Skip to main content

Author: dmedina

Positive Solutions for Nature in Colombia: A Review

In a world where environmental and agrifood challenges demand urgent responses, the CGIAR-led Positive Solutions for Nature (Nature+) initiative is transforming agriculture into a catalyst for ecological regeneration and sustainable development.

In Colombia, CIMMYT has played a key role in implementing several activities under this initiative. These efforts have not only improved agricultural productivity but also promoted biodiversity conservation, sustainable resource management, and the strengthening of rural communities—with a special focus on youth, women, and native maize.

One of the first steps in Colombia was conducting a diagnosis and mapping key actors within agrifood systems across different regions. This assessment identified major challenges such as limited access to native seeds, soil degradation, and lack of access to fair market opportunities for smallholder farmers.

To ensure that promoted practices aligned with local realities and needs, CIMMYT worked closely with farmers to co-create solutions. A significant example was the support given to women producers to conserve native maize varieties. Workshops held in Cesar, Nariño, Putumayo, and Valle del Cauca included childcare spaces, enabling full participation by women.

Another important milestone was facilitating dialogue between producers and niche markets, helping connect farmers growing native maize with potential buyers. This has been key to revitalizing the value chain for these crops. In parallel, twelve community seed banks were strengthened in various regions, ensuring the availability of native varieties and encouraging intergenerational knowledge exchange.

CIMMYT also conducted extensive training activities, benefiting hundreds of farmers in the post-harvest management of native grains and seeds. In workshops held during 2023 and 2024, over 780 producers—many of them women—received training in practices such as harvesting, drying, shelling, and hermetic storage, which reduced post-harvest losses and improved seed quality.

Infrastructure improvements further supported these efforts. One standout example is the YEL-PUE Cumbe seed bank in Cumbal, Nariño—established with support from CIMMYT and the Bioversity-CIAT Alliance. This seed bank not only conserves agricultural biodiversity but also serves as an intergenerational learning hub, where farmers, students, and technicians share experiences and knowledge.

A key component of the initiative has been youth participation. Through collaboration with the José María Falla Educational Institution and youth networks like Herederos del Planeta, students have engaged in agroecological maize production. This involvement fosters stronger rural ties and ensures the continuity of traditional knowledge for future generations.

While challenges remain, the implementation of Positive Solutions for Nature in Colombia has demonstrated that agricultural production can go hand in hand with environmental conservation and community well-being. Thanks to collaborations with research centers such as CIMMYT, many Colombian farmers are now adopting regenerative practices, enhancing agrobiodiversity and boosting resilience to both climate and economic shocks.

Looking ahead, these efforts will continue within the CGIAR Multifunctional Landscapes Science Program. CIMMYT, in collaboration with other CGIAR centers, will focus on participatory varietal selection, business models to enhance the value of agrobiodiversity, connections to niche markets, and the empowerment of women as agents of biodiversity conservation.

Sistema tradicional maíz-frijol en Valledupar, Cesar, Colombia

Caring for the Earth to Secure the Future

The first leaves of a crop emerging through crop residue. (Photo: CIMMYT)

“The conventional way we used to prepare the land involved heavy soil disturbance, and now we see that’s not necessary. We used pesticides that were, let’s say, not kind to the soil. Now, we are becoming increasingly mindful of the environment — and it turns out to be more profitable. Today, I wouldn’t dare use a pesticide or any polluting product that could harm people or the environment.”

Leopoldo is a farmer from Sinaloa participating in the Supporting Responsible Sourcing in Mexico project — a collaboration between Kellogg Company and CIMMYT. For him, ceasing the practice of burning crop residues and instead using them to cover and protect the soil from erosion signifies a shift in values and a better way of practicing agriculture — one that actively contributes to regenerating the Earth.

The agronomic innovations adopted by farmers involved in the project promote a more balanced relationship with nature, aiming to strengthen a responsible sourcing model that ensures equilibrium between the economic, social, and environmental needs of both current and future generations. This contributes to a more sustainable production and consumption model, capable of feeding a growing global population within planetary boundaries.

If current patterns of production and consumption persist, it is estimated that in less than 30 years we would require the resources of three Earths to meet global needs. The rising scarcity of water and the reduction in arable land—driven by urban expansion and soil degradation—are clear reminders that our planet’s natural resources are finite. These facts underline the urgent need to accelerate the adoption of sustainable practices in agrifood systems.

Within the observance of International Mother Earth Day, efforts like the Supporting Responsible Sourcing in Mexico project serve as a reminder of the importance of forging a new relationship with the planet. Above all, they emphasize recognizing the Earth and its ecosystems as the shared home of all humanity. Failing to care for this home could lead us into further crises — in health, socioeconomic stability, and food security — and agriculture offers powerful solutions to safeguard this common home.

Globally, the agriculture sector is responsible for 24% of greenhouse gas emissions — which contribute to climate change — and 70% of freshwater withdrawals from rivers, lakes, and aquifers. Additionally, for every 1°C increase in global temperature, cereal yields are estimated to decrease by about 5%. Therefore, a new model of sustainable production and consumption must aim for reduced environmental impact, while increasing productivity and delivering benefits for farmers.

The Conservation Agriculture practices promoted by the Kellogg-CIMMYT project are advancing these goals: in just three years of work in Sinaloa and Guanajuato, nearly 7,000 hectares have adopted sustainable agricultural practices, leading to a 36% increase in average maize productivity. In 2021 alone, more than 350 farmers were engaged across over 2,400 hectares, producing nearly 26,000 tons of yellow maize through sustainable intensification technologies.

