Skip to main content

Author: Alison Doody

Breaking Ground: Mandeep Randhawa fights wheat diseases using genetic resistance tools

With new pathogens of crop diseases continuously emerging and threatening food production and security, wheat breeder and wheat rust pathologist Mandeep Randhawa and his colleagues at the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural and Research Organization (KALRO) are working tirelessly to identify new sources of rust resistance through gene mapping tools and rigorous field testing.

With wheat accounting for around 20% of the world’s calories and protein, outbreaks of disease can pose a major threat to global food security and farmer livelihoods. The most common and prevalent diseases are wheat rusts — fungal diseases that can be dispersed by wind over long distances, which can quickly cause devastating epidemics and dramatically reduce wheat yields.

To tackle the problem, Randhawa and his colleagues work on developing improved wheat varieties by combining disease-resistant traits with high yielding ones, to ensure that farmers can get the best wheat yields possible while evading diseases.

Screening for disease

A native of the Punjab state of India, Randhawa joined CIMMYT as a Post-doctoral Fellow in Wheat Rust Resistance Genetics in 2015. He now works as a CIMMYT scientist and manages the Stem Rust Screening Platform in Njoro, Kenya, which supports screening against stem rust of up to 50,000 wheat lines per year from as many as 20 countries. Over the last 10 years about 650,000 wheat lines have been evaluated for stem rust resistance at the facility.

“The platform’s main focus is on evaluation of wheat lines against the stem rust race Ug99 and its derivative races prevalent in Eastern to Southern Africa, the Middle East and Iran,” explains Randhawa. Ug99 is a highly virulent race of stem rust, first discovered two decades ago in Uganda. The race caused major epidemics in Kenya in 2002 and 2004.

“East African highlands are also a hotspot for stripe wheat rust so, at the same time, we evaluate wheat lines for this disease,” adds Randhawa.

The facility supports a shuttle breeding scheme between CIMMYT Mexico and Kenya, which allows breeders to plant at two locations, select for stem rust (Ug99) resistance and speed up the development of disease-resistant wheat lines.

“Wheat rusts in general are very fast evolving and new strains are continuously emerging. Previously developed rust-resistant wheat varieties can succumb to new virulent strains, making the varieties susceptible. If the farmers grow susceptible varieties, rust will take on those varieties, resulting in huge yield losses if no control measures are adopted,” explains Randhawa.

Helping and sharing

For Randhawa, helping farmers is the main goal. “Our focus is on resource-poor farmers from developing countries. They don’t have enough resources to buy the fungicide. Using chemicals to control diseases is expensive and harmful to the environment. So in that case we provide them solutions in the form of wheat varieties which are high yielding but they have long-lasting resistance to different diseases as well.”

Under the Borlaug Global Rust Initiative, Randhawa and his team collaborate with KALRO to facilitate the transfer of promising wheat lines with high yield potential and rust resistance to a national pipeline for soon-to-be-released wheat varieties.

When he is not screening for wheat rusts diseases, Randhawa  also organizes annual trainings on stem rust diagnosis and germplasm evaluation for young wheat breeders and pathologists from developing countries. More than 220 wheat researchers have been trained over the last decade.

Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)
Mandeep Randhawa (left) talks to the participants of the 11th annual training on stem rust notetaking and germplasm evaluation. (Photo: Jerome Bossuet/CIMMYT)

A farmer at heart

Randhawa always had an interest in agricultural science. “Initially, my parents wanted me to be a medical doctor, but I was more interested in teaching science to school students,” he says. “Since my childhood, I used to hear of wheat and diseases affecting wheat crops, especially yellow rust — which is called peeli kungi in my local language.” This childhood interest led him to study wheat genetics at Punjab Agricultural University in Ludhiana, India.

His mentors encouraged him to pursue a doctorate from the Plant Breeding Institute (PBI) Cobbitty at the University of Sydney in Australia, which Randhawa describes as “the mecca of wheat rust research.” He characterized two new stripe rust resistance genes formally named as Yr51 and Yr57 from a wheat landrace. He also contributed to the mapping of a new adult plant stem rust resistance gene Sr56.

