Skip to main content

Author: Julian Bañuelos-Uribe

Hard work pays off

Nepal is an agricultural country, where the sector provides the major source of income for half the population. Despite this, the sad reality is that the country is not able to produce enough crops to meet its needs, and major grains like rice, maize, and cereals are mostly imported.

One factor influencing this is an aging population of farmers, alongside decreasing interest in agriculture among the country’s youth. Many young people do not see agriculture as a viable option for employment, opting instead for work opportunities outside the country. However, there are still some youth who see agriculture as a profitable business, like Pradeep Morya.

“It is better to work hard in your home country rather than going abroad and working tirelessly every minute and hour,” says Morya, a 24-year-old farmer from Banke, Nepal, who finds happiness in living close to his family and helping to support national food security. “I love being in the field,” he explains. “I have cultivated spring maize on one hectare. My day-to-day business is to provide care to the spring maize along with pumpkins and beans that I have added for additional income on a small plot of land.”

Morya grows spring maize, pumpkin, and beans (Photo: CIMMYT)

Working alongside his eldest brother, Morya has cultivated 30 kattha of land (equivalent to 0.36 hectares) using the spring maize varieties Pioneer 1899 and DK 9108. His brother, a member of Mahatarkari cooperative in Duduwa, western Nepal, has been providing him with the knowledge and expertise needed for maize cultivation.

Mahatarkari is one among 50 cooperatives working in partnership with the Nepal Seed and Fertilizer project (NSAF), which is implemented by CIMMYT. NSAF works with the cooperatives to provide technical knowledge and training to farmers, to hone their potential and support them in the adoption of modern technologies which can improve their livelihoods. After participating in programs organized by NSAF, Morya makes sure that the suggestions he receives — on soil preparation, weed management, harvesting, and more — are implemented in his field.

Returning to the family farm

A few years back, the situation was different. Like many youths in the country, Morya also went abroad to try his luck on the international job market. He worked hard for two years in Malaysia but was forced to return to Nepal during the COVID-19 pandemic.

“I had imagined my shining future abroad. However, when I reached there, the reality was different,” recalls Morya. “I returned to my own country just before the lockdown in April 2021 with some small savings. Upon my arrival in Nepal, I was clueless about my future. I dropped my education after grade five. With no educational qualifications and skills in hand, it was difficult to get a decent job.”

Agriculture has provided Morya with a sustainable source of income in his home country. (Photo: CIMMYT)

Since the country was in lockdown, Morya chose to stay at home and support his family on the farm. It was here that his eldest brother guided him into farming, and Morya soon learned the knowledge needed to run the farm and began earning money from it. This attracted him towards farming as a longer-term career option, and he has now discovered a prosperous future in agriculture.

“Agriculture needs continuous effort,” he says. “With the support of technology, it is easy and efficient to work. I work every day so that I can reap crops on a large scale to make a profit. I manage weeds, irrigation, and control pests.”

“I also have livestock. I get adequate fodder for my cows and buffalo from weeds and from the spring maize. I sell milk in the market. In addition to this, I also make sure to produce off-season vegetables so that I receive a decent price for additional income.” With the support of his family, Morya has recently purchased an e-rickshaw, which he uses to transport and sell his produce.

To further support his endeavors, Morya has also been participating in Nepal’s Maize Commercialization Network and using the Geo Krishi mobile app to learn about current market prices. “Before knowing about the commercialization of crops, it was hard to receive good amounts from buyers,” he explains. “Now, I make a call to the local retailers and buyers to learn the best value of my grain. Sometimes I also explore the market. Then, I analyze the rate and sell my maize.” He uses a similar system for his off-season vegetables, selling either in the local market or directly to consumers for a premium price. “I make a saving of around 1500 Nepalese rupees (approximately US$ 11) per day,” he says.

A prosperous life

With the profits from his agricultural business, Morya has been able to fulfill his dream of purchasing a bike, as well as contributing to the construction of a new eight-room house, where his family is now living comfortably. “I love to roam on my bike with my friends in the evening. I also take my mother for a ride,” says Morya with a bright smile. “Now, I have a dream to live a prosperous life with my family.”

Morya fulfilled his dream of buying a bike. (Photo: CIMMYT)

Thanks to the support provided by the NSAF project with generous funding from USAID, young people like Morya can pursue a better life for themselves and their families. Agricultural training programs have not only helped young people fulfill their basic needs, but also to achieve their dreams. It is hoped that ongoing efforts to empower farmers through science and innovation will continue helping young farmers like Morya break the chain of unemployment, for both their own benefit and that of Nepal.

CIMMYT releases 32 new elite maize lines

Maize ears of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)

CIMMYT is pleased to announce the release of a set of 32 new CIMMYT maize lines (CMLs). These maize lines have been developed by CIMMYT’s Global Maize Program by a multi-disciplinary team of scientists in sub-Saharan Africa, Latin America, and Asia. The lines have diverse trait combinations and are suitable for the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions.

CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).

CIMMYT seeks to develop improved maize inbred lines for different product profiles, with superior yield performance, multiple stress tolerance, and enhanced nutritional quality. CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses, besides optimum (non-stress) conditions in the target population of environments. Suitability as either female (seed) or male (pollen) parent is also evaluated. As done in the last announcement of CMLs in 2021, to increase the utilization of the CMLs in the maize breeding programs of the partner institutions, all the new CMLs are tested for their heterotic behavior and assigned to specific heterotic groups of CIMMYT: A and B.