Looking ahead, the initiative aims to impact around 20,000 hectares to produce close to 180,000 tons of maize with a reduced carbon footprint. Already, farmers have achieved reductions in fuel use for grain production and improved water-use efficiency in irrigation.

“We save on machinery, on fuel, on agrochemicals, and on fertilizers. Now we produce with higher quality and at a lower cost because we practice minimal tillage. They also teach us integrated pest management and even how to optimize fertilizer use,” says Leopoldo, highlighting a system that also eliminates crop burning, one of the leading causes of wildfires.

By providing farmers with the knowledge and tools they need to integrate sustainable production methods, we benefit not only the Earth — but all of humanity.

Pest and disease attacks on crops rising due to climate change: Scientist

Pest and disease outbreaks in agriculture are increasing at an alarming rate due to the impacts of climate change, with shifting temperatures and erratic weather patterns creating favorable conditions for pests and pathogens to thrive. This growing challenge threatens crop yields and food security across climate-vulnerable regions. Dr. Prasanna Boddupalli, Distinguished Scientist and Regional Director for Asia at CIMMYT, underscores the urgent need for climate-resilient, pest- and disease-resistant crop varieties, alongside robust surveillance systems and strengthened capacity building. Addressing these risks through integrated, science-driven strategies is vital to safeguarding plant health and securing resilient agrifood systems for the future.

Read the full story.

Sonia Jannat: defying odds, reaping success as a combine harvester MSP

In the male-dominated realm of agricultural machinery services, Sonia Jannat, a 28-year-old from Jhenaidah, Bangladesh, has inscribed her name as a successful Machinery Solution Provider (MSP). Her determination—and the transformative power of new technologies—has launched her on an extraordinary journey of empowerment and financial independence.

Growing up in a farming household, Sonia was already familiar with cultivation. Rooted in agriculture, she harbored a longstanding ambition to make a meaningful impact in this field. To realize her vision, she consistently stayed abreast of the latest technologies and machinery designed to boost production while minimizing labor and time. However, life took an unexpected turn when her father fell ill with heart disease, forcing Sonia to shoulder the responsibility of financially supporting her family while pursuing her honors degree. This phase of hardship proved to be a turning point in her life.

Sonia Jannat operates one of her combine harvesters in Jhenaidah, Bangladesh. (Photo: CIMMYT)

During this challenging period, Sonia came across a YouTube video showcasing a combine harvester—a cutting-edge machine that could revolutionize harvesting. She immediately recognized its potential to transform farming practices and offer a reliable income stream. The first major hurdle was overcoming her family’s financial constraints and convincing them to invest in a machine without any tangible proof of its benefits.

In October 2020, Sonia and her family attended a live demonstration organized by the private sector, where she successfully persuaded her father to invest in a combine harvester. With the support of a machinery subsidy, she selected the best model suited to her business needs.

Sonia took part in business expansion meetings, built linkages with spare parts shop owners, dealers, and commission agents, and received operational and maintenance training—for both herself and her machine operators.

In the first season of 2021, Sonia’s combine harvester generated an impressive income of approximately US$10,000 (excluding operational and labor costs). This early success fueled her ambition, and with her family’s support, she invested in a second combine harvester, expanding the business.

Today, Sonia Jannat proudly owns three combine harvesters, generating an annual income of BDT 30 lakh (approximately US$33,000). Her customer base has grown to span around ten geographical divisions across Bangladesh. Sonia’s achievements have not only reshaped her own financial future but have also broken deep-rooted societal stereotypes. Once ridiculed for her unconventional path as an unmarried woman, she now commands respect and admiration from the very community that once doubted her.

Sonia shares with pride:

“The same society that once criticized me with comments like, ‘Why is an unmarried girl traveling around to earn money? Why is she breaking social norms?’ is now praising me. After witnessing my talent, social contributions, and support for my family, they now see me as one in a thousand girls!”

With academic credentials that include honors and a master’s degree in Bangla, Sonia’s aspirations continue to grow. She now envisions launching a new entrepreneurial venture offering a wider range of agricultural machinery services. She is committed to empowering women by actively engaging them in her business model—aiming to be an inspirational entrepreneur for many others.

Strengthening One Health Approach in Agriculture Requires Cross-Sectoral Partnerships, Information

The One Health approach, which connects human, animal, and environmental health, is increasingly shaping agricultural research to address global health and food security challenges. During CGIAR Science Week, experts highlighted the need for cross sector collaboration and evidence based policy. CIMMYT’s Dr. Jordon Chamberlin shared how research on livestock health and sustainable farming aligns with this approach, supporting integrated solutions for resilient agrifood systems.

Read the full story.

CIMMYT and IICA Partner to Strengthen Agricultural Innovation and Economic Growth in the Americas

Nairobi, 2025The Inter-American Institute for Cooperation on Agriculture (IICA) and CIMMYT have signed a Memorandum of Understanding (MoU) to enhance agricultural research, innovation, and trade across the Americas. 

This strategic partnership aims to advance productivity, resilience, and economic opportunities for farmers by leveraging science, technology, and strong international collaboration. The MoU focuses on key areas such as innovation and bioeconomy, trade and regional integration, climate-resilient agriculture, family farming, agrifood digitalization, and agricultural health and safety. 

Dr. Bram Govaerts, Director General of CIMMYT, highlighted the importance of innovation and market-driven solutions: “Partnerships like CIMMYT–IICA turn science into scale. Together, we’re accelerating innovation, supporting farmers, and strengthening food systems across the Americas—because global challenges demand connected solutions.” 