Coming from India, his move to Australia was a pivotal moment for him in his career and his identity — he now considers himself Indian-Australian.

If he had not become a scientist, Randhawa would be a farmer, he says. “Farming is my passion, as I like to grow crops and to have rich harvest using my scientific knowledge and modern technologies.”

At CIMMYT, Randhawa has a constant stream of work identifying and characterizing new sources of rust resistance. “Dealing with different types of challenges in the wheat field is what keeps me on my toes. New races of diseases are continuously emerging. As pests and pathogens have no boundaries, we must work hand-in-hand to develop tools and technologies to fight fast evolving pests and pathogens,” says Randhawa.

He credits his mentor Ravi Singh, Scientist and Head of Global Wheat Improvement at CIMMYT, for motivating him to continue his work. “Tireless efforts and energetic thoughts of my professional guru Dr. Ravi Singh inspire and drive me to achieve research objectives.”

New publications: Durum wheat selection under zero tillage increases early vigor and is neutral to yield

CIMMYT's multi-crop, multi-use zero-tillage seeder at work on a long-term conservation agriculture trial plot at the center's global headquarters in Mexico. Maize crop residues are visible in the foreground. (Photo: CIMMYT)
CIMMYT’s multi-crop, multi-use zero-tillage seeder at work on a long-term conservation agriculture trial plot at the center’s global headquarters in Mexico. Maize crop residues are visible in the foreground. (Photo: CIMMYT)

New research published in Field Crops Research by scientists at the International Maize and Wheat Improvement Center (CIMMYT) responds to the question of whether wheat varieties need to be adapted to zero tillage conditions.

With 33% of global soils already degraded, agricultural techniques like zero tillage — growing crops without disturbing the soil with activities like plowing — in combination with crop residue retention, are being considered to help protect soils and prevent further degradation. Research has shown that zero tillage with crop residue retention can reduce soil erosion and improve soil structure and water retention, leading to increased water use efficiency of the system. Zero tillage has also been shown to be the most environmentally friendly among different tillage techniques.

While CIMMYT promotes conservation agriculture, of which zero tillage is a component, many farmers who use CIMMYT wheat varieties still use some form of tillage. As farmers adopt conservation agriculture principles in their production systems, we need to be sure that the improved varieties breeders develop and release to farmers can perform equally well in zero tillage as in conventional tillage environments.

The aim of the study was to find out whether breeding wheat lines in a conservation agriculture environment had an effect on their adaptability to one tillage system or another, and whether separate breading streams would be required for each tillage system.

The scientists conducted parallel early generation selection in sixteen populations from the breeding program. The best plants were selected in parallel under conventional and zero-till conditions, until 234 and 250 fixed lines were obtained. They then grew all 484 wheat lines over the course of three seasons near Ciudad Obregon, Sonora, Mexico, under three different environments — zero tillage, conventional tillage, and conventional tillage with reduced irrigation — and tested them for yield and growth traits.

The authors found that yields were better under zero tillage than conventional tillage for all wheat lines, regardless of how they had been bred and selected, as this condition provided longer water availability between irrigations and mitigated inter-irrigation water stress.

The main result was that selection environment, zero-till versus conventional till, did not produce lines with specific adaptation to either conditions, nor did it negatively impact the results of the breeding program for traits such as plant height, tolerance to lodging and earliness.

One trait which was slightly affected by selection under zero-till was early vigor — the speed at which crops grow during the earliest stage of growth. Early vigor is a useful adaptive trait in conservation agriculture because it allows the crop to cope with high crop residue loads — materials left on the ground such as leaves, stems and seed pods — and can improve yield through rapid development of maximum leaf area in dry environments. Results showed that varieties selected under zero tillage showed slightly increased early vigor which means that selection under zero tillage may drive a breeding program towards the generalization of this useful attribute.

