Skip to main content

Author: dmedina

Sustaining Health and Soil: Sundhani Tharu’s 4Rs Approach to Farming

Sundhani Tharu, a 44-year-old farmer from Pattharbojhi, Madhuwan-1 in the Bardiya district, in the mid-west of Kathmandu, is a leading example of how sustainable agricultural practices not only enhance crop production but also contribute to human and environmental health. Her dedication to a balanced approach to farming, which includes crop-livestock integration and the principles of the 4Rs of nutrient stewardship, has had a significant impact on her farm and the wider community.

Sundhani lives in a joint family of 58 members, with farming as the primary source of income. On their 8.13 hectares of land, they grow staple crops like rice, maize, mustard, and lentils, while also raising 26 cows, 17 buffaloes, and 45 sheep. Through this integration of crop production and livestock, Sundhani has built a closed-loop farming system where farmyard manure (FYM) from the livestock nourishes the crops, and crop residues feed the animals, ensuring minimal waste and promoting a natural balance between animals, crops, and soil health.

Sundhani with her family (Photo: Sirish Shrestha)

Central to her success is her application of the 4Rs of nutrient stewardship, which involves applying the right source of nutrients at the right rate, at the right time, and in the right place. This approach ensures that her crops receive the essential nutrients they need while minimizing environmental impact. With support from the USAID-supported Nepal Seed and Fertilizer (NSAF) Project, implemented by CIMMYT, Sundhani has been trained in nutrient management techniques, including the 4R principles. These practices have helped her optimize fertilizer use and significantly improve her crop yields, doubling her maize production from 30 to 60 quintals per hectare.

Sundhani also prioritizes the use of farmyard manure, which plays a vital role in her farming system. The manure from her livestock is carefully composted and used as a natural fertilizer, enriching the soil with organic matter and nutrients. This reduces her reliance on synthetic fertilizers, which can harm the environment and deplete soil health over time. By using farmyard manure, Sundhani is not only improving soil fertility but also promoting a healthier ecosystem for future generations.

Similarly, the importance of a healthy diet is another key focus of Sundhani’s farming journey. Her farm provides her family with a diverse range of crops, including rice, maize, mustard, and vegetables like cauliflower, tomatoes, and potatoes. These crops contribute to a balanced, nutrient-rich diet for her large family, ensuring that they receive essential nutrients from fresh, organic produce. Sundhani’s vegetable farming is further enhanced through climate-smart practices like intercropping and mulching, which protect the soil, conserve water, and increase the variety of crops she can grow.

In addition to her focus on nutrient management and healthy diets, Sundhani has embraced Integrated Soil Fertility Management (ISFM), a holistic approach to soil health. ISFM combines organic and inorganic fertilizers, along with improved crop varieties and efficient nutrient management techniques, to enhance soil fertility and ensure long-term agricultural productivity. Through ISFM, Sundhani has achieved sustainable growth in her farming operations while safeguarding the environment for future generations.

Sundhani Tharu (Photo: Sirish Shrestha)

Though Sundhani can hardly read or write, she is contributing to the “One Health” movement—a global initiative that connects the health of people, animals, and the environment through best management practices in agriculture. By integrating crops and livestock, using farmyard manure, and applying the 4Rs of nutrient stewardship, she promotes a sustainable, eco-friendly system that enhances food security, improves soil health, and protects natural resources.

Looking ahead, Sundhani is determined to expand her farming ventures. She plans to venture into seed production for rice and mustard and hopes to increase her earnings from NPR 5 lakh (USD 3,740) to NPR 8 lakh (USD 5,987). By continuing to inspire her community and advocate for local vegetable markets, Sundhani envisions a future where farming is not only a source of livelihood but a cornerstone for a healthy, thriving ecosystem.

Sundhani Tharu’s story highlights the power of nutrient stewardship and sustainable farming to create healthier soils, crops, and communities. Through her dedication to the 4Rs, ISFM, and promoting farmyard manure use, she is paving the way for a future where agriculture is in harmony with nature—benefiting both people and the planet.

Sundhani’s father-in-law (Photo: Sirish Shrestha)

Strengthening the roots of an agri-carbon market

CIMMYT’s economists Adeeth Cariappa and Vijesh Krishna examine the potential of agricultural carbon markets to boost sustainable farming in India while addressing climate change. Their study, published in Climate Policy, reviewed seven carbon farming projects in Haryana and Madhya Pradesh, finding limited participation from smallholders and marginalized communities, with women making up just 4% of participants.

Although new sustainable practices such as zero tillage and intercropping were adopted, key challenges remain, including poor communication, insufficient training, and delayed payments—resulting in nearly 28% of farmers abandoning these practices. To improve outcomes, the authors recommend offering better financial incentives, ensuring timely payments, and improving project implementation through partnerships with research institutions. Digital technologies like remote sensing and satellite imagery are expected to play a critical role in improving carbon credit monitoring and farmer participation going forward.

Read the full story.

How one farmer is learning and leading the way in improved millet and groundnut seed production in Uganda

CIMMYT, in partnership with the National Semi-Arid Resources Research Institute (NaSARRI), is transforming dryland farming by giving farmers access to drought-tolerant and disease-resistant crop varieties. Through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, many farmers have not only improved their yields but also built resilience to the challenges of unpredictable rainfall. Dennis Obua, a farmer who has benefited from these research advances, shares his inspiring journey to promote improved finger millet and groundnut seed varieties within his community.  

“My name is Dennis Obua, a farmer from Tewayo village in Lira district. I began my farming journey back in 2018, inspired by the local farmers I met while visiting a nearby region. As I spent time with them, observing how they tilled the land, I felt a strong urge to get involved in farming myself—especially focusing on drought-tolerant cereals, which are crucial in our region due to inconsistent rainfall. 

It all started with a small amount of finger millet seeds—just a handful that I obtained from NaSARRI. At the time, some visitors from NaSARRI had planted a few experimental plots nearby. One of my friends was conducting his own trials, so I approached him and asked for a small sample of seeds to plant on my farm. That was how I started growing improved finger millet varieties NAROMIL 2 and SEREMI 2 (U15). Now, I not only grow millet, but I am also actively promoting it in my community. 