Dr. Manuel Otero, Director General of IICA, added: “This collaboration reflects our shared commitment to strengthening agricultural resilience, enhancing food security, and promoting economic growth in rural areas. With the increasing global demand for transforming food systems, IICA views this partnership as another testimony to its commitment to ensuring that farmers and agribusinesses across the Americas benefit from science, innovation and responsible resource management . 

Through this agreement, CIMMYT and IICA will implement joint research initiatives, promote knowledge exchange, and support innovation-driven solutions that empower farmers, enhance supply chains, and expand market opportunities. 

For more information, visit iica.int and cimmyt.org 

A transformative leap in effective subaward implementation: Inside the revitalized sorghum and millets breeding programs at ZARI

In the heart of Africa’s farming landscape, the Zambia Agricultural Research Institute (ZARI) is setting a new standard for agricultural research and climate resilience, thanks to a critical subgrant from the Bill & Melinda Gates Foundation, facilitated by the Africa Dryland Crops Improvement Network (ADCIN).

Established in August 2023 and convened by CIMMYT’s Dryland Crops Program (DCP), ADCIN is a collaborative network uniting over 200 scientists from more than 17 countries across sub-Saharan Africa. Its mission is to create a dynamic and sustainable community to develop and deliver improved varieties of dryland crops in the region. By leveraging the collective expertise of its multidisciplinary members, ADCIN strives to accelerate the access of enhanced crop varieties to smallholder farmers.

Through this partnership, ZARI has modernized its facilities and practices, creating a model for agricultural innovation in Eastern and Southern Africa. These advancements reflect a powerful vision of enhancing the capacity of breeding programs, improving crop resilience, and boosting food security for communities across the continent.

The Challenges of Transformation

Historically, ZARI faced significant challenges that limited its potential. As Lloyd Mbulwe, Acting Chief Agriculture Research Officer at ZARI, recalls:

“We faced research-related hurdles, from outdated lab facilities and inefficient irrigation systems to limited digital infrastructure and insufficient seed storage.”

These issues hindered not only ZARI’s ability to innovate but also its capacity for collaboration with regional and international partners.

With limited resources, ZARI was unable to meet the demand for high-quality, consistent research and innovation. Data collection was often manual, errors were common, and collaboration was difficult. The lack of modern infrastructure restricted the scope of experiments and the institute’s ability to respond to critical regional issues such as climate change and food insecurity.

A New Era of Modernization and Strategic Partnerships

In partnership with ADCIN, ZARI has received targeted funding and technical support, enabling transformative upgrades across its infrastructure that are redefining its research capabilities.

“The upgrades have reshaped our research capabilities,” Mbulwe explains. “With new equipment, enhanced data management systems, and a suitable greenhouse, we’re conducting better plant breeding experiments that directly address the region’s target product profiles.”

In July 2023, CIMMYT’s Dryland Crops Program conducted breeding program assessments of ZARI’s Golden Valley location, where the national institute’s sorghum and millets breeding programs are being conducted. Mark Nas, CIMMYT’s Sorghum and Millets Breeder for Eastern and Southern Africa, describes ZARI’s program as, “a high-potential program composed of talented and dedicated researchers and technicians, but in need of significant infrastructure upgrades if they are to meaningfully contribute to the shared regional breeding pipelines.”

With a subaward granted to ZARI by the end of 2023, Mbulwe and his team quickly worked on implementing the suggested improvements from the program assessments. Key upgrades include a greenhouse facility for speed breeding and controlled drought research, allowing researchers to rapidly produce lines for regional trials, while evaluating regional materials for drought tolerance. Enhanced water storage and solar power installations now enable uninterrupted research, even during power outages, a frequent challenge in this region. Transitioning to Starlink internet has also strengthened ZARI’s capacity for regional and international collaboration, and real-time data delivery, bridging communication gaps and enabling seamless data sharing.

Boosting Capacity for Impact

The new facilities have transformed ZARI’s capacity for impactful research. Rapid generation advance techniques, where breeding populations are quickly advanced through successive selfing generations, allow ZARI researchers to conduct multiple plantings within a year—dramatically boosting progress in line development.

Additionally, the upgrades also enable off-season research through the ZAMGRO Project, which has expanded water storage capacity from 45 cubic meters to an impressive 3,600,000 cubic meters. With year-round breeding, farming and water management research are now possible, giving ZARI an edge in breeding programs.

Mbulwe shares how automated data collection systems and standardized procedures have further improved the precision and reproducibility of ZARI’s research. “Our teams are now equipped to produce high-quality data leading to actionable results,” he says. “These improvements ensure the quality of outcomes and make our processes more efficient.”

A Vision for the Future

Looking ahead, ZARI plans to scale its research impact by establishing a Center of Excellence for Climate-Smart Agriculture and establishing a biotechnology lab to advance genetic improvement. Expanding greenhouse and irrigation systems, as well as enhancing digital infrastructure for data management, are key priorities. ZARI also aims to strengthen public-private partnerships to bridge the gap between research and practical applications for farmers across Zambia and beyond.

Inspiration and Best Practices for Other NARES Institutions

ZARI’s success story serves as an inspirational blueprint for other National Agricultural Research and Extension Systems (NARES) institutions. Through strategic partnerships, targeted investments in infrastructure, and an emphasis on capacity building, ZARI has shown what is possible when organizations and their leaders commit to modernizing and adapting to the evolving challenges of agriculture.

From irrigation upgrades to energy-efficient, solar-powered facilities, ZARI’s best practices are setting the stage for similar projects in other regions. “We’ve demonstrated that modernization can make a profound difference in NARES breeding programs,” says Dr. Mbulwe. “It’s about leveraging every resource to upgrade our plant breeding capabilities to address the challenges that climate change and food security bring to our region.”