The release of a CML does not guarantee high combining ability or per se performance in all the environments; rather, it indicates that the line is promising or useful as a parent for pedigree breeding or as a potential parent of hybrid combinations for specific mega-environments. The description of the lines includes heterotic group classification, along with information on their specific strengths and their general combining ability with some of the widely used CMLs or CIMMYT coded lines under different environments.

More information:

Summary of the characteristics: CIMMYT maize lines CML616A to CML647A (PDF)

Pedigree and characterization data of all the CMLs released to date, including the latest set (CIMMYT Research Data repository).

Seed for these new set of CMLs will be available from November 1, 2023.  A limited quantity of seed of the CMLs can be obtained by sending a request to the CIMMYT germplasm bank via this link: https://staging.cimmyt.org/resources/seed-request/ or contact, a.chassaigne@cgiar.org.

Please contact for any further details regarding the released CMLs: 

Dr B.M. Prasanna, Global Maize Program Director, CIMMYT & OneCGIAR Maize Breeding Lead (b.m.prasanna@cgiar.org)

Appropriate farm scale mechanization can aid in agroecological transformation

A bale of grass and maize stalks made in a bailer. (Photo: CGIAR Initiative on Agroecology)

A case of the CGIAR Initiative on Agroecology in Zimbabwe

Authors: Vimbayi Chimonyo (CIMMYT – scientist, crop modeler); Frédéric Baudron (CIMMYT – cropping systems agronomist); Dorcas Matangi (CIMMYT – assistant research associate)

Food systems in marginal areas of Zimbabwe are vulnerable to climate variability and economic shocks. During the COVID-19 outbreak, governments imposed strict lockdowns that adversely affected local food systems and supply chains. Rural communities that already had difficulty feeding their families found themselves in a more desperate situation. The recurring challenges and the COVID-19 outbreak made it clear that there is a need to transform local food systems to achieve sustainable food and nutrition security. The transition is even more urgent owing to the acute labor shortages due to the accelerated trend of rural labor outmigration and an aging population in smallholder farming communities of the country. Agroecology has emerged as an approach to facilitate and champion a transformative shift to sustainable local food systems.

Mower cutting grass. (Photo: CGIAR Initiative on Agroecology)

The Agroecological Initiative is at the forefront of providing science-based evidence for the transformative nature of agroecology and its potential to bring about positive changes in food, land, and water systems, including identifying institutional innovations to promote uptake. Agroecology is a holistic approach to agriculture that emphasizes integrating ecological principles and practices into farming systems. The 13 principles of agroecology guide sustainable and regenerative agricultural practices.

 

Thirteen consolidated agroecology principles (Wezel et al. 2020)

The initiative employs a multi-disciplinary approach, integrating ecological and social methods to co-create and manage localized food systems and monitor the 13 interconnected principles. While agroecological methods hold promise, the transition process is labor and knowledge-intensive and requires addressing power dynamics within and beyond households to address food and nutrition security. Building on the findings of the completed ACIAR-funded project Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) and Harnessing Appropriate-scale Farm Mechanization in Zimbabwe (HAFIZ), CIMMYT is working in Zimbabwe with 200+ farmers and four service providers in Murehwa and Mbire districts as ambassadors of the community through Agroecological Living Landscapes (ALLs).

Trailer for transportation. (Photo: CGIAR Initiative on Agroecology)

Mechanization plays a crucial role in the initiative implementation in Zimbabwe, covering a wide range of farming and processing equipment. The equipment ranges from simple and basic hand tools to more sophisticated and motorized tools. The machinery eases and reduces drudgery associated with agricultural practices, relieves labor shortages, improves productivity and timeliness of agricultural operations, optimizes resource utilization, enhances market access, and helps mitigate climate-related hazards.

“Machinery supports synergies, reduces labor, and reduces human and wildlife conflict as it reduces livestock grazing time because you can now make feed for your cattle and cutting grass reduces veld fires,” said Musandaire.

Within the Agroecology Initiative, CIMMYT considers mechanization in its technological, economic, social, environmental and cultural dimensions when contributing to the sustainable development of localized food systems and actors. In Mbire and Murehwa, a service provider model was adopted to introduce appropriate scale machinery within the respective communities. The service providers were equipped with a two-wheel tractor, ripper, mower, chopper grinder, and bailer. Training was offered on equipment operation, repair, and maintenance.

The business aspects were also discussed to broaden the participants’ knowledge of service provision. Important aspects covered include business model, entrepreneurship, record keeping, cost and profit calculations, customer care, target setting, and machinery operation planning.

To date, the service providers offer services including ripping, transportation, chopper grinding for livestock feeds and humans, and baling and mower for grass cutting at a fee.

“Mechanization has proven efficient and relevant in our district since livestock is one of our main value chains. Our service providers make hay bales for us, which we buy to feed our livestock. They also grind feed which is good for pen-fattening,” said Chimukoro, councilor in Mbire.

Preliminary findings indicate that appropriate scale mechanization enhances synergies in smallholder farming systems by facilitating more efficient and integrated agricultural practices.

“Our trailer reduces labor and saves time better than scotch carts. We used to leave much biomass in the fields because we didn’t know how to transport and process it after aggregation. But now we can recycle our biomass,” mentioned Mushaninga, local leadership in Murehwa.

By streamlining labor-intensive tasks and promoting holistic farm management, mechanization encourages complementarity among various elements of agroecosystems, contributing to more sustainable and productive smallholder farming. Target communities can pave the way for a more resilient and sustainable food system through the Agroecological Initiative.