The findings demonstrate that CIMMYT’s durum wheat lines, traditionally bred for wide adaptation, can be grown, bred, and selected under either tillage conditions without negatively affecting yield performance. This is yet another clear demonstration that breeding for wide adaptation, a decades-long tradition within CIMMYT’s wheat improvement effort, is a suitable strategy to produce varieties that are competitive in a wide range of production systems. The findings represent a major result for wheat breeders at CIMMYT and beyond, with the authors concluding that it is not necessary to have separate breeding programs to address the varietal needs of either tillage systems.

This work was implemented by CIMMYT as part of the CGIAR Research Program on Wheat (WHEAT).

Read the full study:
Durum wheat selection under zero tillage increases early vigor and is neutral to yield.

Harnessing research for climate-resilient wheat

This month, the world’s eyes are upon global leaders gathered in Madrid for COP25 to negotiate collective action to slow the devastating impacts of climate change.

According to the UN, the world is heading for a 3.2 degrees Celsius global temperature rise over pre-industrial levels, leading to a host of destructive climate impacts, including hotter and drier environments and more extreme weather events. Under these conditions, the world’s staple food crops are under threat.

A new video highlights the work of the Heat and Drought Wheat Improvement Network (HeDWIC), a global research and capacity development network under the Wheat Initiative, that harnesses the latest technologies in crop physiology, genetics and breeding to help create new climate-resilient wheat varieties. With the help of collaborators and supporters from around the world, HeDWIC takes wheat research from the theoretical to the practical by incorporating the best science into real-life breeding scenarios.

The end of an era: Alexey Morgunov retires after a 28-year career

At the end of 2019, the International Maize and Wheat Improvement Center (CIMMYT) will say goodbye to Alexey Morgunov, head of the International Winter Wheat Improvement Program (IWWIP) in Turkey.

A native of Russia, Morgunov joined CIMMYT as a spring wheat breeder in 1991 working with Sanjaya Rajaram, former Global Wheat Program director and World Food Prize laureate. Morgunov went on to work as a breeder of winter wheat in Turkey in 1994 and later to Kazakhstan, where he helped generate new wheat varieties and technologies for Central Asia and the Caucasus region.

Since 2006 he has led the International Winter Wheat Improvement Program (IWWIP), a highly-productive collaboration between Turkey, the International Center for Research in Dry Areas (ICARDA), and CIMMYT.

As part of that program, Morgunov contributed to the development of more than 70 widely grown wheat varieties in Central and West Asia and, in 2013, to a national wheat landrace inventory in Turkey. He has also helped develop and characterize synthetic wheats — created by crossing modern durum wheat with grassy relatives of the crop — and used them in breeding to broaden the diversity of winter wheat.

Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)
Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)

A professional journey across Central Asia

Morgunov said his childhood in rural Russia instilled in him the importance of agriculture and of education.

“My parents, who lived in rural Russia, went through hunger and were trying to make sure that their children worked somewhere close to food production so that we wouldn’t go hungry,” he explained. “They said: ‘OK, Alex, you go to an agricultural university and you will not be hungry.’ ”

After his university studies, Morgunov joined the Plant Breeding Institute at Cambridge as a visiting scientist in the late 1980s, where he crossed paths with CIMMYT scientists seeking to partner with the newly independent states of the former Soviet Union. After an interview in 1991, he was invited to join the CIMMYT team in Mexico as a wheat breeder.

He was later posted to Kazakhstan to build relationships in Central Asia, a period he cites as a standout. “In the late 90s CIMMYT started working with Central Asian countries experiencing severe food security issues,” he said. “They didn’t really have any technologies or varieties for grain production, so we started a program in 95/96 which later developed into a CGIAR program.”

“We had great impact in those countries at the time, introducing zero tillage in Kazakhstan, new seed varieties in Tajikistan after the civil war, and high-yielding rust-resistant varieties to Uzbekistan.”

Reflecting on his time at CIMMYT, it was the friends and connections he made that stood out the most for Morgunov.

“The thing I most enjoyed was communicating with colleagues,” Morgunov said. “You start working in Kazakhstan and other places and building up cooperation and technical relationships and, over time, these relationships become friendships that we enjoy for as long as we live. I think this is very satisfactory for us as human beings.”