The Role of ADCIN in Agricultural Innovation

ADCIN has been instrumental in supporting this transformation. Through its technical assistance, funding, and strategic guidance, ADCIN has empowered ZARI and other NARES institutions to elevate research standards across Africa. By aligning investments with regional research priorities, ADCIN not only supports individual institutions but also strengthens agricultural networks on a continental scale. Harish Gandhi, Associate Director of CIMMYT’s Dryland Crops Program, states, “We are operating in a new and transformative model of working with our partners. We want our partners to be resourced to succeed.”

ADCIN’s efforts to enhance research capacity, foster collaboration, and improve governance have seen significant returns. “This partnership has made ZARI a stronger institution,” Mbulwe asserts. “Our research output, regional partnerships, and access to funding have all grown. ADCIN’s support reaffirms its commitment to advancing the excellence of regional breeding and other research in dryland crops across Africa.”

Take-Home Message

ZARI’s journey is a prime example of the power of strategic investment, collaboration, and a shared commitment to addressing climate and food security challenges by building the capacity of national programs through equitable subawards. As it continues to innovate, ZARI remains a symbol of progress for agricultural research across Sub-Saharan Africa. With support from ADCIN, ZARI’s advancements signal a brighter, more resilient future for African dryland crops agriculture—one rooted in science, collaboration, and the promise of food security for all.

Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security

In February 2025, leading voices in the global food and agricultural system came together on the occasion of the Munich Security Conference to discuss how to achieve food security in an increasingly insecure world.

Biological diversity is key to food and nutritional security, but all too often neglected. The loss of agricultural biodiversity (which includes crop diversity) threatens not just the resilience of global food systems but also their productivity. This in turn undermines rural livelihoods and economic activity, increasing the likelihood of migration. It also heightens the risk of price spikes and restricts the availability of staple food products, which may hamper trade in important commodities as governments seek to shore up sufficient stockpiles for domestic markets.

Compromised food systems and agricultural biodiversity loss destabilize and damage communities, potentially to an existential level, while preserving agricultural biodiversity and investing in resilient farms are the foundations for peace and prosperity.  Stakeholders across the international community, including the security community, civilian agencies, civil society and businesses, should act to preserve and use agricultural biodiversity and promote sustainable agriculture by putting farmers first.

As the ultimate providers of life-sustaining nutrition, farmers are indispensable global security partners. Farmers provide a steadying economic force, but only if they have adequate safety, and access to land, investment, innovation, and functioning markets. It is imperative to provide farmers with the support, investment, and opportunities for innovation to adapt to changing global environmental conditions and persevere through social unrest and conflict. Farmers must be able to employ agricultural practices that concurrently promote nutrition, water security, human health, and biodiversity preservation. Prioritizing the delivery of nutrient-rich foods and bio-based products in ways that respond to water and weather stress is essential.

Crucially, for farmers to be successful, they need continued access to agricultural biodiversity. To ensure that, genebanks must be seen as a shared strategic strength.

Reliable, sufficient, and nutritious food for the current and future population depends on the crop diversity that underpins critical research and breeding efforts. Despite its increasing importance in light of a changing climate, the conservation and availability of crop diversity is increasingly at risk: it is declining in farmers’ fields and in the wild, and genebanks are chronically underfunded. Growing food demands, land degradation, and geopolitical tensions threaten crop diversity, and more generally agricultural economies.

Given their essential role in food security, genebanks should be strategically protected and funded. Sufficient attention and resources should be available to ensure an effective and efficient global system of genebanks under the policy umbrella of the International Treaty on Plant Genetic Resources for Food and Agriculture. In addition, the security community should incorporate food security and agricultural biodiversity into national and international security risk assessments and strategies.


Call to Action

It is our duty to alert the world to the threats to security and state stability posed by compromised food production systems and the loss of agricultural biodiversity. We wish to highlight the need for greater attention and investment from all stakeholders across governance, including the security sector, as well as civil society and the private sector.

Leading international organizations in agricultural biodiversity conservation and agricultural research, philanthropies, multinational corporations, and representatives from governments share this concern and endorse this statement arising from discussions at the 2025 Munich Security Conference.

Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security

Building IP Capacity Across Nations: ICRISAT’s South-South Training Sparks Cross-Country Learning

CIMMYT participated in the international training on Intellectual Property Rights (IPR) organized by ICRISAT under the Indian Technical and Economic Cooperation (ITEC) Program, joining CGIAR centers and institutions from 16 countries to strengthen global understanding of IPR in agricultural research. Through its involvement, CIMMYT contributed to the exchange of knowledge and best practices on innovation protection, policy development, and strategic interventions essential for advancing responsible agricultural innovation. This engagement reflects CIMMYT’s broader commitment to capacity development and the promotion of equitable access to agricultural technologies that support sustainable and inclusive food systems.

Read the full story.

Scaling conservation agriculture: Victor Munakabanze’s journey from trials to transformative adoption

Victor Munakabanze in his field sharing his scaling story with scientists and district agriculture officers (Photo: CIMMYT)

Each annual field tour offers a fresh perspective on the realities farmers face. It’s a window into how different agroecological conditions shape farming experiences and outcomes, revealing what works in farmers’ fields and what doesn’t under an increasingly unpredictable climate.

This year, in Zambia’s Southern Province, the story is promising, as good rains have set the foundation for a favorable crop—a stark contrast to the past season, marked by the El Niño-induced drought.

