssure app on a tablet during a field visit in Kiboko, Kenya. (Photo: Jerome Bossuet/CIMMYT)
Partners test the SeedAssure app on a tablet during a field visit in Kiboko, Kenya. (Photo: Jerome Bossuet/CIMMYT)

Fixing the bugs

Participants emphasized that national and regional regulatory bodies needed to be on board.

“Advocacy has to be done at different levels, from COMESA, national plant protection organizations, big and small seed companies, and research institutes and donors,” said Kinyua Mbijjewe, a well-known figure in the African seed industry and co-creator of SeedAssure, adding that this has been underway for a year now with a positive response, and public engagement is now ramping up with partners like AGRA and USAID.

Participants also suggested simplifying SeedAssure by reducing the number of questions and the subjectivity of certain data fields. For example, they observed that a more objective method was needed for scoring pest infestations, rather than SeedAssure’s current approach of rating infestations as low, moderate or intense via visual estimation.

“This will not be adopted if it’s too complex,” said Nicolai Rodeyns, NASECO seed company, Uganda.

Developers are addressing these issues, as well as comments that the application should not mix compliance and seed production management features.

CIMMYT announced that it would offer members of the International Maize Improvement Consortium (IMIC) a one-year trial subscription to SeedAssure.

Finally, AFSTA, AGRA, CIMMYT, COMESA, USAID, and other partners are forming a SeedAssure Alliance to support testing and rollout with companies and public organizations in eastern and southern Africa.

CIMMYT shows partners in Kenya new breakthroughs in maize and wheat research

NAIROBI (Kenya) — Members of the International Maize Improvement Consortium (IMIC) and other partners had a chance to go on a field visit to the Kiboko and Naivasha research stations in Kenya on September 18 and 19, 2018. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to share the latest developments in maize and wheat research.

On the first day, CIMMYT invited IMIC researchers to evaluate Material Under Development at the Kiboko site. These maize lines are not publicly released yet but are available to IMIC partners, so they can select the most promising ones for their research and crop improvement work.

Each seed company was looking for certain traits to develop new hybrid varieties. For instance, Samit Fayek, from Fine Seeds Egypt was looking for ‘erect type’ maize, as he wants higher crop density and grains that look big. Christopher Volbrecht, from Lake Agriculture in South Africa, was looking for “cobs that stick out as this is what farmers want.” Josephine Okot, from Victoria Seeds in Uganda, said that “seed companies often look at drought tolerance only, but we need now to integrate resistance to Maize Lethal Necrosis.”

Using Doubled Haploid breeding in Kiboko

Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)
Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)

Next on the tour to Kiboko, partners visited various stress-tolerant breeding materials, sustainable intensification cropping demonstrations and the Doubled Haploid facility. Vijaya Chaikam, Maize Doubled Haploid Scientist, explained how CIMMYT uses this methodology to cut down breeding time from six to two cycles, which drastically reduces costs.

According to B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE, doubled haploid breeding is possibly the biggest innovation to speed up genetic gain since the inception of hybrid technology a century ago. “In the next 4 or 5 years, CIMMYT aims at 80 percent use of double haploid lines for new hybrid development; breeding will be faster and much cheaper that way,” Prasanna said. “For now, breeders and seed companies need to know how to use double haploid lines to cost-efficiently crossbreed with their varieties for high-quality hybrids.”

At the end of the visit to Kiboko, CIMMYT officially opened a new maize seed storage cold room. This facility will serve to keep seeds in good condition and to better manage inventory. At the opening were the director of KALRO’s Food Crops Research Institute, Joyce Malinga, CIMMYT’s Africa Regional Representative, Stephen Mugo, and CIMMYT’s Technical Lead for the Global Maize Program, Aparna Das.

Fighting Maize Lethal Necrosis and rust in Naivasha

A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)
A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)

On the second day, partners visited the Naivasha research station. There, CIMMYT presented the latest efforts to contain Maize Lethal Necrosis (MLN), a devastating maize viral disease first reported in Kenya in 2011 which caused severe crop losses across Eastern Africa, causing severe crop losses. The Naivasha research station is home to a world-class facility to screen for Maize Lethal Necrosis, jointly managed by CIMMYT and KALRO.

At the facility, maize lines are evaluated for MLN resistance. The best lines and varieties are nominated for further development and shared with partners. National Agriculture Research partners can request MLN screening at no cost, while private seed companies are charged for the service. In the last four years, more than 150,000 germplasm have been screened.

CIMMYT wheat scientist Mandeep Randhawa explained how to recognize the different types of wheat rust diseases: stem, stripe and leaf rusts. He emphasized the Ug99 black stem rust strain, which appeared in Uganda in 1998 and has since severely impacted wheat production in the region and globally. Randhawa explained how CIMMYT develops varieties resistant to stem rust using a phenotyping platform and marker-assisted selection.