Last month, Morgunov received a fellowship from the Crop Science Society of America. The award is the highest recognition granted by the association.

Active retirement

One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)
One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)

Despite his plans to retire, Morgunov still plans to continue working — but on his own terms. “My wife is from Kazakhstan so we will be moving there and I plan to continue working in a different capacity and different schedule,” he explains. “Some Russian universities are writing to me to participate in projects and also universities from Kazakhstan. I have a couple of PhD students in Kazakhstan so I’d like to move more into the educational side of things, working with younger people.”

He was also given an Adjunct Faculty position by Washington State University early this year and will volunteer for them.

Morgunov has also recommended that CIMMYT creates an “emeritus” status for long-serving colleagues retiring from the organization, so they can continue to support the organization.

It won’t be all work though. Morgunov is a devoted tennis player and plans to improve his backhand. A keen sailor, he also hopes to spend more time on the waves and visiting new countries.

New mobile technology to help farmers improve yields and stabilize incomes

An international team of scientists is working with farmers in the Yaqui Valley, in Mexico’s Sonora state, to develop and test a new mobile technology that aims to improve wheat and sugarcane productivity by helping farmers manage factors that cause the yield gap between crop potential and actual field performance.

Scientists have been developing and testing a smartphone app where farmers can record their farming activities — including sowing date, crop type and irrigation — and receive local, precise crop management advice in return.

This project is a private-public partnership known as Mexican COMPASS, or Mexican Crop Observation, Management & Production Analysis Services System.

Research has shown that proper timing of irrigation is more important to yields than total water amounts. Earlier planting times have also been shown to improve wheat yields. Having optimum dates for both activities could help farmers improve yields and stabilize their incomes.

COMPASS smartphone app interface. (Photo: Saravana Gurusamy/Rezatec)
COMPASS smartphone app interface. (Photo: Saravana Gurusamy/Rezatec)

The COMPASS smartphone app uses earth observation satellite data and in-situ field data captured by farmers to provide information such as optimum sowing date and irrigation scheduling.

“Sowing and irrigation timing are well known drivers of yield potential in that region — these are two features of the app we’re about to validate during this next season,” explained Francelino Rodrigues, Precision Agriculture Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Sound data

Technological innovation for crop productivity is needed now more than ever with threats to food security increasing and natural resources becoming scarcer. Farmers are under increasing pressure to produce more with less, which means greater precision is needed in their agricultural practices.

The Yaqui Valley, Mexico’s biggest wheat producing area, is located in the semi-arid Sonoran Desert in the northern part of Mexico. Water security is a serious challenge and farmers must be very precise in their irrigation management.

The Mexican COMPASS consortium, which is made up of the geospatial data analytics company Rezatec, the University of Nottingham, Booker Tate, CIMMYT and the Colegio de Postgraduados (COLPOS) in Mexico, evolved as a way to help Mexican farmers improve their water use efficiency.

“Yaqui Valley farmers are very experienced farmers, however they can also benefit by using an app that is designed locally to inform and record their decisions,” Rodrigues explained.

The smartphone app will also allow farmers to record and schedule their crop management practices and will give them access to weekly time-series Normalized Difference Vegetation Index (NDVI) maps, that will allow farmers to view their fields at any time from any location.

“All of this information is provided for free! That’s the exciting part of the project. The business model was designed so that farmers will not need to pay for access to the app and its features, in exchange for providing their crop field data. It’s a win-win situation,” said Rodrigues.

CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)
CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)

Farmer-centered design

The app is now in the validation stage and COMPASS partners are inviting farmers to test the technology on their own farms. A workshop on October 21 in Ciudad Obregon provided farmers with hands-on training for the app and allowed them to give their feedback.

Over 100 farmers attended the workshop, which featured presentations from Saravana Gurusamy, project manager at Rezatec, Iván Ortíz-Monasterio, principal scientist at CIMMYT, and representatives from local farmer groups Asociación de Organismos de Agricultores del Sur de Sonora (AOASS) and Distrito de Riego del Río Yaqui (DRRYAQUI). The workshop featured a step-by-step demonstration of the app and practical exercises for farmers to test it out for themselves.