In the Choma district’s Simaubi camp, Conservation Agriculture (CA) trials paint a picture of resilience and adaptation. The area experiences a semi-arid climate with erratic rainfall averaging 600–800 mm annually, often prone to dry spells and drought years, such as the last, when only 350–400 mm were received. The soils are predominantly of sandy loam texture, with low organic matter and poor water retention capacity, making them susceptible to drought stress.

The area around Simaubi hosts seven mother trials, where a wide range of technologies are tested, and 168 baby trials, where a subset of favored technologies are adapted to farmers’ contexts. Each trial tests different maize-legume intercropping and strip cropping systems against conventional tillage-based practices. As adoption steadily rises, more farmers are experiencing firsthand the benefits of sustainable intensification.

A Champion in the Making

Meet Victor Munakabanze, a farmer with decades of experience and a passion for learning. He began his CA journey as a baby trial implementer, experimenting with the four-row strip cropping system on a 10 m by 20 m plot, with four strips of ripped maize and four strips of ripped groundnuts. Starting in the 2020/21 season—despite a slow start—he persevered. Instead of giving up, he and his wife embarked on a learning journey that led them to scale up and champion CA technologies in their community.

Victor has been part of CA trials under the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project in the Southern Province for five years and has seen the power of small steps in driving change. His initial trial plots sparked hope, showing him that improved yields were possible even under challenging conditions. Encouraged by these results, he expanded his CA practices to a 1.5-hectare plot during the 2024/2025 cropping season, investing in his farm using income from goat sales. He successfully integrated livestock within the cropping system, using goat manure to complement fertilizers—an approach that has not only improved soil fertility but also strengthened the farm’s sustainability.

From Experimentation to Expansion

Victor’s decision to adopt CA at scale was driven by tangible results. He found that intercropping maize and groundnuts in well-spaced rip lines could optimize overall yields better than conventional methods.

However, the transition wasn’t without challenges. In the first season, he started late and harvested little. The following year, delayed planting resulted in just four bags of maize from the 200 m². The El Niño event during the 2023/24 season wiped out his harvest completely. But through each setback, he refined his approach, improving his planting timing and weed management by incorporating herbicides when needed.

Now, his farm serves as a learning hub for fellow farmers from the surrounding community in Simaubi camp. They are drawn in by his success, curious about his planting techniques, and impressed by his ability to integrate crops and livestock. With 23 goats, a growing knowledge base, and a determination to share his experience, Victor embodies the spirit of farmer-led innovation. His story is proof that CA can be practiced beyond the trial plots—it is about ownership, adaptation, and scaling what works.

Inspiring Adoption, One Farmer at a Time

Victor’s journey highlights a crucial lesson: when farmers see the benefits of CA on a small scale, they are more likely to adopt and expand these practices on their own. His resilience, coupled with a keen eye for what works, has made him a role model in his community. From testing to real-world application, his success is growing evidence of the replicability of CA technologies. As adoption spreads, stories like Victor’s pave the way for a future where sustainable farming is not just an experiment—but a way of life.

Colombia moves toward a more sustainable agriculture with the Hub methodology

In Colombia, the path towards a more sustainable and resilient agriculture is gaining unprecedented momentum. Thanks to the implementation of the Sustainable Agrifood Colombia project, various national and international institutions are collaborating to strengthen food security and agricultural productivity through technological innovations and knowledge management models. Among these collaborations is the Hub methodology, an innovation management model developed in Mexico by CIMMYT, in conjunction with various stakeholders, which is already being successfully replicated in Guatemala, Honduras, and several African countries.

Researchers from CIMMYT engage in dialogue with Colombian technicians and producers (Photo: Sustainable Agrifood Colombia)

The project, coordinated by the Bioversity & CIAT Alliance, has 18 strategic partners for its execution, among which Agrosavia, CIMMYT, and Fenalce contribute to the maize production system. The objective is to transform the Colombian agri-food sector through the adoption of sustainable agricultural technologies and the strengthening of collaboration networks among producers, researchers, and other key stakeholders.

To this end, pilot regions have been identified where the Hub methodology is implemented, promoting knowledge sharing, validation of innovative practices, and capacity building.

The project articulation meetings and field visits were held in Colombia’s main corn-producing regions: northern Valle del Cauca, Tolima, and Córdoba. During these visits, teams from the Bioversity & CIAT Alliance, AGROSAVIA, Fenalce, and CIMMYT evaluated production conditions, identified strengths and areas of opportunity, and designed strategies for consolidating the innovation territories.

One of the most significant results of these evaluations was the definition of a training plan for producers, researchers, and technicians. This plan, which has already taken its first steps, seeks to provide local stakeholders with tools to improve maize crop yields through sustainable agronomic practices, pest management, and seed conservation.

In November, three workshops were held in different regions of the country. The first two were held in La Unión, Valle del Cauca, and in Montería, Córdoba, with the aim of identifying and involving key stakeholders in the maize production system. The third, held in Vereda Nueva Platanera, Tierralta, Córdoba, focused on seed production and conservation for small producers. Based on these events, a mapping of actors was carried out in order to analyze the interactions within the maize production network. This exercise made it possible to evaluate the degree of innovation adopted by farmers and the influence of different actors, such as technicians, companies, universities, and government institutions, in the dissemination of knowledge and the adoption of sustainable technologies.

The results of these workshops have been encouraging. To date, 220 people have been trained on key issues such as pest management (particularly Dalbulus maydis, which has recently been a serious problem), seed production and conservation, and climate change adaptation strategies. In addition, stakeholder mapping has facilitated the identification of opportunities to strengthen collaborative networks and promote the adoption of innovations in the production system.