These two field days were a great opportunity to showcase progress in developing more resilient maize varieties in a fast and cost-effective way. This responsiveness is crucial as pests and diseases continue to threaten the livelihoods of African smallholders. Such impact could not happen without the strong collaboration between CIMMYT and KALRO.

The director of KALRO's Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT's Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)
The director of KALRO’s Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT’s Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)

The Doubled Haploid Facility in Kiboko and the Maize Lethal Necrosis screening facilty in Naivasha were opened in 2013 with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation.

The International Maize Improvement Consortium (IMIC) is a public-private partnership initiative launched in May 2018 as part of CIMMYT’s mission to ramp up seed breeding and production innovations.

Innovation, partnerships and knowledge for African farmers meet at AGRF 2018

KIGALI, Rwanda (CIMMYT) — The African Green Revolution Forum (AGRF) is the place to be for organizations interested in Africa’s agricultural development. Research institutions, development agencies, funders, farmers’ organizations, large agribusinesses and green start-ups came together for the latest edition of this event in Kigali, Rwanda, on September 4-8. Organized by the Alliance for a Green Revolution in Africa (AGRA) since 2010, this year’s theme was “Lead. Measure. Grow.”

The President of Rwanda, Paul Kagame, recalled a sentence stuck in his memory since childhood: “Everything is agriculture, the rest is good luck”. All the top leaders present at AGRF 2018 agreed that investing in smallholder agriculture is a top development priority, since the growth of the primary sector “drives down poverty, two to four times faster than other sectors” and provides livelihoods for three quarters of the African population.

Transforming policy declarations into impact on the ground

Even though African governments agreed on a roadmap towards inclusive agricultural growth — the Comprehensive African Agriculture Development Programme, or CAADP — in 2003, the agriculture sector has remained stagnant since the 1980s. A majority of African countries continue to be net food importers despite their bountiful natural resources, as highlighted in the Africa Agriculture Status Report 2018.

Some African food ventures are quite successful exporting beans, roses or avocados to Europe. However, most African farmers still live on less than one dollar a day, on small rain-fed plots of less than two hectares, having to cope with high climate variability and damages from numerous pests and diseases. They often plant low quality seeds, on acid and degraded soils, with little fertilizer. Rapid ageing of the farming population, 60 years old on average, is a particular concern at a time when many young people are underemployed.

“African agriculture is at a defining moment” was a message hammered home by several keynote speakers of AGRF 2018. So what makes this moment different?

In recent years, some countries have seen a significant rise in farm productivity. Ethiopia, for instance, exceeded the CAADP target of 6 percent annual agricultural growth in the last 25 years, halving its poverty rates over the same period.

African agriculture is facing new threats, from climate change to devastating pests like the fall armyworm, but researchers can be fast to respond, particularly if they are properly funded and listened to.

“The challenge is to design the right partnerships or business models between research, government, civil society and the private sector, to reach impact at scale”, explained CIMMYT’s director general, Martin Kropff.  One example would be the Fall Armyworm Research for Development (R4D) International Consortium, officially launched at AGRF 2018.

CIMMYT has also partnered with public and private organizations to implement a very successful breeding program to fight maize lethal necrosis and to develop detailed guidelines for integrated pest management of the fall armyworm.

Research has to anticipate and respond to the needs of smallholder farmers in diverse ecological and socioeconomic contexts. The agenda has to become demand-driven and researchers have to look at new collaborations if they want to reach the farmers.

The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion "Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit." (Photo: CIMMYT)
The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion “Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit.” (Photo: CIMMYT)

Make agriculture resilient and attractive to youth

Leaders discussed the ways to build viable, fair and sustainable food systems that will provide good opportunities for African farmers, especially the next generation, and affordable, nutritious food for the whole population.

In their view, the roadmap for the coming years includes several key actions: investing in infrastructure, investing in youth and education, investing in value addition and food processing and removing trade barriers.

Speakers also flagged irrigation as a top priority. “African farmers do not need rain; they need water,” summed up John Mellor, who coordinated the African State of Agriculture Report 2018. He explained that top-down irrigation schemes are difficult to manage and maintain, so the focus should rather be on farmer-led irrigation.

The conference highlighted how digital agriculture, big data and other innovations offer the opportunity to leapfrog agriculture growth and make farming attractive to youth. For instance, Hello Tractor, a CIMMYT partner, is an Uber-like service linking tractor owners and machinery service providers with farmers. CIMMYT research shows that appropriate rural mechanization adapted to smallholders, like two-wheel tractors, will ease labor problems and enable adoption of more sustainable practices, like direct sowing. This can make farming more attractive for young people and create opportunities for them to become service providers.