CIMMYT announces 2030 Strategy

The world’s food systems are under threat by escalating armed conflicts, economic stagnation, the effects of the climate crisis and natural resource degradation. Against this backdrop, the next seven years are crucial in meeting the challenges of keeping the world’s growing population fed and secure.

Recognizing that business as usual will not be sufficient, CIMMYT has embarked on a journey to proactively face the new challenges of the 21st century. This novel approach to agrifood systems is the core of CIMMYT’s 2030 Strategy, which has the potential to shape the future of agriculture.

Ethiopian Seed Enterprise maize crop for multiplying seedlings of DT maize. (Photo: Peter Lowe/CIMMYT)

“We understand that the challenges facing food security are complex, varied and rapidly changing. For instance, the effects of COVID-19 and Ukraine-Russia conflict on food systems are still being felt today. With that in mind, we set out to develop a strategy that is both robust and nimble. The best way to create a sustainable and inclusive strategy was to engage directly with CIMMYT scientists and staff, the people on the front lines of this effort to deliver food and nutrition security to the world,” said CIMMYT Director General Bram Govaerts.

Looking back to move forward

The first step in crafting the 2030 Strategy was looking at where does CIMMYT want the world to be in 2100. In answering this question, CIMMYT crafted a long-term vision of how it wants to engage in a changing world and achieve the transformation to a food and nutrition secure world within planetary boundaries. CIMMYT has integrated the use of foresight and specifically a set of 2030 Food and Agriculture scenarios to explore potential changes in intervention areas over the strategic period and help prepare engagements in different contexts across the globe. These scenarios are a decision-making tool that has underpinned the development of the strategy to ensure that it is context-driven and focused on the most pressing challenges facing the agrifood systems in which CIMMYT operates.

From the future CIMMYT looks back at its history and examines how its core business has evolved over the years to proactively meet ever-changing needs across the world.

At each stage of CIMMYT’s evolution, it has taken its strengths and the skills it has built and added to its experience, and expanded on what it delivers while maintaining the core strengths.

Norman Borlaug teaching trainees. (Photo: CIMMYT)

In CIMMYT’s earliest days, the mission was developing and improving germplasm and agronomic practices, then CIMMYT began working more closely with farmers (1980s), broadened emphasis in genetic improvements (2000), embarked on sustainable multidisciplinary projects (2010s), and most recently, advancing technologies in participatory innovation systems (2015-2022). All leading to the mission codified in the 2030 Strategy: accelerating food systems transformation by using the power of collective action.

Now, in 2023, CIMMYT’s progress is being shaped by the CGIAR mission statement: “To deliver science and innovation that advance the transformation of food, land, and water systems in a climate crisis.”

Building the Strategy

To define the 2030 Strategy, CIMMYT responded to the following core questions:

  • What does success look like?
  • Where can CIMMYT deliver the most value?
  • How can CIMMYT deliver value for communities?

“As an organization, we have concentrated on strategies that foster collaboration and adapt them for a non-profit international organization whose vision is not to grow as an institution but to deliver greater value for the communities they serve, to innovate for the end users of their products and to ensure a better future for our global community,” said Govaerts.

The tools used to develop the elements of this strategic plan leveraged the framework provided in the CGIAR Research and Innovation Strategy to guide the process. Staff from across the Center engaged in a consultative process to develop the objectives for following strategic components: Excellence in Science and Innovation, Excellence in Operations, Talent Management, Resource Mobilization, Partnership, and Influence.

Developing the Excellence in Science and Innovation component serves as an example of this collaborative, bottom-up approach. Planning was led by the Emerging Thought Leaders Group, made up of 24 early and mid-career scientists across the breadth of CIMMYT’s global and program portfolio. The group worked collaboratively with CIMMYT researchers and staff to first delineate the challenges facing agri-food systems and then workshopped solutions which now serve as the foundation of the 2030 Strategy.

Workshop participants study seed samples in CIMMYT’s Seed Health Laboratory. (Photo: Xochiquetzal Fonseca/CIMMYT)

“Each component complements the others,” said Govaerts. “This is our answer to the core questions. Only by working collectively can we initiate sustainable solutions that reach everyone.”

Together, the components create a network to support CIMMYT’s three pillars: Discovery (research and innovation), SystemDev (working collaboratively to innovate foundational systems), and Inc. (incubating startups and new ways of doing business in the agri-food system space).

CIMMYT is leading the way in shaping a sustainable and prosperous agricultural landscape

The goal to facilitate food security where sustainable agriculture is part of the solution to the climate crisis and agriculture provides an avenue to build household resilience and enables communities to pull themselves out of poverty requires the strategic use of resources. CIMMYT’s 2030 Strategy, built from the bottom up on a foundation over 50 years’ experience and the expertise of scientists, staff, and farmers maximizes resources, enhances dynamic partnerships, and both retains and recruits a world-class staff in a world of growing challenges to food security.

Read the 2030 StrategyScience and Innovation for a Food and Nutrition Secure World: CIMMYT’s 2030 Strategy 

How to add value in baking by blending wheat, millet

Adding value to millets can be achieved through various ways, such as incorporating them into baking.  By celebrating the International Year of Millets, individuals and communities are encouraged to explore the versatility of millets and contribute to their preservation and use for a healthier and more sustainable future.

Read the full story.

Research local: co-creation generates novel options to tackle global problems

The United Nations Sustainable Development Goals (SDG) are broad mandates for transitioning to fair and sustainable agrifood systems. However, because of their global view, they often operate at a scale not clearly seen or understood by local stakeholders.