Dennis, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

If you look around today, you will see that many people here have started growing finger millet here too. It’s becoming quite popular. In fact, recently, some researchers from Makerere University came to our village to look for finger millet, and I took them to a nearby home where they’re doing their own research on finger millet and sorghum.  

More and more people are getting into farming now, especially finger millet, because it’s proving to be profitable.  I’m really grateful for the way things have turned out. It’s incredible to see that something that started with just a small handful of seeds has grown into something so significant for our community. 

Alongside finger millet, I also plant groundnuts. Currently, I have three different varieties planted in neat rows: SERENUT 8R, SERENUT 11, and SERENUT 14. Before these varieties were introduced to my farm, I used to grow a local variety called Red Beauty. We would get the seeds from our local market or sometimes travel to town to buy them but often these seeds didn’t germinate well, so we started relying more on local farmers who save seeds from one season to the next. That’s how we accessed it. That’s how we got access to them. We also have auctions here at the beginning of the season where farmers bring seeds to sell.  

Dennis showcases one of the groundnut varieties planted in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

However, since switching to these new varieties— SERENUT 8R, SERENUT 11, and SERENUT 14 —I’ve seen a significant difference. Among the three, SERENUT 14 is my favorite. I’ve been growing it for several seasons now. It’s drought tolerant, disease resistant, and produces a good yield. It also has a good number of pods. When I plant it, I can usually harvest 14 to 16 bags per acre, with each bag weighing between 42 to 46 kilograms. Compared to SERENUT 8R, which yields slightly less—around 12 to 14 bags per acre— SERENUT 14 performs better in our soil conditions.  

What I appreciate most about SERENUT 14 is that it’s also more resistant to rot and rosette disease. While SERENUT 11 and SERENUT 8R varieties are also drought tolerant, SERENUT 14 has proven to be the most reliable, making it my preferred choice. When you consider yield, disease tolerance, and quality, SERENUT 14 stands out.  

I am proud to say that I’m not the only one growing these improved varieties anymore. Many farmers in my village have adopted them because I’ve been giving them seeds, and they’ve seen the benefits for themselves. Now, they too are switching to these improved varieties of groundnut and finger millet. The two finger millet varieties I have been growing are NAROMIL 2 and SEREMI 2 (U15) and they are also catching up. Among them, NAROMIL 2 is my preferred variety because it yields well, is drought tolerant, and has a great taste — perfect for food. Before this, we only grew our local finger millet varieties. This is the first time we’ve been introduced to these improved varieties.  

Dennis, displays a freshly harvested groundnut plant from his demonstration plot, showcasing the success of improved, drought-tolerant groundnut varieties (Photo: Marion Aluoch/CIMMYT)

Farming has allowed me to give back to my community. It’s amazing to see how the success of one farmer can affect an entire village. More farmers now understand the importance of using quality seeds that are not only drought-tolerant but also disease-resistant. They come to me for seeds because they trust the results they’ve seen. 

That’s not to say there haven’t been challenges. There was one week where we had heavy rains after a long dry spell, which caused some of the groundnut plants to rot. Before that, there had been no rain after planting, although we had managed to do the initial weeding. I’m sure the yield would have been even better if the rains had been more consistent. Despite the challenges, the yield has still been great. That’s one of the reasons I like these varieties—they’re resilient. 

I am grateful for the knowledge and experience I have gained. By sharing what I’ve learned, I hope to help more farmers in my community succeed, just as I have. I’ve seen first-hand how improved varieties of both finger millet and groundnuts can transform farming practices. The combination of drought tolerance, disease resistance, and high yield has made a significant difference to my farm’s production, and I’m hopeful that more farmers will continue to adopt these crops.” 

Farmer trials with improved seeds to promote seed production and improve local farming practices

In Kasoka village of Bukedea District in Uganda, Nelson Ekurutu, a dedicated farmer, is leading the way in agricultural experimentation. With support from the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project—funded by the Bill & Melinda Gates Foundation (BMGF) and implemented in partnership with CIMMYT and the National Semi-Arid Resources Research Institute (NaSARRI)—Nelson has embarked on a journey to test three new groundnut varieties: SERENUT 8, SERENUT 11, and SERENUT 14. The demonstration plots provide him with a platform to test new varieties, helping him and others understand what works best in their locality.  

While Nelson is drawn to the SERENUT 11 variety for its attractive leaves, he remains cautious, knowing that the real test will come only after the harvest. “This is my first time planting these varieties,” he says. As curious neighbors pass by and inquire about the varieties, he explains, ‘We are testing new varieties, and we’ll know more about their performance and yields after the harvest.” 

The AVISA project, which aims to improve the productivity of dryland crops such as groundnut, finger millet, and sorghum, plays a crucial role in Nelson’s work. With funding and technical support from CIMMYT and NaSARRI, farmers like Nelson are given the opportunity to test improved, drought-tolerant, and disease-resistant varieties. These varieties are designed to increase yields and help farmers become more resilient to climate change while enhancing production systems.  

Nelson is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Nelson’s demonstration plots, using seed supplied by NaSARRI, are part of this initiative. CIMMYT has been instrumental in ensuring that these varieties are adapted to the local environment, while also working with NaSARRI to build farmers’ capacity through hands-on training and technical assistance. 

In addition to groundnut, Nelson is also experimenting with finger millet and sorghum. He values the red finger millet variety  SEREMI 2 for its quick maturity and larger heads. “I planted the finger millet on April 10th, and by July this year (2024), it was ready for harvest,” he says proudly. In addition to finger millet, he is also testing several sorghum varieties—NAROSORG 2, which is red, and SESO 1, which is white. Although he likes them all, Nelson has a clear preference: “I prefer the red sorghum because birds don’t eat it as much. When mixed with cassava, it makes a good atapa.”  Atapa is a staple food in Uganda made by mixing cassava and sorghum flour and cooking it with water until it forms a firm, dough-like consistency. It is typically served as a side dish with stews, vegetables, or meat. Similar dishes are known by different names across the region—Ugali in Kenya, Sadza in Zimbabwe, and Pap in South Africa underlining its importance in African cuisine. 