One of the key lessons learned has been the importance of constant monitoring in the implementation of sustainable management strategies. Workshop participants have highlighted the need to generate training spaces from the initial stages of cultivation, including the preparation of plots for planting, to maximize the benefits of sustainable practices.

The Hub approach, which has proven to be an effective model in Mexico and other countries, is making significant progress in Colombia. By connecting the actors in the maize value chain, facilitating the generation and socialization of knowledge, and driving innovation from the local level, this methodology represents a comprehensive solution to address the country’s agricultural challenges.

With the coordinated work of institutions, producers, and scientists, Colombia is laying the foundations for a more resilient and competitive agri-food sector. CIMMYT’s experience in implementing the Hub methodology in different regions of the world is an example of how science, innovation, and collaboration can transform the future of Colombian agriculture.

CIMMYT drives wheat production systems and enhances livelihoods in Ethiopia’s Lowlands through the ADAPT-Wheat Project

Away Hamza, a young and ambitious farmer in Arsi Zone, Oromia region, proudly tends to his wheat field (Photo: CIMMYT)

Wheat plays a pivotal role in Ethiopia’s agricultural landscape. As the country’s second most important staple crop, it is crucial to national food security. Traditionally, wheat cultivation has been concentrated in Ethiopia’s highlands, but this has changed with the introduction of the ADAPT-Wheat project—an initiative designed to address the production challenges faced by Ethiopia’s irrigated lowland areas. Led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR), the project aims to tackle key issues such as the lack of stress-tolerant wheat varieties and limited access to reliable seed sources.

Transforming wheat farming in Ethiopia’s lowlands

The Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project focuses on bridging critical wheat production gaps and introducing innovative solutions for smallholder farmers, particularly in the Afar and Oromia regions. By improving wheat production through new varieties and modern technologies, the project is not only increasing agricultural productivity but also transforming farmers’ livelihoods. The initiative aims to directly benefit 1,000 households, with a much wider impact expected across the two regions.

Financially supported by BMZ, the project aligns with Ethiopia’s broader goal of achieving food self-sufficiency. Researchers and national partners have witnessed a significant shift in wheat production practices, demonstrating the success of innovative agricultural technologies and improved collaboration among stakeholders.

Insights from researchers and partners

Bekele Abeyo, CIMMYT-Ethiopia Country Representative and project leader:

“The ADAPT-Wheat project marks a major milestone in Ethiopia’s wheat production journey. It introduces viable wheat technologies that are well-suited for the irrigated lowlands, enhancing both production and productivity in the pursuit of food and nutritional security.” 

Tolossa Debele, senior researcher and EIARDG representative:

“For years, CIMMYT has been instrumental in advancing Ethiopia’s wheat production system by introducing germplasm, improving varieties, and offering financial, equipment & technical support and training for both researchers and farmers. With the ADAPT-Wheat project, we’ve seen another tangible difference in the livelihoods of smallholder farmers, particularly in the Afar and Oromia regions. The project’s support, including the introduction of modern farm machinery, has not only enhanced mechanization at the farm level but has also contributed significantly to the broader objectives of national agricultural development.”  

Tolossa Debele, senior researcher and EIAR-DG representative (Photo: CIMMYT)

Major milestones and achievements

1. Building capacity for sustainable change

One of the project’s most significant accomplishments has been its strong emphasis on capacity building—both human and physical—to empower local communities in wheat farming. Key capacity-building initiatives include:

  • Training for researchers: Software and scientific writing training to enhance technical skills and scientific contributions.
  • Training of trainers (TOT) for agricultural experts: Development agents and district-level subject matter specialists were trained to share knowledge with farmers.

The project also included seed distribution, experience-sharing visits, and field days to disseminate knowledge and encourage peer learning. A notable outcome has been informal seed exchange among farmers, amplifying the project’s impact.

Through these efforts, the project successfully reached approximately 4,300 households and engaged a wide range of stakeholders, contributing to human capacity development, seed production and distribution, technology diffusion, and sustainable farming practices.

Additionally, infrastructure development—such as the construction of a quarantine facility and installation of air conditioning units at the Werer Research Center—has strengthened research capacity and maintained high standards for agricultural innovation. The procurement of essential farm machinery has also set the stage for more sustainable wheat farming in Ethiopia’s lowlands.

2. Introducing elite wheat lines

The project introduced 505 elite bread wheat lines and 235 durum wheat lines. From these, 111 bread wheat and 49 durum wheat genotypes were identified for their promising traits, including heat stress tolerance, early maturity, and superior yield components. These lines were rigorously tested across diverse agroecological zones to ensure adaptability.

3. Demonstrating modern irrigation technology and mechanization

The project didn’t stop at improving wheat varieties—it also introduced modern mechanization practices to enhance efficiency and yield. In the Afar and Oromia regions, pilot farms demonstrated advanced machinery such as:

  • Subsoilers
  • Bailers
  • Land levelers
  • Planters
  • Ridge makers
  • Multi-crop threshers

These technologies have been showcased at various farm sites to facilitate adaptation and scaling.

4. Releasing and adapting wheat varieties

The project identified eight wheat varieties (four bread wheat and four durum wheat) suited for Ethiopia’s lowland irrigated conditions.

Additionally, two new wheat varieties—one bread wheat and one durum wheat—were officially registered and released for large-scale production. These releases mark a significant milestone in Ethiopia’s efforts to strengthen wheat production systems.