New research led by the International Maize and Wheat Improvement Center (CIMMYT) scientists offers participatory action research (PAR) as a potential bridge between the macro scope of the SDGs and the needs and desires of local communities.

The article, Participatory action research generates knowledge for Sustainable Development Goals, published in the June 2023 issue of Frontiers in Ecology and the Environment, examines two decades of participatory action research activities in Malawi, a highly rural society dependent on rainfed agriculture.

Trying out conservation agriculture wheat rotation alongside conventionally grown maize, farmer’s field, Mexico. (Photo: E. Phipps/CIMMYT)

“Participatory research is known for giving voice to farmers, for accelerating adaptation and for impact,” said lead author Sieglinde Snapp, director of the Sustainable Agrifood Systems program at CIMMYT. “What is novel in this study is that new discoveries were documented, showing the scientific contributions possible through PAR.”

Co-creation

Participatory action research is a knowledge generation process, characterized by a series of steps to facilitate improved understanding and development of innovations, within a local context. The PAR approach involves engaging stakeholders, to co-create solutions with researchers.

Because knowledge is often local, access to natural resources is highly heterogeneous, climate variability is unpredictable and socioeconomic circumstances are context-dependent, any intervention must be flexible and locally specific to ensure sustainability.

PAR prioritizes empowerment of marginalized communities to build long-term partnerships which support transformational changes at local, regional and national levels.

Yet the evidence base for PAR methodology remains fragmented and is often inaccessible.

“This is the first paper that shows how action research produces new knowledge through a systematic, iterative process that derived ‘middle ways’, such as shrubby food crops as a farmers preferred form of agroforestry,” said Snapp.

Solving wicked problems

Participatory research is well-suited to address conflicts and trade-offs that are key aspects of so-called wicked problems. For instance, annual crops—maize and soybean—are excellent producers of food but feature limited aboveground vegetation and belowground activity to regenerate soil nutrients, while perennials provide soil regeneration services but no food products.

By engaging closely with local stakeholders, PAR identifies “goldilocks options,” or middle ways, such as semi-perennial shrubs and vines that produce food while also promoting soil health.

Genetic and agronomic improvement efforts have almost entirely overlooked semi-perennial plant types to address food–soil trade-offs.

Challenges

Building relationships between researchers and stakeholders; the investment required in selecting representative sites, action learning activities, synthesis of findings, communication and documentation; and the inherent variability of research conducted under real-world conditions are barriers to establishing PAR systems. Living laboratories and education on PAR approaches need investment. Reward structures may need to shift, with greater attention to considering research impact on SDGs and awareness that time lags may occur in publishing scientific findings through PAR.

Demonstrating conservation agriculture to other farmers in Malawi. (Photo: T. Samson/CIMMYT)

“Our findings detailing the efficacy of PAR shows that the potentially high upfront costs to invest in relationship building and learning across disciplines, this is a worthwhile trade-off,” said Snapp.

Through PAR, human condition and social-science questions can be addressed, along with biological and environmental science questions, as illustrated in this Malawian case study.

The findings generated by PAR have relevance beyond the sub-Saharan Africa context because they provide new insights into the development of nature-based solutions that meet local needs, a critical requirement for rural communities in many parts of the globe.

Unveiling the Nexus between Agrifood Systems and Climate Change: Harvesting insights from latest IPCC report

August 2 is Earth Overshoot Day 2023, which marks the date when humanity’s demand for ecological resources and services in a given year exceeds what Earth can regenerate in that year.

Wheat harvest in Juchitepec, State of Mexico. (Photo: Peter Lowe/CIMMYT)

“Climate change is already affecting agrifood systems,” said the director general of the International Maize and Wheat Improvement Center (CIMMYT), Bram Govaerts. “Efforts to protect food and crop systems from things like rising temperatures and drought are part of the overall solution to reverse ecological overshoot; however, we must work hard to ensure these efforts are collaborative, inclusive and sustainable. We want to reach climate goals without compromising food security.”

To harmonize climate change mitigation efforts, CIMMYT and the CGIAR Climate Impact Platform jointly hosted a webinar on July 11, 2023, for relevant stakeholders to discuss the latest findings from the Intergovernmental Panel on Climate Change (IPCC).

The IPCC is an organization of governments that are members of the United Nations and provides regular assessments of the risks of climate change and options for mitigation.

“Climate change in agrifood systems presents special challenges. There are adaptation challenges, but even more importantly, reducing emissions while also protecting the lives and livelihoods of smallholder farmers is a huge challenge that requires scientists and practitioners working together,” said Aditi Mukherji, director of the CGIAR Climate Impact Platform. “Action based on science is needed and IPCC and CGIAR came together in this webinar to present those challenges and solutions.”

The webinar summarized key findings from the IPCC on how climate change effects agrifood systems, including potential adaptation measures and strategies for mitigating the effects of climate change on agri-food systems, how food system management can be part of the solutions to mitigate climate change without compromising food security. Participants also identified potential collaborations and partnerships to implement IPCC recommendations.

“On this acknowledgement of Earth Overshoot Day, the IPCC report is an important milestone as we enact sustainable solutions to protect against climate change and work toward pulling back overshoot,” said Claudia Sadoff, the executive managing director of CGIAR. “All strategies must be under-pinned with reliable data to let us know what is happening now and also in the future.”

The webinar kicked off with presentations from Alex Ruane, co-Director of the GISS Climate Impacts Group, NASA Goddard Institute for Space Studies and IPCC author, Mukherji, and Jim Skea, IPCC Co-Chair.

Challenges Ahead

Ruane examined the current impacts of climate change on agrifood systems and presented findings regarding future effects; knowledge that can help guide priority-setting among relevant stakeholders.