Nelson showcases the SESO 1 sorghum variety that is white in color (Photo: Marion Aluoch/CIMMYT)

Nelson notes that although the white sorghum produces larger heads, it attracts more birds, requiring him to cover the heads to prevent damage. These trials represent Nelson’s first experience with these varieties, and he acknowledges the learning process involved. “The seed was sourced from NaSARRI specifically for these demonstration plots,” he explains. He believes that by seeing the results first-hand, other local farmers will be able to make informed decisions about adopting the new varieties for improved seed production.  

Nelson’s demonstration plots serve as valuable learning sites for the wider farming community. By bridging the gap between research and farmers’ needs, the AVISA project ensures that scientific innovations reach those who need them most. Reflecting on his journey, Nelson describes the testing of these new varieties as a continuous learning experience. “I’ve been growing sorghum for a long time, and when people see how I grow it, they often ask about the variety and where they can get seeds,” he says. After his harvest, Nelson plans to share the seeds with nearby farmers while keeping some for his own future planting. 

Although he hasn’t been involved in large-scale seed distribution before, Nelson sees potential for future collaboration. “ There’s a group of sunflower and groundnut farmers who have organized themselves into a SACCO to access funding,” he says, referring to the Parish Development Model (PDM) initiative. This model could offer Nelson the opportunity to expand seed distribution and help more farmers access improved varieties. 

Committed to helping local farmers adopt best practices, Nelson is eager to share his knowledge. “When people see how I grow the crops, they often ask for advice or seeds,” he says. He believes that organizing field days to showcase the new varieties would be an excellent way to engage more farmers and demonstrate the value of improved seeds. 

Nelson prefers the NAROSORG 2 sorghum variety known for its resilience and red grain colour (Photo: Marion Aluoch/CIMMYT)

One of the challenges Nelson frequently encounters is farmer’s poor planting practices. “Some farmers broadcast the seeds instead of planting them properly in rows,” he notes, stressing the importance of correct planting techniques. Despite this, he continues to share seeds and farming knowledge to help his fellow farmers to improve their yields. 

Another key issue Nelson highlights is seed recycling, a crucial aspect of sustainable farming. “When you recycle seeds too much, they get tired,” he explains. For improved varieties, Nelson recommends recycling seeds no more than three times to maintain the health of the crop. “I recycle mine only twice. The local seeds can be recycled up to 20 times, but improved varieties don’t perform as well after a few cycles.” 

Climate change is one of the biggest challenges for Nelson’s farming practices, but he remains hopeful. He believes that installing an irrigation system would help mitigate the effects of erratic rainfall and improve his yields. His willingness to try new techniques and experiment with new varieties shows his determination to find solutions in the face of adversity. 

Nelson is optimistic that his trials with ground nut, sorghum, and millet will encourage other farmers to adopt improved varieties, increase seed production and lead to greater productivity in his village and beyond. Through programs like the AVISA project—supported by CIMMYT and NaSARRI—farmers like Nelson are gaining access to better seeds, growing more resilient crops, and improving food security in their communities. 

Four New CIMMYT maize hybrids available from LATAM Breeding Program

CIMMYT is happy to announce four new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM22LAPP1A-10 Intermediate maturing, white, high yielding, and resistant to TSC, MLB and Ear rots Lowland tropics
CIM22LAPP1A-11
CIM22LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM22LAPP2A-28 Intermediate-maturing, white, high-yielding, and resistance to GLS and Ear rots. Mid-altitudes/

Spring-Summer season

 

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 31st, 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the LT23-STG5-THW, LT23-STG5-THY, and 01-23MASTCHSTW Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

 

Atubandike: Breaking down gender barriers in Zambia’s agricultural advisory services

A digital champion trained by CIMMYT in climate-smart agricultural practices, shares her knowledge with her community (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Zambia’s agricultural sector has long grappled with significant gender disparities, particularly in rural areas where women often face unique barriers to accessing essential agricultural information. Despite playing a critical role in food production, women remain significantly underrepresented as agricultural extension agents, a trend that persists not only in Sub-Saharan Africa (SSA) but also globally. Changing this narrative demands a coordinated effort from government, non-governmental organizations (NGOs), the private sector and communities to challenge deep-rooted stereotypes about women’s roles and capabilities in agriculture.[1]

The Atubandike approach, a key part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, addresses these challenges head on. Through initiatives focusing on gender-inclusive seed systems and agricultural advisories on climate-smart agricultural (CSA) practices, Atubandike is actively working to increase women’s representation among Zambia’s agricultural advisors. By equipping communities with inclusive advisory services and training women and men digital champions, Atubandike is paving the way for a more equitable agricultural future.

This blog delves into the gender biases uncovered during recent community consultations organized by the AID-I Atubandike team in Zambia’s Southern Province across various rural districts, held in November 2023, as well as July 2024.[2] These consultations, aimed at addressing gender and youth stereotypes in agriculture, highlighted Atubandike’s initiatives to reshape the agricultural landscape for women and marginalized groups.

Community dialogues reveal deep-rooted gender biases in advisory access and spring up encouraging perspectives for female advisors

Staying true to the name, Atubandike—meaning “Let’s Chat” in Tonga—the AID-I team implementing the initiative, facilitated community discussions with over 1,700 farmers in Zambia’s Southern Province to explore underlying gender challenges in agriculture. Through these conversations, deep-seated gender biases emerged as a significant barrier. Many female agricultural advisors contend with cultural stereotypes that undermine their leadership and technical skills. As one participant noted, “Women are mostly seen as subordinates to men, so it is only natural that female agricultural advisors are viewed as less capable.” Such remarks highlight the difficult path women often tread to establish their authority in agricultural roles. Unfortunately, this bias isn’t limited to men; some female farmers also expressed a preference for male advisors, sharing the belief that “a fellow woman cannot provide valuable information.”