“We need technology nowadays because we have to deal with many factors. The profit we get for wheat is getting smaller and smaller each year, so we have to be very productive. I hope that this app can help me to produce a better crop,” said one local wheat farmer who attended the workshop.

User feedback has played a key role in the development of the app. COMPASS interviewed dozens of farmers to see what design worked for them.

“Initially we came up with a really complicated design. However, when we gave it to farmers, they didn’t know how to use it,” explained Rezatec project manager, Saravana Gurusamy. The team went back to the drawing board and with the feedback they received from farmers, came up with a simple design that any farmer, regardless of their experience with technology or digital literacy, could use.

A farmer who attended the workshop talks about his experience and the potential benefits of the app. See full video on YouTube.

Sitting down with Gurusamy after the workshop, he outlined his vision for the future of the app.

“My vision is to see all the farmers in Sonora, working in wheat using the app. The first step is to prove the technology here, then roll it out to all of Mexico and eventually internationally.”

Mexican COMPASS is a four year project funded by the UK Space Agency’s International Partnership Programme (IPP-UKSA) and the CGIAR Research Program on Wheat (WHEAT). It is a collaboration between Rezatec, the University of Nottingham and Booker Tate in the UK, and the International Maize and Wheat Improvement Center (CIMMYT) and the Colegio de Postgraduados (COLPOS) in Mexico.

2019 World Food Prize recognizes the impact of bringing improved seeds to Africa, Asia and Latin America

Simon N. Groot is the winner of the 2019 World Food Prize. With this award, food and agriculture leaders recognize his work to increase vegetable production in more than 60 countries, through the development of high-quality seeds and training programs for farmers.

Groot’s efforts were crucial in leading millions of farmers to become horticulture entrepreneurs, resulting in improved incomes and livelihoods for them, and greater availability of nutritious vegetables for hundreds of millions of consumers.

Like small-town Iowa farm boy Norman Borlaug, Groot comes from a small town in the Netherlands, where he learned the value of seeds at a young age. Both shared the same vision to feed the world and succeeded.

“I think I was born to be a vegetable seedsman.”
– Simon N. Groot

Groot devoted his whole life to the seed and plant breeding industry. After 20 years in the industry in Europe and North America, Groot travelled to southeast Asia at the age of 47 with a vision to set up the region’s first vegetable seed breeding company. Frustrated by the poor quality seeds he found and noticing a total lack of commercial breeding activities in the region, Groot decided to set up his own company, using his own capital, partnering with Benito Domingo, a Philippines local with a passion for seeds and local connections to the traditional seed trade, agriculture industry and universities.

The company, named East-West Seed Company, started out as a small five-hectare farm outside Lipa City, Philippines. Groot brought over well-trained plant breeders from the Netherlands to begin plant breeding and help train locals as breeders and technicians. Groot was the first to introduce commercial vegetable hybrids in tropical Asia: varieties which were high-yielding, fast-growing and resistant to local diseases and stresses. Today, East-West Seed Company has over 973 improved varieties of 60 vegetable crops which are used by more than 20 million farmers across Asia, Africa and Latin America.

Inspired by Borlaug

Groot described meeting Dr. Borlaug at a conference in Indonesia in the late 1980s as “a pivotal moment” for him, writing that “his legacy has continued to serve as an inspiration for everything I have done at East-West Seed.”

In response to being awarded the 2019 World Food Prize, Groot wrote: “Bringing about the ‘Vegetable Revolution’ will be a fitting tribute to the work of Dr. Borlaug.”

The World Food Prize has been referred to as the “Nobel Prize for food and agriculture.” Awarded by the World Food Prize Foundation, it recognizes individuals who have advanced human development by improving the quality, quantity or availability of food in the world. Winners receive $250,000 in prize money.

The World Food Prize was founded in 1986 by Norman Borlaug, recipient of the 1970 Nobel Peace Prize.