Alex Ruane presented on the current and future impacts of climate change on agrifood systems. (Photo: CIMMYT)

He detailed the perilous state of agrifood systems, as they need to sustainably increase production to provide healthy food for growing populations, adapt to climate change and ongoing climate extremes, mitigate emissions from agricultural lands and maintain financial incentives for agriculture.

Answering those challenges requires the development of models that can track all potential climate drivers. A co-development process with robust data-sharing is vital to provide context for risk management and planning for climate adaptation and mitigation.

Adaptation

Mukherji examined current adaptation efforts within agrifood systems. The IPCC data showed that the people and regions seeing the most adverse effects of climate change have also emitted the fewest amount of greenhouse gases.

Aditi Mukherji delivered a talk on climate change adaptation in the agrifood sector. (Photo: CIMMYT)

There are multiple opportunities for scaling up climate action. CGIAR is working on such responses in the areas of efficient livestock systems, improved cropland management, water use, agroforestry, sustainable aquaculture and more.

Maladaptation can be avoided by flexible, inclusive, long-term planning and implementation of adaptation actions, with benefits shared by many sectors and systems.

Mitigation

Skea investigated the demand and supply side synthesis: land use change and rapid land use intensification have supported increased food production and food demand has increased as well.

He also summarized the IPCC findings regarding land use mitigation efforts, like reforestation (restoring trees in an area where their population has been reduced), afforestation (establishing trees in an area where there has not been recent tree cover) and improved overall forest management, quantifying each action on agrifood systems.

Panel discussion

Moderated by Tek Sapkota, CIMMYT/ CGIAR and IPCC scientist, with panelists Kaveh Zahedi, director of the Office of Climate Change, Biodiversity and Environment, FAO; Jyotsna Puri, associate vice-president, International Fund for Agricultural Development; Jacobo Arango, thematic leader, Alliance of Bioversity and CIAT/CGIAR and IPCC author; Louis Verchot, principal scientist, Alliance of Bioversity and CIAT/CGIAR and IPCC author, and Jim Skea, the panel discussed the IPCC findings and examined crucial areas for targeted development.

Earth Overshoot Day is hosted and calculated by the Global Footprint Network, an international research organization that provides decision-makers with a menu of tools to help the human economy operate within Earth’s ecological limits.

CIMMYT welcomes US Department of State visit

U.S. Department of State Special Representative for Global Partnerships Dorothy McAuliffe visited CIMMYT in Texcoco, Mexico, on July 7, 2023. The visit aimed to strengthen ties between the United States government and CIMMYT—reaffirming commitment to fostering partnerships to achieve food and nutrition security goals.

McAuliffe examined maize germplasm from the U.S. (Photo: CIMMYT)

McAuliffe toured the CIMMYT gene bank, museum and conservation agriculture trial plots. CIMMYT scientists explained their efforts to protect one of the largest maize and wheat seed collections through research and collaboration with CGIAR and seed health initiatives.

She also received a detailed briefing about the Southern Africa Accelerated Innovation Delivery Initiative Rapid Delivery Hub (AID-I), a regional project in southern and eastern Africa led by CIMMYT with the backing of Office of Special Envoy for Global Food Security and the United States Agency for International Development (USAID). CIMMYT practitioners briefed McAuliffe on AID-I’s inspiration in a successful model implemented in Mexico, MasAgro, with the potential to inform policy makers and transform agrifood systems in Central America to respond to migration.

Partner seed companies and project leaders shared significant milestones already achieved in Zambia, Malawi and Tanzania to expand access for smallholder farmers to market actors, high-yielding seeds and climate-adaptable, resilient crop varieties.

(Left to right) Bram Govaerts, Daniela Vega, and Dorothy McAuliffe toured conservation agriculture trial plots. (Photo: CIMMYT)

After the tour of CIMMYT facilities, McAuliffe heard private and public partners share success stories and current initiatives jointly led with CIMMYT on regenerative agriculture, gene bank development across CGIAR and climate-smart and scale-appropriate mechanization technologies.

“Through partnership, we can work on R&D goals for better nutrition, data-driven decision making and promotion of regenerative agriculture so that farmers produce diversified crops. On behalf of CIMMYT, I’d like to thank the U.S. government and the American people, who have historically made scientific innovation possible, leaving a huge footprint to feed the world,” shared Bram Govaerts, CIMMYT director general.

Closing the gender leadership gap: The power of women role models

The International Maize and Wheat Improvement Center (CIMMYT) hosted the first seminar of Catalysts of Change: Women Leaders in Science, on July 4, 2023. This exciting seminar series, which supports women’s empowerment, features inspiring women leaders who share their expertise and perspectives on today’s women leadership styles, extending insights into their own leadership journey, and shedding light on the extraordinary impact of women leadership transforming today’s leadership through their critical roles as catalysts of change.

Moderated by Isabel Peña, this first seminar featured Yvonne Ochoa Rosellini, a distinguished business strategy and finance expert who has advised CEOs of public and private companies in Mexico, the U.S., Argentina, and Spain in a wide range of sectors ranging from finance to biotechnology and agriculture.