Women participating during a focus group discussion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Studies on agricultural extension services confirm that  gender disparities in advisory roles severely  limit women farmers’ access to timely, high-quality  information in SSA and other developing regions. This, in turn, impedes their ability to boost productivity and provide for their families. [3] Agricultural Advisory Services (AAS) are often designed with men as the primary beneficiaries, overlooking the need to make services more accessible and relevant to women. The dominance of male extension agents further exacerbates this issue, especially in societies where cultural norms restrict interactions between women and men outside their immediate family. These societal norms reinforce traditional gender roles, undermining the effectiveness of women as agricultural advisors. As a result, women are often excluded from opportunities that would enable them to fully participate in, and benefit from, agricultural development. This exclusion not only limits their potential but also perpetuates poverty and inequality.

On a positive note, a more nuanced perspective also emerged during the discussions. Some community members recognized the unique strengths that female advisors bring to their work. As one participant observed, “Female advisors are more careful and easier to talk to,” noting that women often prioritize technical knowledge, while men may base advice more on personal experience. This insight provides a glimmer of hope: with increased exposure and trust, farmers could become more receptive to female advisors, recognizing their effectiveness alongside their male colleagues.

A female farmer shares her experience during a CIMMYT visit to her village where farmers were discussing gender youth and social inclusion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

In some settings, women farmers even prefer female advisors, feeling more comfortable discussing issues and having a greater sense of shared experiences. According to a study conducted in Mozambique, women farmers were more likely to be reached as well as learn when agricultural content was delivered by female advisors. [4] This highlights the potential impact of gender-sensitive approaches in improving the efficacy and accessibility of advisory services for women.

Achieving equal footing for women in AAS requires addressing a broader range of barriers. This not only entails efforts to recruit and retain women in these roles but also providing equal opportunities for education and training, as well as developing explicit policies to safeguard women advisors from gender-based discrimination.

Breaking barriers: How Atubandike is transforming AAS

The goal of the Atubandike approach is to identify, understand and dismantle entrenched gender barriers in agriculture. By adopting an innovative and inclusive strategy, this initiative equips both men and women with the tools they need to become digital champions and agricultural advisors, playing pivotal roles in their communities. With a deliberate focus on increasing female representation, Atubandike ensures that at least 50% of these champions are women, amplifying their visibility and influence in the sector.

Central to Atubandike is its emphasis on community engagement through a feedback-driven process. This approach facilitates open dialogue among community members, urging them to confront existing social biases and develop practical solutions. Through these discussions, the initiative fosters collective action aimed at promoting gender equity and social inclusion. Additionally, Atubandike provides comprehensive training on gender, diversity, and inclusion, equipping its digital champions not only with technical knowledge but also with the skills required to challenge and navigate gender biases effectively.

One of the initiative’s most transformative elements is its focus on diverse role models. By ensuring that half of its village-based digital champions are women, Atubandike boosts their digital literacy, agricultural expertise, and standing as leaders and role models within their communities.[5] These women are featured prominently in digital content and on talk shows, reshaping perceptions of women as agricultural leaders and breaking down longstanding negative narratives that have historically sidelined them.

Sustaining Atubandike’s momentum: Community-driven support for female advisors

Community members balanced the discussions by proposing valuable insights and strategies to overcome the deeply rooted stereotypes that challenge female agricultural advisors. Raising community awareness about the value of female advisors emerged as a crucial approach to fostering their acceptance. As one participant emphasized, “More training on gender norms is essential so that the community can become more open-minded.” Others argued that establishing trust in female advisors from the outset could empower them as agents of change: “If we begin by placing our trust in female agricultural advisors, we can encourage other communities to do the same.”

Community leaders were urged to facilitate meetings to address any disrespect toward agricultural advisors, irrespective of gender. A farmer emphasized the necessity of mutual respect, stating, “The community should be encouraged to work cooperatively with their agricultural advisors.”

Participants also highlighted that agricultural advisors must actively demonstrate their competence to build trust. In one community, it was stressed that both female and male advisors “must practice the agricultural technologies they promote so that people can have faith in their competence.” Additionally, participants suggested that advisors wear uniforms to clearly distinguish their professional roles, signaling their commitment to serving the community in an official capacity.

A model for inclusive agricultural development

Atubandike transcends the role of a conventional agricultural advisory initiative; it stands as a beacon of inclusive development, extending its impact across Zambia and setting a model for the region. By delving into the roots of gender bias and driving practical, community-led solutions, Atubandike aligns with the AID-I project’s mission of “delivering with a difference.” Through empowering female digital champions and fostering dialogues on social equity, Atubandike demonstrates that meaningful change is both attainable and sustainable. As a testament to AID-I’s dedication to equitable innovation and resilience, Atubandike is not only reshaping gender norms in Zambia but is also establishing itself as a blueprint for inclusive impact across Southern Africa’s agricultural landscape.

[1] BenYishay, A., Jones, M., Kondylis, F., & Mobarak, A. M. (2020). Gender gaps in technology diffusion. Journal of development economics, 143, 102380.

[2] The informed consent statement and methodology used in the community conversations are available upon request m.fisher@cgiar.org.

[3]Bill & Melinda Gates Foundation. (2020). Gender and agricultural advisory services. https://www.gatesgenderequalitytoolbox.org/wp-content/uploads/BMGF_AG-Advisory-Services-Brief_web.pdf

[4] Kondylis, F., Mueller, V., Sheriff, G., & Zhu, S. (2016). Do female instructors reduce gender bias in the diffusion of sustainable land management techniques? Experimental evidence from Mozambique. World Development, 78, 436-449.

[5] Lecoutere, E., Spielman, D. J., & Van Campenhout, B. (2023). Empowering women through targeting information or role models: Evidence from an experiment in agricultural extension in Uganda. World Development, 167, 106240.

In Zimbabwe, Women Are Leading the Battle Against Climate Change

CIMMYT, through the CGIAR-supported Ukama Ustawi initiative, is supporting women farmers in Zimbabwe to lead the fight against climate change. By adopting climate-smart practices like zero tillage and growing drought-resistant crops such as orange maize, cowpeas, and lab-lab, farmers like Susan Chinyengetere are ensuring food security, generating income, and inspiring others. These techniques not only strengthen resilience against erratic weather but also enable women to balance traditional roles while driving sustainable agriculture. With access to affordable seeds, mechanization, and strong farmer networks, CIMMYT is fostering lasting solutions to climate adaptation across Zimbabwe and beyond.