5. Seed production and distribution

Ensuring the availability of high-quality seeds has been another key priority. Through partnerships with research centers, early-generation seeds were provided to private seed producers and farmers’ cooperative unions. Field monitoring ensured seed quality at harvest, resulting in the production of 430 quintals of certified seed.

Women and youth empowerment strategy

The ADAPT-Wheat project has made a deliberate effort to empower women and youth by ensuring they have access to high-quality seeds, training, and technical support. Notably, women comprised 32% of seed distribution beneficiaries, strengthening their role in improving food security and livelihoods.

Voices from the field: Farmers share their stories

Damma Yami from Jeju district, Alaga Dore village

Farmer Damma Yami, has carefully monitors her thriving wheat crop as it nears harvest (Photo: CIMMYT)

Damma Yami’s story is a powerful example of how innovative agricultural initiatives can transform communities, especially in regions facing harsh environmental conditions.

“For many years, we have lived in arid conditions where livestock farming was our primary livelihood. However, with the challenges posed by weather trends, our traditional systems were no longer sufficient to maintain our livelihoods. The introduction of the ADAPT-Wheat project in recent years has reversed this trend. The project brought us wheat cultivation, as a new and golden opportunity for the farming community. We received high-yielding seeds, training, and technical support on farming practices, and soon we began to see impressive results. The benefits of the project are clear: it provides food for our families, generates income to send children to school, and helps meet other basic needs. As a farmer who engaged in this project, I can confidently say that the project has reshaped our future livelihood.”

Yeshiwas Worku from Oromia region, Arsi Zone, Merti district, Woticha Dole village

Farmer Yeshiwas Worku actively monitoring the growth and performance of his wheat crop on his plot, ensuring optimal results through the support of the ADAPT project (Photo: CIMMYT)

Yeshiwas Worku, a 40-year-old farmer was among those who benefited from the project.

Yeshiwas explains that before the project, wheat cultivation was not traditionally practiced in his area, but it has now become a game-changer for the community. The introduction of modern farming tools, machinery, and access to improved crop varieties has been key to their success. With the help of the project, wheat production has not only become their main source of income but has also helped farmers gain confidence in their ability to sustain their livelihoods.

“We are now familiar with modern farming tools, machines, and practices thanks to the implementing partners of the ADAPT project. We also have access to improved crop varieties, which are crucial for better production and increased income. Now, wheat production has become the main source of our livelihood. This alternative farming opportunity has not only boosted our confidence but has also allowed us to secure a more sustainable livelihood for my family and me. I am deeply grateful to the project implementing partners for playing such a crucial role in transforming our lives. The impact has truly been transformative.”

A transformative impact on wheat production

The ADAPT-Wheat project, alongside CIMMYT’s ongoing work in Ethiopia, has significantly improved wheat production systems and enhanced the livelihoods of smallholder farmers in the lowland regions. More than just a This project is technological intervention, the project serves as a lifeline for smallholder farmers. By introducing innovative wheat technologies, improving seed availability, and empowering local communities, it directly contributes to Ethiopia’s food security goals while fostering economic growth and resilience in rural areas.

As Ethiopia continues its journey toward agricultural self-sufficiency, the success of the ADAPT-Wheat project serves as a model for sustainable agricultural development.

Trade Partnerships and Industry Milestones

The State of Mexico is supporting native corn preservation by providing MX$3.5 million in financial aid and equipment to local farmers. In collaboration with CIMMYT and UNAM, the government is advancing research to improve open-pollinated varieties and promote sustainable farming. As part of this effort, 833 seed accessions have been donated to enhance biodiversity and strengthen traditional maize cultivation. This initiative aims to support farmers while preserving Mexico’s rich maize heritage.

Read the full story.

In Memory of Leonardo Crespo

Leonardo Crespo Herrera (Photo: CIMMYT)

In Memory of Leonardo Crespo Herrera
Senior Scientist, Bread Wheat Improvement – Global Wheat Program

With great sadness, we share the news of the passing of Leonardo Crespo Herrera, senior scientist in the Global Wheat Program at CIMMYT. A brilliant researcher and deeply valued colleague, Leonardo leaves behind a legacy of excellence in wheat science and a lasting impact on those who had the privilege of working alongside him.

Leonardo joined CIMMYT in 2015 as a postdoctoral fellow, bringing with him an unwavering dedication to advancing wheat research for global food security. Over the next decade, his work helped shape the future of wheat breeding. As an Associate Scientist, he played a key role in leading breeding efforts, mentoring young scientists, and fostering collaboration with national and international partners.

His scientific contributions were extensive, and his research continues to benefit farming communities around the world. Those who wish to learn more about his work and its impact can explore a selection of his achievements:

Beyond his professional accomplishments, Leonardo was known for his warmth, generosity, and inclusive spirit. He made others feel welcome and supported. Colleagues remember him not only as an exceptional scientist, but also as a kind-hearted, trusted mentor, loyal friend, and inspiring leader.

We extend our deepest condolences to his family, friends, and all who knew and admired him. Leonardo’s legacy will continue to grow through the lives he touched and the science he so passionately advanced.

Bridging borders: A South-South exchange between Ethiopia and Nepal to tackle soil health challenges

CIMMYT and Nepalese delegation and Debre Zeit Agricultural Research Center research team in the field (Photo: CIMMYT)

Soil health is fundamental to agricultural productivity, food security, and climate resilience. In Ethiopia and Nepal, deteriorating soil conditions—driven by acidity, nutrient depletion, and land degradation—pose a significant challenge to farmers and policymakers alike. Addressing these issues is not just a technical necessity but a pathway to ensuring long-term agricultural sustainability and economic stability.