Yvonne spoke on CIMMYT’s legacy of enhancing global peace and food security (Photo: CIMMYT)

CIMMYT Director General Bram Govaerts delivered the opening remarks and set the stage for the interactive TED style seminar series—highlighting the importance of recognizing the benefits of gender, diversity, and inclusion to further economic, social, and political progress for all—catalyzing the power of women in leadership and decision-making roles as powerful catalysts of change. It is clear that still a lot of work needs to be done to address the problem for women in science organizations as recently described in a Nature Careers Opinion Piece. This seminar series sought to connect people of all genders to be inspired to make a difference through advancing culture change toward greater gender equity, finding common ground in overcoming challenges, lingering gender-based obstacles, and showcasing role models to foster and accelerate women leaders’ transformation as catalysts of change.

Through TED talk style conference, Yvonne, an inspiring woman leader and a catalyst of change, who has attained various accolades throughout her outstanding career, shared engaging insights from her personal leadership journey and elaborated on the incredible experience as a catalyst of change in various industries. “To be the catalyst of change in our work and personal environments, responding eloquently to life instead of reacting to it. When we cease defining ourselves by what we do and live with ourselves as who we are, both at home and at work, we will live a personal singularity of sorts, only to become the leaders we wish to be. Because when we are true and upstanding to ourselves, others believe, care and ultimately will follow us,” she said. Yvonne emphasized the importance of what it means to be a true catalyst of change and shared reflections and perspectives on driving impactful change in today’s scientific community and mentoring people in organizations to be those critical catalysts.

Yvonne Ochoa Rosellini and Aparna Das discussed the vital elements of implementing holistic and successful diversity and inclusion programs (Photo: CIMMYT)

Next, Aparna Das, a prominent advocate for gender equality in the scientific community, interviewed Yvonne in a fire-side chat. The intensively engaging session discussed Yvonne’s inspiring experiences of becoming a woman leader in science. Aparna and Yvonne explored the challenges, prejudices, and hurdles faced by women leaders, the expectations that society places upon them, and shared valuable insights into how women leaders today can successfully negotiate work-life challenges while pursuing their career goals.

Following Yvonne’s thoughts, participants on the seminar actively participated in the Q&A session and asked questions about the role of leaders and organizations in providing support and opportunities to young women leaders when transitioning to the future. “Building a gender-balanced organization is really opening up to these conversations of career. Companies that have been most successful at getting women to participate are the companies that are thoughtful about not only policies to integrate women [into leadership and decision-making roles] but how we’re supporting people at work and the needs for work-life balance,” said Yvonne. She provided great insights on how these challenges could be overcome to advance women leaders––who continue to be vastly under-represented in decision making in all spheres: in the workplace, businesses, and communities––to positions of greater leadership.

The inspiring first session concluded with a power message from Yvonne addressing the importance of creating the space and time for reflection, learning to effectively advocate for personal goals and needs, and leveraging strengths to tap into the right resources. The time has come for women leaders to remain strategic, to empower themselves, to rise above the challenges and barriers to women leadership, and to push forward in building equitable and thriving work environments by embracing themselves as catalysts of change.

Wrapping up the seminar, CIMMYT Director General Bram Govaerts thanked Yvonne for sharing her inspiring leadership journey as well as her continued dedication to change. “As we learn by doing, as individuals, as teams, and as organizations, to do the right thing, this conversation really inspired us. With this we also kick off our Catalysts of Change seminar series with over 200 participants and this is just a start. We need to listen and lead by example to allow us to be catalysts of change to resolve tomorrow’s problems today” he added. Thus, foregrounding strategic moves in the learning journey to empower organizations such as CIMMYT to support the work of changemakers like Yvonne and Aparna and the communities they impact.

To learn more about Catalysts of Change: Women Leaders in Science, click here to watch the seminar video on our YouTube channel or visit our website.

Government of Nepal adopts new fertilizer recommendations

Balancing the application of fertilizers based on the characteristics of soil leads to increased crop productivity, income, and fertilizer use efficiency unlike former “one size fits all” recommendations, said Bedu Ram Bhushal, Nepal’s Minister of Agriculture and Livestock Development (MoALD) during a press briefing earlier this month in Nepal’s capital Kathmandu.

Participants from the press release (Photo: Deepa Woli/CIMMYT)

The site-specific recommendations applicable to maize, wheat, and rice were jointly launched with the Nepal Agricultural Research Council (NARC) and National Soil Science Research Center (NSSRC). They were implemented in collaboration with the Department of Agriculture (DoA) and led by the Nepal Seed and Fertilizer (NSAF) Project at the International Maize and Wheat Improvement Center (CIMMYT).

“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years,” Bhushal said. “Now, we should support the large-scale adoption of these new recommendations by farmers for sustainable soil fertility management.”

Earlier recommendations developed by the Agricultural Chemistry and Soil Science Service Section under the Department of Agriculture (DoA) in 1976 did not take into account soil diversity, biophysical conditions, and agronomic management. Nutrients recommended for a particular crop were the same for terai lowlands, hills, and mountains.

In general, soil fertility changes over time due to deployment of continuous intensive cropping systems. The new recommendations consider the indigenous nutrient supply of soils, target yields, and the amount of nutrients removed by crops at harvest.

Senior officials and dignitaries endorsed new fertilizer recommendation (Photo: Deepa Woli/CIMMYT)

It took six years for NSSRC of NARC in partnership with NSAF, to update the recommendations through nutrient omission and optimum nutrient rate trials in various locations. By using advanced analytical methods and machine learning tools for extrapolating data across different agroecological zones and domains, they were able to make them site-specific.

Other factors considered, included attainable yield at a particular farm, soil fertility status, agro-climate, crop management practices, and the amount of nutrients to be supplied to fill the gap between crop nutrient removal and soil nutrient supply of nitrogen, phosphorus, and potassium. Micronutrients and organic inputs were also considered.