Read the full story.

Five New CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce five new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM23SAPP1A-02 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM23SAPP1A-11
CIM23SAPP1B-02 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22NUVA-75 Across maturity groups, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CIM23NUVA-13

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2021/22, 2022/23, and 2023/24 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline for submitting applications to be considered during the first round of allocations is 10 January 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023/24 Southern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored especially for smallholder farmers in stress-prone agroecologies of Southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

 

APPLY FOR A LICENSE

 

 

Navigating the seed market and transforming agricultural productivity

At the heart of the agricultural sector, grain off-takers/processors play a crucial role in ensuring that farmers have access to quality seeds that can increase productivity and improve livelihoods. One such processor, AgriNet in Uganda, led by Paul Nyande is deeply involved in managing the complex dynamics of seed and grain production, market demand and variety turnover making a significant impact on both the farming community and the wider agricultural market. 

AgriNet is known for its role in grain and legume markets. The company buys a range of grains and legumes, including sorghum, finger millet, soybeans, and maize. After buying these commodities from farmers, the company adds value by processing and packaging them for a diverse market. Their customers range from markets that demand raw grain to high-end consumers who buy blended flour for products such as porridge. AgriNet operates its own milling facility, enabling it to efficiently meet the needs of these different markets efficiently.  

Variety turnover is central to the processor’s work. Over time, crop varieties that have been in use for 30 or 40 years become less relevant as new research leads to the development of improved varieties. These newer varieties are better suited to evolving market needs, offering traits that align with current preferences for drought tolerance, disease resistance, and higher yields. 

Paul Nyande leads AgriNet, a company involved in managing seed and grain production (Photo: Marion Aluoch/CIMMYT)

“We have definitely seen situations where the market asked for a particular variety, and we have worked with research institutions such as National Semi-Arid Resources Research Institute (NaSARRI) to fulfill that demand. This collaboration has led to shifts in what seed companies produce to keep pace with changing agricultural conditions and market needs,” explains the processor. 

For example, through stakeholders’ interactions, AgriNet worked with NaSARRI, to communicate the market’s needs for crops such as maize and sorghum. NaSARRI produced foundation seeds based on these requirements, which the processor then marketed and distributed to specific farmers for production of certified seed that was given to grain producers. However, managing seed demand isn’t always straightforward, especially since the market can change rapidly.    

“We’ve had instances where the market suddenly surged with high demand for sorghum seeds, but we couldn’t meet it,” says Paul. “Sometimes these opportunities arrive unexpectedly, and we’re not fully prepared to supply the required volumes.” Paul notes that they still need to promote and improve productivity, as there are gaps in farming practices that hinder maximum yields. One persistent challenge is Striga, a parasitic weed that significantly reduces cereal yields. To tackle this, Paul promotes crop rotation and integration, to help farmers manage such issues. 

Despite these challenges, AgriNet has made strategic efforts to manage the risks associated with seed production. By working closely with partners like NaSARRI and using foundation seed, they have been able to balance supply and demand. The processor typically manages seed for one or two generations before reintroducing new varieties to keep up with changing market conditions. 

Paul with the CIMMYT and NaSARRI team at his office during their visit to learn more about AgriNet (Photo: Marion Aluoch/CIMMYT)
The role of technology and partnerships

A key part of AgriNet’s work is maintaining a robust supply chain. Using digital platforms, they have developed a system to profile farmers, track training sessions, monitor input distribution and communicate with farmers in real time via SMS. “We can send out information about market prices, weather updates, or available seeds. It’s a great tool, but maintaining the platform requires significant resources to maintain the platform,” says the processor. 

AgriNet currently works with around 2,000 farmers groups and have also developed an agent network to engage with these groups more effectively. Each agent works with multiple farmer groups, facilitating sales, input distribution, and grain purchases. This structure not only ensures efficient operations but also creates accountability by holding agents responsible for managing the process. 

However, one of the biggest challenges facing processors is capacity. They need to expand their storage and processing facilities to take in more grain, especially during the rainy season. Without sufficient storage and drying facilities, their ability to process large volumes of grain is limited, which in turn affects their ability to meet market demand. 

Balancing seed and grain markets

Paul emphasizes the difference between seed and grain. “For grain, we don’t face many issues. We can store it for a long time by fumigating it and keeping it safe. But seeds are different—you can’t keep them for long. They need to be used within a specific timeframe.” This dynamic adds complexity to the seed business, especially when the market shows a sudden spike in demand. 

Pricing is another challenge. “We used to think about getting seeds cheaply—from research and then to farmers. But there are costs involved, and you have to consider the seed market carefully and how it compares with others,” he says. It’s important to find the right balance between affordable prices for farmers and maintaining sustainable business operations. 

The way forward: Expanding capacity and supporting farmers

Paul is focused on expanding AgriNet’s storage and processing capabilities to better manage the supply chain and take in more grain during peak seasons. Increasing their capacity would allow them to meet the growing market demand more effectively. 

There’s also a strong need to support smallholder farmers, particularly in terms of access to quality seed. “We need to ensure that farmers have access to quality inputs at affordable prices,” he emphasizes. “Subsidizing seeds or finding sustainable ways to produce them for the most vulnerable farmers could encourage the adoption of improved varieties, which would increase yields and incomes.” 

Paul also acknowledges that improving farming practices is critical to achieving higher productivity. While they have good seed varieties available, the challenge lies in ensuring that farmers follow the correct management practices to fully realize the potential of these seeds. 

AgriNet’s efforts have not gone unnoticed. The company has been recognized as one of Uganda’s top 100 medium enterprises for 2017/2018 and 2018/2019, a testament to its commitment to quality, innovation, and market responsiveness. This recognition highlights AgriNet’s ability to navigate the complex agricultural landscape while continuously striving to improve its operations and support the farming community. 

In its mission to boost agricultural productivity, AgriNet benefits from key partnerships with NaSARRI, which works in collaboration with CIMMYT, through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, to ensure farmers have access to improved seed varieties. By aligning research with market demands and processor capacity, CIMMYT and NaSARRI are helping to bridge the gap between innovation and practical solutions that directly benefit farmers.