Taking knowledge to farmers

Many innovations are out there to help African farmers grow more and better food; from climate resilient new varieties and customized agronomic advice to new e- or m-business models.

Mobile finance solution Tulaa brings together farmers, agro-dealers and credit providers on a virtual marketplace. Through Tulaa, farmers can borrow money to purchase the right fertilizers or seeds at the right time. Another platform, Precision Agriculture for Development, is providing more than 120,000 Kenyan farmers with agronomic advice via SMS, so they can better identify and manage fall armyworm. Other new digital platforms are linking smallholder farmers with quality inputs, extension services, finance, food processing and market opportunities.

All these operators will need to use accurate, science-based data. That is where CIMMYT’s expertise could play a big role, for instance providing customized fertilization recommendations to individual farmers, as planned in the Taking Maize Agronomy to Scale in Africa (TAMASA) project.

B.M. Prasanna, director of CIMMYT’s Global Maize Program, concluded that “AGRF is an excellent platform to network, debate issues relevant to African agriculture, form alliances and think forward.” Providing more resources in agricultural research for development will generate a stream of new technologies and solutions that will drive agricultural growth. Something African countries urgently need with their fast-growing population (2-3 percent annually) and one additional billion people to feed by 2050.

Towards more sustainable food systems through a landscape lens

A Maasai woman holding a baby (center) attends the plenary session of the GLF Nairobi 2018. (Photo: Global Landscapes Forum)
A Maasai woman holding a baby (center) attends the plenary session of the GLF Nairobi 2018. (Photo: Global Landscapes Forum)

NAIROBI, Kenya (CIMMYT) — The latest event of the Global Landscapes Forum (GLF) took place on August 29-30 in Nairobi, Kenya, under the topic of forest and landscape restoration in Africa. To tackle the urgent issue of deforestation and land degradation, the sessions and panels covered topics as diverse as community-led restoration, how to address social inclusion in land management, or how to work with supply chain actors to achieve sustainable landscapes and better livelihoods for local communities.

Landscape degradation directly affects 1.5 billion people. Local communities are usually the first ones to experience the negative effects of this problem on their livelihoods, access to water and loss of topsoil and farm productivity.

However, Africa provides the most opportunities for landscape restoration.

When landscapes support nutrition

Sustainable landscapes play a role in CIMMYT’s work. In Ethiopia, CIMMYT’s research in collaboration with CIFOR showed that a landscape approach can improve the nutrition and resilience of farming families. The transfer of organic matter and nutrients from forest patches to farmers’ fields, through livestock manure and fuelwood, enriches the soils and increases the zinc and protein content of wheat grain.

CIMMYT scientists are also looking at the link between livestock management and farming. In the Central Rift Valley of Ethiopia, zero-grazing in farmland led to an 80 percent increase of organic matter in the topsoil after 8 years, and as a result teff yields increased by 70 percent.

While agronomy tends to look at the field’s scale, a landscape perspective may also be important for more efficient pest control, as CIMMYT’s research with Wageningen University found. A useful learning as agriculture experts look at ways to combat emerging pests like the fall armyworm.

Voices of the Landscape Plenary at the GLF Nairobi 2018. (Photo: Global Landscapes Forum)
Voices of the Landscape Plenary at the GLF Nairobi 2018. (Photo: Global Landscapes Forum)

Better soil and rights

Participants in GLF Nairobi 2018 called for concrete collective action to restore degraded landscapes.

Having real-time accurate dashboards of land degradation could help governments and development organizations build coherent policies and restoration programs. Mark Schauer from the Economics of Land Degradation Initiative explained why soil is important and how monetizing the costs and benefits of sustainable soil management practices could help decision-makers build more sustainable food systems. Sharing data in transboundary contexts is a challenge but can be overcome, as the Eastern Africa Forest Observatory (OFESA) has shown.

Asking uncomfortable questions is necessary to support the people who depend the most on landscapes’ health. Milagre Nuvunga from the MICAIA Foundation in Mozambique recommended to put women’s rights at the center of landscape restoration programs. Several testimonies reminded that women living in patriarchal societies often do not have land rights, so land will go back to the husband’s family in case of death or divorce. Even if they know the benefits of landscape restoration, “why would women care” to invest time and energy on it if their rights are not secured, she asked.

To learn more about the Global Landscape Forum Nairobi 2018, visit https://events.globallandscapesforum.org/nairobi-2018/.
The main event of the Global Landscapes Forum will take place on December 1-2, 2018, in Bonn, Germany.