These recommendations were presented to leading soil scientists and agronomists from NARC and MoALD and were validated at national meetings in July and October 2022.

The Honorable Minister of MoALD, Bedu Ram Bhusal reviewed the press release (Photo: Deepa Woli/CIMMYT)

The new recommendations were included in the DoA’s agriculture extension guidelines in 2023, to achieve potential yield at the farm level and to link with the extension system through the three-tier of governments for its extensive use throughout the country. The new approach is part of CIMMYT’s efforts to support the NARC, MoALD, provincial agriculture ministries, and farmers to build indigenous soil fertility management resources and capabilities and promote locally adapted strategies for long-term resilience by using integrated soil fertility management approaches.

What’s the link between two-wheel tractors and elephants?

CIMMYT principal scientist Frédéric Baudron has two main research interests: making mechanization appropriate to smallholders and biodiversity conservation.

Wondering how these two intersect, a colleague of Baudron once asked him what the link was between an elephant and a tractor?

Now, in the recent report, “Addressing agricultural labour issues is key to biodiversity-smart farming research,” published in Biological Conservation, Baudron and other contributors have answered that question, examining trade-offs between labor and biodiversity conceptually, as well as in the specific context of Indonesia and Ethiopia.

This research continues work CIMMYT has done on the relationship between agriculture and biodiversity, including Commodity crops in biodiversity-rich production landscapes: Friends or foes? The example of cotton in the Mid Zambezi Valley, Zimbabwe and Sparing or sharing land? Views from agricultural scientists

Innovations in agricultural technology have led to undeniable achievements in reducing the physical labor needed to extract food from fields. Farm mechanization and technologies such as herbicides have increased productivity, but also became on the other hand major threats to biological diversity.

Adopting technologies that improve the productivity of labor benefits farmers in multiple ways, including a reduction of economic poverty, time poverty (i.e., lack of discretionary time, reducing labor drudgery), and child labor. Conversely, technologies that promote biodiversity often increase the burden of labor, leading to limited adoption by farmers. Therefore, there is a need to develop biodiversity-smart agricultural development strategies, which address biodiversity conservation goals and socio-economic goals, specifically raising land and labor productivity. This is especially true in the Global South, where population growth is rapid and much of the world’s remaining biodiversity is located.

“Without accounting for labor issues biodiversity conservation efforts will not be successful or sustainable,” said Baudron. “Because of this, we wanted to examine what biodiversity-smart agriculture might look like from a labor point of view.”

Research has quantified that farming families in Africa who use tractors expended an average of 640 labor hours per hectare in maize cultivation. In contrast, farmers not using tractors spent over 1100 hours for the same yield.

Practicing tractor operation at Toluca experiment station (Photo: X. Fonseca/CIMMYT)

Trade-offs

While that is a clear win for reducing the heavy physical toil of farming, there are potential negative effects on biodiversity. In many countries in the Global North, the rise of tractors and other big machinery has led to larger and more rectangular fields and the removal of farm trees and hedgerows, all of which is associated with lower biodiversity. The same is now happening in parts of the Global South.

“A trade-off implies that one goal can only be achieved at the expense of another goal,” said Baudron. “It is not always a conscious choice; however, as farmers often adopt labor-saving techniques without considering the effects on biodiversity, simply because they lack options, and sometimes the necessary context.”

In Indonesia, the transition from harvesting rubber to producing palm oil has reduced the amount of physical labor, but biological diversity has decreased. However, innovations such as reducing fertilizer usage to avoid nutrient leaching into soil have been possible without compromising yield, and with the benefit of lower costs to farmers.

In Ethiopia, labor-saving technologies like the use of small-scale combine harvesters have been compatible with high biodiversity.

“I tell my colleagues a two-wheel tractor that allows mechanization with little negative environmental consequence (compatible with a mosaic of small, fragmented fields, with on-farm scattered trees, etc.) contributes to a landscape that works for people and biodiversity, including elephants,” said Baudron.

Forging scaling partnerships in Latin America: Scaling specialists meet to strengthen future collaborations and learn from past experiences

On May 26, 2023, representatives from the International Maize and Wheat Improvement Center (CIMMYT) and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) hosted a scaling networking event at CIMMYT headquarters in Texcoco, Mexico. This event marked the culmination of a Scaling Readiness Training organized by the One CGIAR Portfolio Performance Unit (PPU), which included 30 participants from various CGIAR centers working on various One CGIAR Initiatives.

Consequently, the Scaling Networking Event was happy to bring together scaling experts from the CGIAR training together with other experts from GIZ, CIMMYT, and other academic and non-governmental organizations. The participants exchanged learnings, ideas, and methodologies for scaling agricultural innovations. Fortunately, this did not remain just an abstract exercise as the attendees were also eager to explore future joint scaling projects. Because collaboration is one of the most important factors in scaling innovations, the purpose of the event was to establish new collaborative initiatives and partnerships.

GIZ and CIMMYT have a long history of collaboration in Mexico and elsewhere. In Africa, for example, a group of mechanization specialists from CIMMYT recently provided training in this area to strengthen the work of the GIZ Green Innovation Centers for the agricultural and food sectors. In this event, both organizations explained what they meant by scaling and how they have worked on it using tools such as the Scaling Scan. The Scaling Scan is another example of the collaboration between GIZ and CIMMYT (and the Netherlands Development Organization SNV) and is a tool that analyzes bottlenecks and opportunities in scaling and innovation.