Transforming Farming in Uganda: The journey of four farmers and their demonstration plots

On the lush soils of Uganda, four farmers are using awareness creation demonstration plots to showcase the performance of improved varieties of groundnut, sorghum, and finger millet and their impact on transforming transform livelihoods.  

Not only are these farmers improving their yields, but they are also inspiring their neighbours to adopt more resilient and climate-smart crops as part of a larger collaboration initiative between the National Semi-Arid Resources Research Institute (NaSARRI) and CIMMYT through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. The AVISA project, funded by BMGF, aims to improve food security and resilience in the drylands of Uganda and other eight countries in eastern and southern Africa (Ethiopia, Kenya, Tanzania, Malawi, Mozambique, South Sudan, Zambia, and Zimbabwe). The efforts of these four farmers in Uganda highlight the importance of demonstration plots as a powerful tool for creating awareness and promoting transformational agricultural technologies like improved crop varieties and other recommended agronomic practices.  

Dennis Obua, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

Demonstration plots serve as practical, hands-on learning sites, where farmers can observe the performance of improved crop varieties under farming conditions in their localities. Apart from demonstrating crop performance, these demonstration plots also serve as sources of seed for the farmers, which when selected can be grown in bigger plots in subsequent seasons targeting seed production This ensures that seed of the target crop varieties are available to local farmers. Through these demonstration plots, farmers not only witness firsthand improved yields, but farmers also make informed decisions for adoption of specific varieties for their environments to improve productivity, food security and resilience, especially in regions vulnerable to climate change. They also provide a platform for knowledge sharing, as farmers can interact with other farmers, researchers and extension agents to enhance uptake of practices that lead to success. 

Farmers Driving Variety Adoption through Demonstration Plots

In Lira District, Dennis Obua, a farmer from Teyawo village, has embraced improved varieties of drought-tolerant crops. His journey into farming began in 2018 after observing the challenges faced by local farmers due to inconsistent rainfall. He started small, with a handful of finger millet seed obtained from NaSSARI, which he multiplied and shared with neighbouring farmers. With support from the seed systems unit at NaSSARI, Dennis now manages demonstration plots of groundnut, sorghum, and finger millet and promotes these crops in his community. 

In the current season of 2024 (Mar-Jul), Dennis planted three improved groundnut varieties — SERENUT 8R, SERENUT 11 and SERENUT 14, which were released in 2011. In his assessment, his preferred variety is SERENUT 14 as it yields about 14 to 16 bags per acre. The variety is drought tolerant, disease resistant, especially rot and rosette, produces a good yield and also has a good number of pods.  Under demonstration are two finger millet varieties, NAROMIL 2 and SEREMI 2 (U15) though he prefers NAROMIL 2 (released in 2017) for its drought tolerance, high yield and red colour of the grain. His success has inspired many local farmers to adopt these improved varieties, with many seeking seeds to grow on their own plots. The seed demand generated from these demonstration plots is communicated by the host farmer to the research institute, which works on making the seed available through local entities. The host farmer keeps records of seed requests and preferred varieties from farmers visiting the demonstrations. 

Bagonza Simon oversees demonstration plots, which serve as a hub for agricultural learning, showcasing groundnut, finger millet, and sorghum varieties (Photo: Marion Aluoch/CIMMYT)

At the Kihola Demonstration Centre, the farm manager, Bagonza Simon oversees demonstration plots that serve as a hub for agricultural learning. Working with NaSARRI, Simon has introduced improved varieties of groundnut (SERENUT 8R, SERENUT 11, and SERENUT 14), sorghum (NAROSORGH 2 and SESO 1), and finger millet (NAROMIL 2 and SEREMI 2). Farmers visit the center to observe these varieties and learn about their benefits. The selection of preferred sorghum varieties by farmers appears to be influenced by the degree of bird damage observed across different types. For example, the white-grained sorghum (SESO 1) suffered significant bird damage, which led farmers to naturally favor the red-grained NAROSORG-2, released in 2017. In addition to being less susceptible to bird damage, NAROSORG-2 also demonstrates drought and striga tolerance, further enhancing its appeal among farmers. 

Simon has been particularly impressed by the attributes of the groundnut variety SERENUT 8R, which has performed well despite the challenging weather conditions observed in the season characterized by very erratic rainfall patterns. His demonstration plots have become a beacon of hope and innovation, inspiring local farmers to adopt drought-tolerant crop varieties. Farmer to farmer seed exchanges are common in this locality due to seed shortages and he therefore plans to share seed from his plots to interested farmers and is working with NaSARRI to expand seed availability across the region. 

Steven Odel from Kaloka village has drought-tolerant varieties of sorghum, finger millet, and groundnut in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

In Bukedea District, farmers Steven Odel from Kaloka village and Nelson Ekurutu from Kasoka village are also leading the way with their demonstration plots. Both are testing drought-tolerant varieties of sorghum, finger millet, and groundnut. While Steven encountered challenges with his sorghum crop due to midge attacks, he has had great success with NAROSORG-2, which he describes as having better germination and faster maturity, and therefore enabling the plants to escape midge attack. 

Steven is also growing red finger millet variety SEREMI2, which is very popular for its early maturity and high market demand for making porridge and local beer. He regularly hosts farmers on his plots, sharing his knowledge and experience.  

Nelson Ekurutu is trialling three new groundnut varieties—SERENUT 8, SERENUT 11, and SERENUT 14—and is optimistic about their performance. His experience with finger millet, particularly the red variety- SEREMI2, has been positive, noting its fast growth and high demand in local markets. Nelson also grows red sorghum (NAROSORG 2), which he prefers for its resistance to bird damage. These demonstration plots provide a platform for Steven and Nelson to test new varieties in their local context, helping them and others understand what works best in their locality.  