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. Bram Govaerts received the Norman Borlaug Field Award in 2014. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

Scientists propose a low-cost, reliable system to measure soil organic carbon

A multi-crop, multi-use zero-tillage seeder at work on a conservation agriculture trial plot, left, at CIMMYT's headquarters in Texcoco, Mexico. The residues retained on the soil surface and the permanent raised beds are in clear contrast with the conventional plot on the right. (Photo: CIMMYT)
A multi-crop, multi-use zero-tillage seeder at work on a conservation agriculture trial plot, left, at CIMMYT’s headquarters in Texcoco, Mexico. The residues retained on the soil surface and the permanent raised beds are in clear contrast with the conventional plot on the right. (Photo: CIMMYT)

New research by an international team of scientists, including International Maize and Wheat Improvement Center (CIMMYT) Director for the Integrated Development Program, Bram Govaerts, outlines a proposed accounting system for organic carbon in soils that could encourage farmers to adopt better land management practices and increase levels of organic carbon in their soil.

Reported this month in the journal Carbon Management, the study highlights how increasing soil organic carbon (SOC) would build agricultural resilience and fertility and reduce greenhouse gas emissions — but we need to be able to measure it.

Soil is a huge carbon reservoir — in fact, soils contain one of the largest organic carbon stocks on the planet. With proper land management, soils have the potential to store even more. Improved SOC levels have also been connected with improved soil quality, reduced susceptibility to erosion and greater agricultural yields and yield stability, particularly under drought. This makes them a crucial player in climate change mitigation and agricultural resilience.

Policy makers and environmental groups are becoming increasingly interested in soil health and its effect on climate change. The 4 per 1000 initiative, launched at the COP 21 climate talks in Paris in 2015, argues that an annual growth rate of 0.4% in soil carbon stocks would significantly reduce human activity-related CO2 concentrations in the atmosphere. The most recent Intergovernmental Panel on Climate Change (IPCC) assessment highlights carbon sequestration as one of the options, alongside massive fossil fuel reduction, to keep warming below 2 degrees Celsius, in accordance with the Paris Climate Agreement.

Increasing organic carbon content in soils also has another very important function: crop nutrition. Last year, researchers from CIMMYT and the Nature Conservancy found that wheat grown on soils rich in organic matter had more essential nutrients like zinc and protein.

However, increasing levels of organic carbon in the soil can be costly in the short term, so farmers need to see improvements in the performance of their soils as a result of their efforts.

Quantifying soil carbon

That’s where a global soil information system comes in. By integrating empirical models, expanded measurement and monitoring networks, remote sensing and crowdsourced management data, SOC stocks can be assessed efficiently and reliably. Farmers and policy makers would get a clear picture of how much soil organic carbon is increasing and at what rate.

The global soil information system would work by pulling different sources of existing information together to provide a comprehensive account of soil organic carbon stocks worldwide.

As SOC content can vary over time, an important component of the system would involve using monitoring networks at precise locations which can then be resampled regularly. Alongside this information, empirical models would be used to predict SOC changes based on already observed results from lab- and field-based experiments, and to predict the impacts of different soil and climate conditions. Remote sensing data can provide information on land cover, crop species and land management practices at a very low cost, to supplement and verify management activity data reported by land users.

The international team of scientists pointed out that greater coordination and transparency among scientists, remote sensing specialists and land managers is crucial to the success of a global soil information system.

Incentivizing carbon sequestration among land managers is no mean task. The authors argue that existing approaches like direct compensation to farmers for CO2 removal and storage, government subsidies such as the European Union’s Common Agricultural Policy (CAP) and the option of earning a premium price for producing sustainable agricultural products, need a reliable carbon accounting system to ensure their success. A global soil information system might just hold the key.

Read the full article:
Quantifying carbon for agricultural soil management: from the current status toward a global soil information system” in Carbon Management, DOI: 10.1080/17583004.2019.1633231

This study was made possible through the support provided by the TomKat Foundation. Additional support was provided by the NASA Harvest Consortium (www.nasaharvest.org), a multi-disciplinary program that empowers informed agricultural decisions through the use of Earth observations.