Recognizing these shared challenges, CIMMYT facilitated a South-South exchange between Ethiopia and Nepal to foster collaboration, exchange knowledge, and explore innovative solutions for improving soil health.

Shared challenges, shared solutions

Both Ethiopia and Nepal face persistent soil health challenges that hinder agricultural productivity. In Ethiopia, soil degradation—stemming from issues like soil acidity, salinity, and nutrient depletion—has become a barrier to achieving higher agricultural productivity. Similarly, Nepal is navigating soil health concerns amidst small landholdings, urban migration, and climate impacts.

For both nations, sustainable soil management is critical to strengthening their agricultural sectors. This exchange provided an opportunity for researchers, policymakers, and agricultural experts to learn from each other’s experiences, leveraging successful approaches to improve soil quality and boost productivity.

CIMMYT and Nepalese delegation listening to explanations by Experts and technicians about the various activities taking place at the soil and plan analysis laboratory
(Photo: CIMMYT)

A unique exchange of knowledge

From November 25–28, a Nepalese delegation—including CIMMYT scientists and representatives from Nepal’s Ministry of Agriculture and Livestock Development (MoALD) and the Nepal Agricultural Research Council (NARC)—visited Ethiopia to gain insights into its soil health initiatives.

Ethiopia has made significant progress in soil management through collaborations between government agencies, research institutions, and international partners. With CIMMYT’s support, the country has developed a National Soil Information System (NSIS), a comprehensive data-driven approach that guides interventions to improve soil health, increase productivity, and enhance food security.

During the visit, the Nepalese delegation met with leading Ethiopian institutions, including:

  • The Ministry of Agriculture (MoA)
  • The Ethiopian Institute of Agricultural Research (EIAR)
  • The Agricultural Transformation Institute (ATI)
  • The Holeta Agricultural Research Center
  • The National Agricultural Biotechnology Research Center

Through site visits and discussions, the delegation explored Ethiopia’s Vertisol management strategies, sub-soil acidity solutions, and data-driven soil health policies—areas that could be adapted to Nepal’s agricultural landscape.

A shared commitment to agricultural innovation

Beyond knowledge exchange, the visit served as a catalyst for long-term collaboration between the two countries. CIMMYT has been working in Ethiopia for over three decades, supporting research and technology development to enhance soil health and food security. In Nepal, CIMMYT scientists collaborate with national partners to strengthen agricultural commercialization and climate resilience.

During their visit, Nepalese delegates expressed particular interest in Ethiopia’s Geo-Nutrition approach, which connects soil quality to human health by analyzing how soil nutrients influence the nutritional value of crops. Nepal sees great potential in adopting this model to enhance both agricultural and public health outcomes.

Shanta Karki, Joint Secretary at Nepal’s Ministry of Agriculture and Livestock Development (Photo: CIMMYT)

Shanta Karki, Joint Secretary at Nepal’s Ministry of Agriculture and Livestock Development, reflected on the visit: “The insights we gained in Ethiopia will be instrumental in improving our soil health strategies.

We see great potential for collaboration between Ethiopia and Nepal in tackling common challenges like soil acidity and water management.” She added that another key area of learning was Geo-Nutrition, an innovative field that connects soil health to human health.

The concept, which Ethiopia has been actively exploring, looks at how soil quality influences the nutritional value of crops and ultimately the health of the populations that depend on them. The Nepalese delegation saw this as an opportunity to further develop their own approach to improving soil and human health simultaneously.

Looking Ahead: Building stronger partnerships

Shanta Karki, Joint Secretary at the Ministry of Agriculture and Livestock Development (MoA), presents a token of appreciation to Dr. Samuel Gameda, Senior Soil Scientist at CIMMYT-Ethiopia, in recognition of his efforts to strengthen partnerships between Nepal and Ethiopia in the framework of improving soil health (Photo: Desalegne Tadesse/CIMMYT)

As CIMMYT continues to facilitate South-South exchanges, the goal is to adapt successful models from Ethiopia to Nepal while drawing lessons from Nepal’s unique agricultural landscape. The delegation left Ethiopia with renewed motivation to enhance soil health, not just for the benefit of farmers but for broader food security and economic resilience.

Narayan Prasad Khanal, Business Development Manager at CIMMYT Nepal, emphasized the importance of such exchanges. “The lessons learned here, particularly on sub-soil acidity management and Geo-Nutrition, will be crucial for enhancing our regulatory systems and addressing challenges in Nepal’s agriculture. This experience has shown us how important it is to adapt successful models from other countries and incorporate them into our own agricultural practices.

Dr. Shree Prasad Vista, Senior Scientist at the Nepal Agricultural Research Council (NARC), shares his reflections and lessons learned during the experience-sharing visit (Photo: Desalegne Tadesse/CIMMYT)

Shree Prasad Vista, Senior Scientist at the Nepal Agricultural Research Council (NARC), was particularly fascinated by Ethiopia’s innovative work on Vertisol management and soil acidity. He remarked, “The insights we gained from CIMMYT, particularly on Geo-Nutrition and soil acidity, will help enhance our agricultural practices and regulatory systems in Nepal.”

A Path toward collaborative solutions

As Ethiopia and Nepal continue to navigate similar agricultural challenges, the knowledge gained from this exchange will play a crucial role in shaping future soil health strategies. By learning from each other’s successes, both countries are positioning themselves to implement sustainable, climate-resilient soil management practices tailored to their unique context.

This exchange stands as a powerful example of how international collaboration fosters innovation, resilience, and food security. Through shared expertise and collective action, Ethiopia and Nepal are laying the foundation for stronger agricultural systems that will benefit future generations.