Both organizations noted a need to explore a wider space to connect sectors and actors interested in scaling innovations developed by agricultural research. Looking at different scaling approaches, the Scaling Readiness framework was presented as the official scaling practice in One CGIAR. Also, the University of Chapingo and the Universidad Iberoamericana in Mexico showed the tools they are using from analyzing social networks and Geographical Information Systems. They showed the connections with people that scaling requires and the importance of basing scaling assessments on quantitative data.

Plenary discussion to identify the best ways to carry out collaborations (Photo: Ronay Flores/CIMMYT)

The Mexican Center for Philanthropy (CEMEFI) and GIZ Mexico also discussed the difficulties that come with deciding what to scale and how to do so responsibly. Given current environmental concerns, GIZ Mexico emphasized the need to scale technologies at the intersection between biodiversity and agriculture.  CEMEFI started a dialogue among scaling specialists about how to scale while also taking social factors into account. The major topics that came out of this discussion were the need to engage communities more, spend time with them planning interventions, and examine power relations.

As part of this event, scaling practitioners from three One CGIAR Research Initiatives, of which CIMMYT is a member, presented their scaling reflections. They shared their work and some research questions that are now being investigated in the Digital Initiative, the Latin American “AgriLAC” Initiative, and the Mitigation Plus Initiative. Some of the questions addressed in the event included what criteria should be chosen to select innovations, how to bring different scaling processes together, and finally, how to develop scaling strategies that could be supported by the digital and technological enabling conditions and tools.

Before the event concluded, the participants still had sufficient energy to debate and support the idea of creating a Latin American scaling community of practice to continue exchanging scaling experiences in the region, not only with partners but between scaling researchers and practitioners. The expected result would be to strengthen scaling work so that the most relevant practices to make agri-food systems resilient and sustainable could be adopted, adapted, or transformed to suit each community and its needs in each context.

What then were the final learnings for this event? The importance of scaling with partners; the need to address social inclusion in scaling by understanding power relations; and the sharing of varied scaling experiences and processes. All of this was highlighted at the end of the meeting, which gave closure to the day but an initial drive towards future potential collaborations that were created out of it.

Bram Govaerts appointed as CIMMYT Director General

Bram Govaerts, renowned scientist and leader, has been appointed as CIMMYT’s Director General for the period 2023-2028 as of July 1, 2023, after holding the position on an interim basis for two years and steering the organization through the unprecedented global challenges of the pandemic and ongoing food insecurity.

Under Govaerts’ leadership, CIMMYT has expanded its research portfolio and strengthened its work in key regions. Govaerts has also started an effort to streamline internal processes and operations to speed up CIMMYT’s response capacity and impact across the world.

Bram with Zamseed staff holding pro-vitamin A orange maize (Photo: Katebe Mapipo/CIMMYT)

Govaerts holds a PhD in Bioscience Engineering – Soil Science, a master’s degree in Soil Conservation and Tropical Agriculture, and a bachelor’s degree in Bioscience Engineering, all from Katholieke Universiteit Leuven, Belgium. He has also received multiple awards during his career: the Development Cooperation Prize from the Belgian Federal Government in 2003, the Norman Borlaug Award for Field Research and Application in 2014, the Premio Tecnoagro, awarded by an organization of 2,500 Mexican farmers in 2018, and Fellow of The American Society of Agronomy (ASA). In addition to leading CIMMYT, Govaerts is an A.D. White Professor-at-Large at Cornell University.

“With Bram’s appointment, I am excited and confident about CIMMYT’s future,” said Margaret Bath, Chair of CIMMYT’s Board of Trustees. “We look forward to many great days ahead for CIMMYT staff across the globe, who lift smallholder farmers and their communities to achieve better and more sustainable livelihoods and to ensure that food security is delivered, and human potential maximized.”

Agricultural Transformation in Africa

Reiterating the commitment to leading agriculture innovation across Africa, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), took part in the 8th Africa Agribusiness and Science Week (AASW8), June 5-8, 2023, in Durban, South Africa.

Partners discuss how to generate greater impact for farmers through regional partnerships between One CGIAR and African stakeholders (Photo: Liesbet Vannyvel/CIMMYT)

The theme of the AASW8 was linking science, innovation, and agribusiness for resilient food systems.

CGIAR System Board Chair Lindiwe Sibanda called for increased research and innovation to achieve an impact at scale and benefit African farmers at the opening ceremony.

Govaerts moderated a partner panel discussion regarding opportunities to strengthen the collaboration between One CGIAR and African research stakeholders.

Organizations represented on the panel included leaders from Technologies for African Agricultural Transformation, Total Landcare, Lupiya, Chitetezo Farmer Federation, and Green Sahel.

The African Development Bank, the African Union Commission, the Forum for Agricultural Research in Africa, and CGIAR also launched the Action Plan for the Abidjan II Communiqué that aims to build Africa’s resilience to future shocks by bolstering agricultural research and innovation systems to give farmers access to the science and technologies that they need to thrive.

“African countries must systematically review what is needed for the transformation of agrifood systems taking into consideration the present and future needs, and significantly increase investment in agricultural research and development,” said Govaerts.

Local and regional agribusiness is an essential industry playing a significant role in Africa’s prospects for economic growth and ensuring food security of its citizens. Still, challenges include regional harmonization of crop variety releases, surveillance of transboundary pests, and the growing threats of climate change.

“CIMMYT is dedicated to collaborating with local stakeholders to facilitate policies at the national, regional, and continental levels to promote proactive and eco-friendly management of transboundary plant health threats,” said Govaerts.

CIMMYT Director General reaffirms commitment to Zambia

Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.

Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)

“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.

CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”

Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.

Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.

Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”

Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)

Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.