Nelson Ekurutu is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Increasing awareness and seed availability 

Utilizing these demonstrations to bring new varieties closer to farmers can further accelerate seed uptake and demand. Farmer-managed demonstrations in their own environments ensure that variety selections align with local preferences and adaptability. Farmers who consistently host these demonstrations build trust in the varieties within their communities, while also creating opportunities for local seed businesses to explore. Strengthening the linkages between research institutions, farmers, and seed producers is crucial for ensuring the rapid adoption of new and improved varieties. Additionally, the distribution of small seed packs at scale is essential to enable more farmers to test these varieties on their own farms, ensuring wider adoption and transforming livelihoods in these communities. 

Conservation Agriculture Transforming Farming in Southern Africa

CIMMYT has been at the forefront of promoting conservation agriculture (CA) in Southern Africa, leveraging over 20 years of research to enhance food security and resilience to climate change. By introducing innovative mechanized tools like basin diggers, CIMMYT has significantly reduced labor demands, making CA more accessible for smallholder farmers. The organization collaborates with partners, including FAO, to integrate CA into national policies, such as Zambia’s mechanization strategy, while also providing education and technical support to farmers. CIMMYT’s efforts empower farmers to increase yields, improve soil health, and generate additional income, exemplifying its commitment to sustainable agriculture in the region.

Read the full story.

Climate Change Threatens Agriculture In Khyber Pakhtunkhwa: Farmers Struggle To Cope

CIMMYT is at the forefront of addressing climate change challenges in Khyber Pakhtunkhwa (KP) by introducing drought-tolerant wheat varieties and hybrid seeds for vegetables, tailored to withstand water scarcity, heat stress, and erratic rainfall. Through collaborations with local research institutions, CIMMYT equips farmers with innovative solutions to sustain crop productivity in the face of extreme weather. These efforts directly support smallholder farmers in building resilience and securing their livelihoods amidst the growing threats posed by climate change.

Read the full story.

The other revolution that was born in Mexico: The legacy of sustainable transformation and its new roots

Members of the Maíz Criollo Kantunil group next to a plot of land cultivated using sustainable practices (Photo: Jenifer Morales/CIMMYT)

The Mexican Revolution was not the only transformative movement to emerge in Mexico. Another profound transformation began in the Mexican countryside, and today, far from guns, today it continues to drive a more peaceful and resilient society through the integration of science, innovation and ancestral knowledge. 

In the 1960s, Mexico set a precedent for global agricultural change. Today, that movement has evolved into a sustainability approach that responds to today’s challenges: climate change, biodiversity loss and the need to ensure food security. Under CIMMYT’s leadership, the Hub model has established itself as a key tool for delivering scientific solutions to producers, strengthening resilient and sustainable agricultural systems. 

At CIMMYT, we believe that ensuring food security means not only producing healthier food but also conserving natural resources such as soil and water and promoting the well-being of farmers and their communities. Through the Hub model, we have promoted practices such as the sustainable management of staple crops such as maize and related crops, and the use of strategies to strengthen the seed system to meet the challenges of the agricultural sector. 

A clear example of this approach is the Maíz Criollo Kantunil group in Yucatán. Led by Edgar Miranda, this collective of eight families has adopted innovative practices such as regenerative agriculture, efficient water use and agroecological pest management. By linking with the Hub model, the group has been able to conserve native seeds, strengthen local agroecology and generate social and productive benefits for their community. 

“Our main objective is that the next generations will have seeds available to meet their food needs,” said Edgar Miranda. “We work with sustainable practices that allow us to conserve our resources and produce healthy crops,” he added. 

In addition to supporting producers, the Hub model fosters associativity and community participation, essential pillars for building inclusive and resilient food systems. These activities are in line with national initiatives such as strengthening production chains, but also reflect CIMMYT’s commitment to a global approach to sustainable development. 

CIMMYT’s strategy in Mexico not only supports producers in transforming their agricultural systems, but also promotes strategic alliances with public and private actors. These collaborations strengthen the integration of scientific solutions and sustainable practices, stimulate innovation in rural communities, and promote resilience to the challenges of climate change. With an approach based on science, inclusiveness and continuous learning, CIMMYT continues to contribute to building a more equitable, sustainable and prosperous future for Mexico and the world. 

ZARI promotes climate-smart agriculture to strengthen research excellence, innovation, and sustainability

The Zambia Agricultural Research Institute (ZARI) has undergone a significant transformation, fueled by a strategic subgrant from the Bill & Melinda Gates Foundation through the Africa Dryland Crop Improvement Network (ADCIN). Established in August 2023 and convened by CIMMYT through its Dryland Crops Program (DCP), ADCIN is a collaborative network aimed at uniting over 200 scientists from more than 17 countries across sub-Saharan Africa. Its mission is to create a dynamic and sustainable network to develop and deliver improved varieties of dryland crops in the region. By leveraging the collective expertise of its multidisciplinary members, ADCIN strives to accelerate the access of enhanced crop varieties to smallholder farmers.

This support has led to the modernization of ZARI’s research facilities, improved irrigation systems, and enhanced data management capabilities, positioning the institute as a leader in climate-smart crop research. Key advances include speed breeding and controlled drought research, which have led to higher crop yields and better adaptation to climate challenges. These improvements have not only strengthened Zambia’s agricultural research capacity but also fostered regional collaboration and knowledge sharing, benefiting farmers, scientists, and institutions across Southern Africa. The institute’s improved infrastructure, including expanded water storage and solar power, has ensured uninterrupted research, even during power outages. As a model for other NARES institutions, ZARI’s transformation highlights the critical role of strategic investment in agricultural research to address the growing challenges of climate change and food security across Africa.

We caught up with Dr. Loyd Mbulwe, the Ag. Chief Agriculture Research Officer at ZARI, to get more insight into the upgrade.

Q: What were some of the challenges ZARI faced before the upgrades?

A: ZARI faced several research-related challenges that hampered its potential for innovation. These included limited access to essential research equipment, inadequate funding for critical projects, and insufficient capacity for data management and analysis. Collaboration and knowledge sharing with regional and international partners were also limited.

In terms of infrastructure, ZARI struggled with outdated laboratory facilities, inefficient greenhouse and irrigation systems, and limited storage space for seeds and plant materials. The institution’s ICT infrastructure was inadequate to support modern agricultural research needs. Operational efficiency was hampered by manual data collection, inefficient research protocols, and inadequate standard operating procedures.

Q: How has the upgrade helped ZARI overcome these challenges, and how has it improved the quality and quantity of research coming out of ZARI?

A: Recent upgrades at ZARI have significantly improved its research capabilities. New equipment and increased funding have supported larger projects, while improved data management systems have streamlined data handling and fostered greater collaboration with regional and international partners. The addition of a modern greenhouse and upgraded irrigation systems has improved water management and allowed for more controlled experiments. Expanded seed storage capacity now ensures the secure preservation of critical plant material for future research.

Automated data collection systems have reduced errors and increased efficiency, while standardized research procedures have improved the quality and reproducibility of results. Improved research documentation and targeted staff training programs have further enhanced research skills, enabling the team to produce more impactful results.

The newly constructed greenhouse facility enhances crop breeding and genetics research, enabling efficient off-season studies.  (Photo: ZARI/Zambia)
Q: How has ZARI’s research capacity improved with the upgraded facilities and new equipment?

A: ZARI has undergone significant upgrades to improve its research capacity. The new greenhouse facility has improved crop breeding and genetics research, allowing for more efficient off-season research. Speed breeding, a technique that accelerates crop generation turnover by two to five times through controlled environmental conditions, has been a game changer. The greenhouse also enables controlled drought research, providing insights into the development of climate-resilient crops. The ZAMGRO project has increased ZARI’s water storage capacity from 45 m² to 3.6 million m², enabling year-round farming and improved water management. The subgrant also enabled the installation of solar power, addressing the electricity challenges caused by recent droughts. The move to Starlink internet connectivity has also improved ZARI’s online capabilities, providing reliable, uninterrupted internet access, even in remote research sites.

An aerial view of the installed solar panels, that has resolved electricity challenges and mitigating power outages. (Photo: ZARI/Zambia)
Q: Looking ahead, what are ZARI’s future plans? Are there any further upgrades or expansions planned for the future?

A: ZARI’s future plans focus on increasing its research impact through strategic partnerships and innovation. The institute aims to establish a center of excellence for climate-smart agriculture and develop a biotechnology laboratory to advance genetic improvement and crop resilience. Expanding greenhouse and irrigation systems and improving digital infrastructure for data management are also priorities. ZARI also plans to strengthen collaborations with international research institutions and pursue public-private partnerships to transfer technology from research to practical applications. In addition, ZARI is committed to human resource development through targeted training, fellowships, and mentorship programs to nurture future researchers.

Q: What steps is ZARI taking to ensure the long-term sustainability of the upgraded facilities and research programs?

A: ZARI has implemented a comprehensive plan to ensure the long-term sustainability of its upgraded facilities and research programs. Key areas include maintenance of facilities, continuation of research programs, capacity building, partnerships, and knowledge sharing. ZARI has secured funding from partners and donors, diversified its income streams, and developed sustainable research funding models. Staff training, mentoring programs, and collaboration with international experts are key to ensuring that the research team stays abreast of new technologies. Strategic partnerships with private sector companies, joint research initiatives, and technology transfer agreements have further strengthened ZARI’s research capabilities. Regular impact assessments and collaborations with universities, research institutes, and government agencies further strengthen ZARI’s research capabilities and ensure that programs remain relevant and impactful.

An aerial view of the water storage system during installation. This has increased the capacity to support year-round farming and improved water management. (Photo: ZARI/Zambia)
Q: In what ways can this facility upgrade serve as a model or inspiration for other NARES facilities in the region? Are there any best practices that ZARI would recommend for similar projects?

A: The ZARI facility upgrade serves as a model for other NARES institutions in several significant ways. First, it highlights the importance of strategic partnerships, demonstrating how collaboration with regional and international organizations can lead to meaningful progress. Second, it emphasizes capacity building, with a focus on investing in staff training and development to improve institutional performance.

There are also several inspirational aspects to ZARI’s transformation. It demonstrates the transformative impact that research modernization can have on NARES breeding programs and shows the potential for improving agricultural research capacity. In addition, the upgrade is highly regionally relevant, addressing pressing regional challenges.

Finally, ZARI’s best practices provide valuable lessons for other institutions. The irrigation upgrade is an outstanding example, tailored to address the unique challenges posed by climate change in the region.

Unboxing the Starlink hardware: Transitioning to Starlink ensures reliable and uninterrupted internet access, even in remote research sites. (Photo: ZARI/Zambia)
Q: What was ADCIN’s role in facilitating this strategic investment, and how does it fit into the broader vision of strengthening NARES institutions across Africa?

A: ADCIN plays a key role in supporting the development and modernization of NARES institutions across Africa. Its contributions can be seen in three key areas. First, ADCIN provides technical assistance by offering expertise in research infrastructure development. Second, it provides financial support by mobilizing the resources needed to upgrade facilities. Third, ADCIN provides strategic guidance, ensuring that investments are aligned with regional research priorities and agendas.

This support fits into the broader vision of strengthening NARES institutions across the continent. ADCIN’s efforts focus on improving research capacity through upgrading facilities and equipment, fostering collaboration by promoting regional and international partnerships, and improving research quality through stronger research management and governance. As a result of ADCIN’s support, NARES institutions such as ZARI have seen significant improvements. Research output and impact have increased, regional collaboration has been strengthened, and institutions now have better access to international funding. By supporting ZARI’s strategic investments, ADCIN reaffirms its commitment to strengthening NARES institutions and promoting excellence in agricultural research across Africa.

Agro fair in Kailali rejuvenates farmers

In May, CIMMYT, in collaboration with the local government, organized an Agriculture Fair in Janaki Rural Municipality, Kailali district, Nepal, introducing farmers to modern farming techniques and machinery. The event inspired farmers like Ramfal Badayak, chairman of Biz Briddhi Krishak Cooperative, to adopt advanced tools, leading his cooperative to purchase two plant cultivators that now save time and labor for all members. With over 40 stalls and more than 4,000 daily visitors, the fair also benefited local suppliers by enabling direct sales to farmers, reducing costs by eliminating middlemen. This transformative event exemplified the potential of such platforms to modernize agriculture and support local communities.

Read the full story.